
Physics 4Q03: Introduction to Quantum Field Theory

Midterm Exam

Thursday March 2, 2023.

This exam comprises four (4) questions and a formula sheet, for a total of three (3) pages.

Answer all questions. Allowed aids: The attached formula sheet, a single-sided homespun

formula sheet and a calculator. No other aids are allowed.

1. (10 marks)

Fill in the missing factors of Boltzmann’s constant, kB, Planck’s constant, ℏ, and the

speed of light, c, in the following formulae:

(a) M2
p = 1/(8πG) where Mp is the reduced Planck mass and G is Newton’s gravita-

tional constant.

Mp has dimensions of mass. Because eg E = GMm/r is an energy G must have

units energy-length/mass2. So LHS has dimension (mass)2 and RHS has dimen-

sion (mass)2/(energy-length). ℏ has dimension energy-time and c has dimension

length/time, so ℏc has dimension energy-length. The formula with the right di-

mension therefore is

M2
p =

ℏc
8πG

(b) TU = a/(2π) where a is an acceleration and TU is the Unruh temperature.

T has dimensions of temperature so kBT has dimension energy (and so is also mass-

(length/time)2). a is an acceleration so has units length/time2. So the mismatch

between LHS and RHS is mass-length. ℏc has dimension energy-length (from

previous question) and so ℏc/c2 = ℏ/c has dimension mass-length. The formula

with the right dimension therefore is

kBT =
ℏa
2πc

2. (15 marks) Consider a simple harmonic oscillator whose Hamiltonian is given by

H = ω

(
a⋆a+

1

2

)
, (2.1)

where, as usual [a, a⋆] = 1. A coherent state, |α⟩, for this system is given in terms of

the occupation-number basis by the expression given in class:

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!

|n⟩ . (2.2)

The position operator for this oscillator is given by

x =
a+ a⋆√
2mω

(2.3)
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(a) Compute the average and variance of the position in a coherent state

x = ⟨α|x|α⟩ , and (∆x)2 = ⟨α|(x− x)2|α⟩ . (2.4)

Coherent states are defined by the condition a|α⟩ = α|α⟩ and this implies ⟨α|a⋆ = ⟨α|α∗.

Compute the mean:

x =
1√
2mω

⟨α|(a+ a⋆)|α⟩ = 1√
2mω

(α+ α∗) .

where in the last equality a is taken to act on the state on the right and a⋆ acts on the

state to the left.

Compute the variance: First use that

⟨(x− x̄)2⟩ = ⟨x2⟩ − 2x̄⟨x⟩+ x̄2 = ⟨x2⟩ − x̄2 .

Next use that

x̄2 =
(α+ α∗)2

2mω
.

In ⟨α|x2|α⟩ reorder any operators so that all the a∗’s are on the left and the a’s on the

right, so that we can use ⟨α|a⋆ = ⟨α|α∗ and a|α⟩ = α|α⟩. Re-ordering is done using

aa⋆ = a⋆a+ 1. Therefore

⟨α|x2|α⟩ =
⟨α|(a+ a⋆)2|α⟩

2mω
=

⟨α|(a2 + aa⋆ + a⋆a+ (a⋆)2|α⟩
2mω

=
⟨α|(a2 + 1 + 2a⋆a+ (a⋆)2|α⟩

2mω
=
α2 + 1 + 2α∗α+ (α∗)2

2mω

and so subtracting x̄2 gives

⟨α|x2|α⟩ − x̄2 =
1

2mω
.

3. (15 marks) Suppose a system of particles experiences a potential V (x, y) that traps

them to move only along a line (a cosmic string, say, or a condensed matter defect),

which we choose to be the z axis. [The potential could be something like V (x, y) =
1
2mω

2(x2 + y2), though you do not need to know its explicit form for this question.]

What is important is that the single-particle states are described by their momentum p

along the z axis, and two non-negative integers r, s = 0, 1, · · · that are quantum numbers

related to the particle’s confinement to the z axis.

Using discretely normalized momentum states, the Hamiltonian for the system is H =

Hfree +Hint with

Hfree =
∑
rs

∑
p

εrs(p) a
⋆
rsparsp (3.1)
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and

Hint =
∑

r1,s1,r2,s2,r3,s3

∑
p1,p2,p3

[
Ur1s1r2s2r3s3(p1, p2, p3) a

⋆
r1s1p1a

⋆
r2s2p2ar3s3p3

+h.c.
]
δp1+p2−p3 . (3.2)

The operators arsp satisfy the commutation relation [arsp, a
⋆
r′s′p′ ] = δrr′δss′δpp′ .

(a) Rewrite this Hamiltonian in terms of continuum-normalized states, for which

[ârsp, â
⋆
r′s′p′ ] = δrr′δss′δ(p− p′),

where δ(p−p′) is a Dirac delta function for the momentum in the z direction. When

computing the density of states take the system’s length in the z direction to be L

and imagine L to be very large (as we did in class when doing these conversions).

