

The Age(s) of the NGC 5128 Halo

The color/magnitude distribution of the halo stars directly constrains their **age** and **metallicity** distribution

NGC 5128 (Centaurus A) is well placed for stellar population studies of this type, since it is by far the *nearest accessible* giant E galaxy.

A unique resource!

d = 3.8 +- 0.2 Mpc (TRGB, Cepheids, PNLF, SBF, LPVs)

- Obvious evidence for its most recent satellite accretion.
- But is the bulk of the galaxy classically old?
- Is there an extensive starburst history?

These HST target fields avoid shells and plumes (old accretion remnants)

Peng, Ford & Freeman 2002

Malin 1983

Harris, Poole, & Harris 1998, AJ 116, 2866
Harris, Harris, & Poole 1999, AJ 117, 855
Harris & Harris 2002, AJ 123, 3108
Rejkuba et al. 2005, ApJ 631, 262

A unique dataset for gE's

RGB stars: → Broad and predominantly metal-rich MDF with little radial gradient

Various features of CMD sensitive to metallicity and/or age: RGB, RC, AGB -- at the moment, only the 40 kpc field has enough leverage for both age and metallicity distributions simultaneously

-Luminosity function in both I and V

-Full distribution across CMD

CMD simulations and analysis: Rejkuba, Harris, Greggio, & Harris: in progress

Generate simulated CMDs from evolutionary model tracks: Teramo models (Pietrinferni et al. 2004 + later papers)

- -full evolutionary phases through AGB++
- 11 distinct metallicity values $x \alpha$ -enhanced or scaled Solar

Each simulation convolved with observational measurement scatter and completeness function of the photometry

McMaster University

Compare two CMDs divided into grid elements:

- numbers of stars $n_1(i,j)$ (actual data) and $n_2(i,j)$ (simulation) in each grid element
- N_{box} total grid elements

Form the total

$$\chi^2 = \frac{1}{N_{box}} \sum \frac{(n_1 - n_2)^2}{(n_1 + n_2)}$$

and find simulation that minimizes it by varying over input MDF and ADF

Layout with variable box size to optimize areas of best sensitivity to models

Form the total

$$\chi^2 = \frac{1}{N_{box}} \sum \frac{(n_1 - n_2)^2}{(n_1 + n_2)}$$

and find simulation that minimizes it by varying over input MDF and ADF

Single-age ("single starburst") models

Consistency is required for both luminosity functions (*I, V*), complete CMD, and Z-distribution

Single-age "burst" formation models with Z-mixture

Single-age ("single starburst") models

Model vs. model:

- -internal age precision of +- 1 Gy
- -scaled-solar → lower mean age by 1-2 Gy

Single-age ("single starburst") models

Model vs. data:

- "best guess" mean age near 11 Gy
- LF(I) more sensitive than LF(V)
- -LF(I) and total CMD are most useful indicators

Two-starburst models

60% at 11 Gy
40% at 8 Gy
both have same MDF

5 components, dominated by bursts at 12 and 8 Gy; plus individual MDFs (age/metallicity relation)

Better fits to LFs and better overall shape of CMD (though still too narrow)

More multiple-starburst models

9-component model (two major eras of star formation) and smoother age/metallicity relation

Too high a proportion of very old material here (12-13 Gy)

Age range ~8-12 Gy seems appropriate for the bulk of the halo population (i.e., classically "old" is working reasonably well)

- -No significant component with age < 8 Gy is needed
- What is *minimum* age spread required?
- What about incorporating an age/alpha relation?
- **Globular clusters** give an independent route to measuring the age distribution from all over the halo → see Woodley's talk