References

[1] For an early demonstration for renormalizable theories see:
Infrared Singularities and Massive Fields.

Phenomenological Lagrangians.

Quasiparticles and Gauge Invariance in the Theory of Superconductivity.

Field Theories with Superconductor Solutions.

Broken Symmetries.

On the Green-Functions of the Quantum Electrodynamics.
Progress in Theoretical Physics **7** 327.

Über die mannigfaltigkeit der interpolierenden felder zu einer kausalen S-matrix.

Change of variables in quantum field theories.
Nuclear Physics **26** (1961) 469.

Change of variables and equivalence theorems in quantum field theories.

Nonlinear realizations of chiral symmetry.

Structure of phenomenological Lagrangians, 1.

Structure of phenomenological Lagrangians, 2.

Feynman Rules for Any Spin III.

Relativistic field theories with symmetry breaking solutions.

Renormalizable models with simple symmetry breaking 1.
Symmetry breaking by a source term.
Communications in Mathematical Physics **16** (1970) 48.

Aspects of Symmetry: Selected Erice Lectures.

The evaluation of the collision matrix.

Five lectures on effective field theory.

Power Corrections At Short Distances.

Functional Methods and Perturbation Theory.

Ward Identities and Charge Renormalization of the Yang-Mills Field.

Ward Identities in Gauge Theories.
Theoretical and Mathematical Physics **10** (1972) 99

Quantum gravity in everyday life: General relativity as an effective field theory..

Renormalization and Effective Lagrangians.
 Exact evolution equation for the effective potential.

 Exact renormalization group and approximate solutions.

 Uses and Abuses of Effective Lagrangians.

 Asymptotic expansion of Feynman integrals near threshold.

 Introduction to Soft-Collinear Effective Theory.

 Effective Gauge Theories.

 Chiral Perturbation Theory to One Loop.

 Dimensional Renormalization:
 The Number of Dimensions as a Regularizing Parameter.

[34] 't Hooft, G. and Veltman, M. 1972.
 Regularization and renormalization of gauge fields.
 Nuclear Physics **B44** (1972) 189.

 Dimensional regularization and the renormalization group.
 Nuclear Physics **B 61** (1973) 455.

 An algorithm for the poles at dimension four
 in the dimensional regularization procedure.
 Nuclear Physics **B 62** (1973) 444.

 New Approach to the Renormalization Group.

[38] Landau, L. D. 1959.
 On analytic properties of vertex parts in quantum field theory.
 Nuclear Physics **13** 181.
References

Diagrammar.

Why The Renormalization Group Is A Good Thing.

Gruppentheorie und ihre Anwendung auf die Quanten-mechanik der Atomspektren.

Invariante Variationsprobleme.
Nachrichten von der Gesellschaft der Wissenschaften, Gottingen, Mathematisch-
Physikalische Klasse 2 (1918) 98.
See also (arXiv:physics/0503066).)

Quantum Field Theory and Approximate Symmetries.

Approximate symmetries and pseudoGoldstone bosons,..

The Symmetry group of vector and axial vector currents.
Physics Physique Fizika 1 (1964) 63.

Renormalization of the Weak Axial-Vector Coupling Constant.

Calculation of the axial-vector coupling constant renormalization in beta decay.

Pion scattering lengths.

Dynamical approach to current algebra.

Sur la structure des groupes infinis de transformation.

Feynman Rules for Any Spin 2: Massless Particles.

Photons and Gravitons in S Matrix Theory: Derivation of Charge Conservation and
Equality of Gravitational and Inertial Mass.

Infrared photons and gravitons.
Physical Review **140** (1965) B516.

Limits on Massless Particles.

Broken Symmetry and the Mass of Gauge Vector Mesons.

Symmetry breaking in nonAbelian gauge theories.

Broken symmetries, massless particles and gauge fields.

Broken Symmetries and the Masses of Gauge Bosons.

Plasmons, Gauge Invariance, and Mass.

A Model of Leptons.

Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kräfte.

Physical Processes in a Convergent Theory of the Weak and Electromagnetic Interactions.

General Theory of Broken Local Symmetries”.
Physical Review **D7** (1973) 1068.