In particular show that the Hamiltonian becomes H = Hfree +Hint with

Hfree =
∑
rs

∫
dp ε̂rs(p) â

⋆
rspârsp (3.3)

and

Hint =
∑

r1,s1,r2,s2,r3,s3

∫
dp1 dp2 dp3

[
Ûr1s1r2s2r3s3(p1, p2, p3) â

⋆
r1s1p1 â

⋆
r2s2p2 âr3s3p3

+h.c.
]
δ(p1 + p2 − p3) . (3.4)

How are the continuum coefficient functions ε̂rs(p) and Ûr1s1r2s2r3s3(p1, p2, p3) re-

lated to the functions εrs(p) and Ur1s1r2s2r3s3(p1, p2, p3) in the discrete formulation?

In passing to the continuum from discrete states use that discrete states (with pe-

riodic boundary conditions) have levels p = 2πn/L and so the number of states

in an interval dp is dn = (L/2π)dp. Summations and delta functions therefore

convert with ∑
p

=
L

2π

∫
dp and δpq =

2π

L
δ(p− q)

and so normalized states and destruction/creation operators are related by

|p⟩ =
√
L/2π |p) and so âp =

√
L/2π ap.

Therefore

Hfree =
∑
rs

∑
p

εrs(p) a
⋆
rsparsp =

∑
rs

(
L

2π

∫
dp

)
εrs(p)

(
2π

L
â⋆rspârsp

)
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and so ε̂rs(p) = εrs(p). Similarly

Hint =
∑
r1···s3

∑
p1,p2,p3

[
Ur1s1r2s2r3s3(p1, p2, p3) a

⋆
r1s1p1a

⋆
r2s2p2ar3s3p3 + h.c.

]
δp1+p2−p3

=
∑
r1···s3

(
L

2π

)3 ∫
dp1dp2dp3

[
Ur1s1r2s2r3s3(p1, p2, p3)

×
(
2π

L

)3/2

â⋆r1s1p1 â
⋆
r2s2p2 âr3s3p3 + h.c.

]2π
L
δ(p1 + p2 − p3) .

and so

Ûr1s1r2s2r3s3(p1, p2, p3) =

√
L

2π
Ur1s1r2s2r3s3(p1, p2, p3) .

Since U has dimensions energy it follows Û has dimensions of (energy)1/2.

(b) Suppose the single-particle energies are

εrs(p) =
p2

2m
+
(
r + s+ 1

)
ω

where m and ω are real and positive constants. Do you expect the particles de-

scribed in this system to be stable? Briefly explain why or why not, and if you

think they are not stable what do they decay into?

The basic interaction destroys a particle and creates two others with different

values of their quantum numbers, and this allows any state (r, s, p) to decay into

two states with smaller (r, s), provided energy and momentum conservation is

possible. This means that the states will generically be unstable. Exceptions

to this are the lowest-energy states (0, 0, p) who cannot lose any more oscillator

energy.

(There is no need to compute a decay rate here, though there are bonus marks if

you can estimate the decay lifetime for states you think can decay.)

From Fermi’s golden rule the rate must be proportional to the interaction hamil-

tonian squared, so has a factor |Û |2. This has dimension energy and so is the same

dimension as is the rate dΓ, since this is inverse-time. Fermi’s rule says

Γ ∼
∫

dp dq |Û |2 δ(p+ q) δ

(
ω − q2

2m
− p2

2m

)
=

∫
dp |Û |2 δ

(
ω − p2

m

)
=

∫
dε

√
2m

ε
|Û |2 δ(ω − 2ε) ∼ |Û |2

√
m

ω
.

4. (10 marks) Evaluate the matrix elements

⟨0| âp âq â⋆k â⋆l |0⟩ and ⟨0| âp âq âl â⋆k â⋆l |0⟩ , (4.1)
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for the creation and annihilation operators for continuum normalized fermions, that

satisfy {âp , â⋆q} = δ(p− q). Here |0⟩ is the usual no-particle state defined by âp|0⟩ = 0.

Any expectation value ⟨ψ|...|ψ⟩ involving an unequal number of âp’s and â⋆q ’s must

vanish because it changes the total number of particles in the initial state and so gives

a result that is orthogonal to the initial state. So the second example in the question is

⟨0| âp âq âl â⋆k â⋆l |0⟩ = 0.

In the first example repeatedly use âpâ
⋆
q = −â⋆q âp + δ(p − q), together with âp|0⟩ = 0

and ⟨0|â⋆q = 0.

⟨0| âp âq â⋆k â⋆l |0⟩ = −⟨0| âp â⋆k âqâ⋆l |0⟩+ δ(k − q)⟨0| âp â⋆l |0⟩
= −δ(p− k) δ(q − l) + δ(k − q) δ(p− l) . (4.2)
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