Generalized Renormalizable Gauge Formulation of
Spontaneously Broken Gauge Theories.

Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass.

Asymptotic Behavior and Subtractions in the Mandelstam Representation.

Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the S Matrix.

A PCAC puzzle: $\pi^0 \to \gamma\gamma$ in the σ model.

Axial vector vertex in spinor electrodynamics.

Anomalous Ward identities in spinor field theories.

Absence of higher order corrections in the anomalous axial vector divergence equation.

't Hooft's Consistency Condition as a Consequence of Analyticity and Unitarity.

Trace anomalies in dimensional regularization.

Path Integral Measure for Gauge Invariant Fermion Theories,.

Anomaly Cancellation in Supersymmetric D=10
Gauge Theory and Superstring Theory.

Consequences of anomalous ward identities.

Physical Review **56** (1039) 72.

Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking.
In the proceedings of ‘Recent Developments in Gauge Theories’ NATO Advanced Study Institute, Cargese, NATO Science Series B59 (1980) 135.

The γ-Instability of Mesons.

On the γ-Decay of Neutral Meson.
Progress of Theoretical Physics 4 (1949) 347.

On the Use of subtraction fields and the lifetimes of some types of meson decay.
Physical Review 76 (1949) 1180.

On gauge invariance and vacuum polarization.
Physical Review 82 (1951) 664.

Current algebra and some nonstrong mesonic decays.

Theoretical Aspects of High Energy Neutrino Interactions.

Semiclassical quantization of the supermembrane.

Dirichlet Branes and Ramond-Ramond charges.

Inflating in a Trough: Single-Field Effective Theory from Multiple-Field Curved Valleys.

[90] Ostrogradsky, M. 1850.
Mémoires sur les équations différentielles, relatives au problème des isopérimètres.

Ostrogradsky’s theorem on Hamiltonian instability.

Third order equations of motion and the Ostrogradsky instability.

Second-order scalar-tensor field equations in a four-dimensional space.

The Galileon as a local modification of gravity.

From k-essence to generalised Galileons.

Higher-derivative operators and effective field theory for general scalar-tensor theories.

Continuum and Discrete Initial-Boundary-Value Problems and Einsteins Field Equations.

Initial-Boundary Value Problems and the Navier-Stokes Equations.

[100] Hadamard, J. 1902.
Sur les problèmes aux dérivées partielles et leur signification physique.
Princeton University Bulletin **13** (1902) 4952.

On the local well-posedness of Lovelock and Horndeski theories.

Solutions of Ill-Posed Problems.

Towards the nonlinear regime in extensions to GR: assessing possible options.
(arXiv:1808.07897 (gr-qc)).

The Effective Field Theory of Inflation.

Spontaneous Symmetry Probing.

Phenomenological Lagrangians.
*Soviet Journal of Nuclear Physics*** **4** (1973) 1;
(Fizika Elementarnykh Chastits i Atomnogo Yadra *4* (1973) 3).

Goldstone and pseudo-Goldstone bosons in nuclear,
particle and condensed matter physics.

Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance.

Partial Symmetries of Weak Interactions.
Nuclear Physics 22 (1961) 579.

Weak and Electromagnetic Interactions.

Weak Interactions with Lepton-Hadron Symmetry.

Unitary Symmetry and Leptonic Decays.

CP Violation in the Renormalizable Theory of Weak Interaction.
Progress in Theoretical Physics 49 (1973) 652.

Inverse beta processes and nonconservation of lepton charge.
Zhurnal Eksperimental’noi i Teoreticheskoii Fiziki 34 247
(Soviet Physics JETP 7 (1958) 172).

Remarks on the Unified Model of Elementary Particles.
Progress of Theoretical Physics 28 870.

Tentativo di una teoria dei raggi β.

Versuch einer Theorie der beta-Strahlen. I.
Fermi’s Theory of Beta Decay.
American Journal of Physics 36 1150.

Theory of the Fermi interaction.

Chirality invariance and the universal Fermi interaction.

The Quantum Theory of the Emission and Absorption of Radiation.
[121] Fermi, E. 1932.
Quantum Theory of Radiation.
Reviews of Modern Physics 4 87.

The Quantum Theory of the Electron.
Proceedings of the Royal Society A: 117 610.

On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields.
Progress of Theoretical Physics 1 27.

On Quantum-Electrodynamics and the Magnetic Moment of the Electron.
Physical Review 73 416.

SpaceTime Approach to Quantum Electrodynamics.
Physical Review 76 769.
The Theory of Positrons.
Physical Review 76 749.

The Radiation Theories of Tomonaga, Schwinger, and Feynman.
Physical Review 75 486.

The S-matrix in quantum electrodynamics.

A Symmetry Theorem in Positron Theory.
Physical Review 51 125.

The Scattering of α and β rays by Matter and the Structure of the Atom.
Philosophical Magazine 6 21.

Über die Streuung von Licht an Licht nach der Diracschen Theorie.
Die Naturwissenschaften 23 246.

Folgerungen aus der Diracschen Theorie des Positrons.
Zeitschrift für Physik 98 714.

The Scattering of Light by Light.
Physical Review 83 (1951) 776.

[133] Low, F.E. 1954.
Scattering of Light of Very Low Frequency by Systems of Spin 1/2.

Scattering of Low-Energy Photons by Particles of Spin 1/2.
Note on the Radiation Field of the Electron.
Physical Review 52 (1937) 54.

The infrared divergence phenomena and high-energy processes.
Annals of Physics (NY) 13 (1955) 379.

Mass Singularities of Feynman Amplitudes.

Degenerate Systems and Mass Singularities.

Broken Scale Invariance in Scalar Field Theory.

Small distance behaviour in field theory and power counting.
Communications in Mathematical Physics 18 (1970) 227.

The Reaction $\gamma + \gamma \rightarrow nu + \bar{\nu}$.

Photon neutrino scattering.

Photon - neutrino interactions.

Two neutrino five photon scattering at low-energies.

Selection Rules for the Dematerialization of a Particle Into Two Photons.

The Statistical mechanics of membranes.
Physics Reports 344 (2001) 255 (cond-mat/0002038 (cond-mat.soft)).

Effective actions, boundaries and precision calculations of Casimir energies.

On the Attraction between Two Perfectly Conducting Plates.
Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51 793.

Casimir effect and the quantum vacuum.

Attractive Forces between Flat Plates.

Demonstration of the Casimir Force in the 0.6 to 6 μm Range.

Precision Measurement of the Casimir Force from 0.1 to 0.9 μm.

Vacuum Stress between Conducting Plates: An Image Solution.

Radiative corrections to the Casimir energy and effective field theory.

Radiation Corrections To The Casimir Effect. (in Russian).

Quantum field theoretic treatment of the Casimir effect.

A Schematic Model of Baryons and Mesons.

(preprint CERN-TH-401).

Elementary Particles and SU(4).

Very High-Energy Collisions of Hadrons.

Spin and Unitary Spin Independence in a Paraquark Model of Baryons and Mesons.

Three-Triplet Model with Double SU(3) Symmetry.

Magnetic moments of baryons in the quark model.
JINR-Preprint P-1939 Dubna, Russia.

Advantages of the Color Octet Gluon Picture.

The vacuum polarization of a charged vector field.
Journal of Experimental and Theoretical Physics **21** (1965) 375.

Green’s functions in theories with non-Abelian gauge group.

Unpublished talk at the Marseille conference on Renormalization of Yang-Mills fields and applications to particle physics.

Ultraviolet behavior of non-abelian gauge theories.

Reliable perturbative results for strong interactions.

Precision electroweak measurements on the Z resonance.

Asymptotically Free Gauge Theories I.

Nonabelian Gauge Theories of the Strong Interactions.

Electromagnetic Decays of Pseudoscalar Mesons.

Symmetry Breaking Through Bell-Jackiw Anomalies.

The Structure of the Gauge Theory Vacuum.
Parity Conservation in QCD.

Über den Bau der Atomkerne.
Zeitschrift für Physik 77 1.

On the Consequences of the Symmetry of the
Nuclear Hamiltonian on the Spectroscopy of Nuclei.
Physical Review 51 106.

Calculation of the axial vector coupling constant renormalization in beta decay.
Physical Review Letters 14 (1965) 1051;

Renormalization of the Weak Axial Vector Coupling Constant.

Behavior of Current Divergences under SU3?SU3.
Physical Review 175 (1968) 2195.

Hadronic Matrix Elements and the \(\pi^+ - \pi^0 \) Mass Difference.

The Electromagnetic mass differences of pions and kaons.

Note on the Decay of the \(\pi^- \) Meson Physical Review 76 (1949) 1458.

Decay of the Pi Meson.

Baryon chiral perturbation theory using a heavy fermion Lagrangian.

Form Factors in \(\beta \) Decay and \(\mu \) Capture.

Dynamics of the standard model.
Cambridge Monographs in Particle Physics, Nuclear Physics and Cosmology 2 (1992)
1 (2nd edition: Cambridge Monographs in Particle Physics, Nuclear Physics and Cosmology 35 (2014)).

Breaking Chiral Symmetry.

Note on Unitary Symmetry in Strong Interactions.
Progress in Theoretical Physics 27 (1962) 949.

Chiral SU(3) x SU(3) as a symmetry of the strong interactions.

[194] Burgess, C.P. and Moore, G.D.
The Standard Model: A Modern Primer

Baryon and Lepton Nonconserving Processes.

Evidence for Anomalous Lepton Production in e^+e^- Annihilation.

Search for Neutrinos from the Sun.

Evidence for Oscillation of Atmospheric Neutrinos.

Measurement of the Rate of $\nu_e + d \rightarrow p + p + e^-$ Interactions
Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory.

[201] Abe, Y. et al. (Double Chooz Collaboration) 2012.
Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment.

Observation of Electron-Antineutrino Disappearance at Daya Bay.

Mesonium and anti-mesonium.
Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 33 (1957) 549
(Soviet Physics JETP. 6 (1957) 429431).

[204] Pontecorvo, B. 1968.
Neutrino Experiments and the Problem of Conservation of Leptonic Charge.
Zhurnal Êksperimental’noi i Teoreticheskoï Fiziki 53 (1968) 1717
(Soviet Physics JETP. 26 (1968) 984).

Composite Technicolor Standard Model.

[206] D’Ambrosio, G., Giudice, G.F. Isidori, G. and Strumia, A.
Minimal Flavour Violation: an effective field theory approach.

Gauge theories without anomalies.

An Anomaly Free Version of Weinberg’s Model.

Effect of anomalies on quasirenormalizable theories.

[210] Alvarez-Gaume, L. and Witten, E.

Gravitational Anomalies.

A Comment on Anomaly Cancellation in the Standard Model.

Varieties of Baryon and Lepton Nonconservation.

$\mu \to e\nu\nu$ at a Rate of One Out of a Billion Muon Decays?

in *Supergravity*, ed. by D. Freedman and P. Van Nieuwenhuizen,

Operator Analysis of Nucleon Decay.

The Effective Hamiltonian for Nucleon Decay.

Effective Lagrangian Analysis of New Interactions and Flavor Conservation.

Nuclear Physics B268 (1986) 621.

Dimension-Six Terms in the Standard Model Lagrangian.

Unity of All Elementary Particle Forces.

Hierarchy of Interactions in Unified Gauge Theories.

Supersymmetry and the Scale of Unification.

Low-energy predictions in supersymmetric grand unified theories.

Softly Broken Supersymmetry and SU(5).

CP Conservation in the Presence of Pseudoparticles.

Problem of Strong P and T Invariance in the Presence of Instantons.

Implications of Dynamical Symmetry Breaking.

Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory.

Field theory interpretation of supergauges in dual models.
Nuclear Physics B34 632.

Possible universal neutrino interaction.
Pisma Zh.Eksp.Teor.Fiz. 16 (1972) 621;
(jetp Letters 16 (1972) 438)
Is the Neutrino a Goldstone Particle?
Physics Letters 46B (1973) 109;

Supergauge transformations in four dimensions.
Nuclear Physics B70 39.

Phenomenology of the Production, Decay, and Detection
References

of New Hadronic States Associated with Supersymmetry.

Spontaneously Broken Supersymmetric Theories
of Weak, Electromagnetic and Strong Interactions.

Dynamical Breaking of Supersymmetry.

Minimal Low-Energy Supergravity.

Large Mass Hierarchy from a Small Extra Dimension.
An Alternative to Compactification.

The Hierarchy problem and new dimensions at a millimeter.
Phenomenology, astrophysics and cosmology of theories with
submillimeter dimensions and TeV scale quantum gravity.

Observational evidence from supernovae for an
accelerating universe and a cosmological constant.

Measurements of Omega and Lambda from 42 high redshift supernovae.

The Cosmological Constant Problem.

from Micro-physics,” (in the proceedings of the Les Houches School on Post-Planck
Cosmology 2013) [arXiv:1309.4133 [hep-th]].

Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie.
Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte,
10301085.
Einstein, E. 1915.
Die Feldgleichungen der Gravitation.

ibid., 844847.

Die Grundlage der allgemeinen Relativitätstheorie.
Annalen der Physik 49 769822.

Quantum theory of gravitation.

DeWitt, B.S. 1967.
DeWitt, B.S. 1967.
Quantum Theory of Gravity. 3. Applications of the Covariant Theory.

Die Grundlagen der Physik.

The Einstein Tensor and Its Generalizations.
Journal of Mathematical Physics 12 498501.
The Four-Dimensionality of Space and the Einstein Tensor.
Journal of Mathematical Physics 13 874876.

Leading quantum correction to the Newtonian potential.
General relativity as an effective field theory: The leading quantum corrections.

The Quartic Effective Action for the Heterotic String.

The Stability of flat space, semiclassical gravity, and higher derivatives.

EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical.
Journal of High Energy Physics 03 090 (arXiv:1408.5002 (hep-th)).
Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation.

The Confrontation between General Relativity and Experiment.

Black hole explosions?
Hawking, S.W. 1974.
Particle Creation by Black Holes.
Communications in Mathematical Physics **43** (1975) 199
Erratum: (Communications in Mathematical Physics **46** (1976) 206).

[256] See, for example:
The large-scale structure of the universe.
(Princeton Press, 1980).
Principles of Physical Cosmology.
Physical foundations of cosmology.

The Stability of a Spherical Nebula.
Philosophical Transactions of the Royal Society **A 199** 153.

Quantum Fluctuations and a Nonsingular Universe.
Fluctuations in the New Inflationary Universe.
Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations.
Hawking, S.W. 1982.
The Development of Irregularities in a Single Bubble Inflationary Universe.
References

Scalar Field Fluctuations in Expanding Universe
and the New Inflationary Universe Scenario.
Spontaneous Creation of Almost Scale - Free Density
Perturbations in an Inflationary Universe.

Planck 2018 results. VI. Cosmological parameters.
(arXiv:1807.06209 (astro-ph.CO)).

The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems.

Power-counting and the Validity of the Classical Approximation During Inflation.

COBE, gravitational waves, inflation and extended inflation.

Planck 2018 results. X. Constraints on inflation.
(arXiv:1807.06211 (astro-ph.CO)).

Approaches to quantum gravity:
Toward a new understanding of space, time and matter.
(Cambridge Press, 2009).

Quark model and the factorization of the Veneziano amplitude.
In Symmetries and Quark Models: Proceedings of the International Conference World Scientific 1969 (pp. 269277).

An almost physical interpretation of the dual N point function.

Harmonic oscillator analogy for the Veneziano amplitude.
Structure of hadrons implied by duality.
Physical Review D1 11821186.

Dual Theory for Free Fermions.
Physical Review D3 2415.
Tachyon-free dual model with a positive-intercept trajectory.
Physics Letters 34B 517518.
Supersymmetry, Supergravity Theories and the Dual Spinor Model.
Nuclear Physics B122 (1977) 253.

Superstrings in D=10 from supermembranes in D=11.
Nuclear Physics B191 7074.
Witten, E. 1995.
String theory dynamics in various dimensions.
Heterotic and Type I string dynamics from eleven dimensions.
Duff, M. 1996.
M-theory (the theory formerly known as strings).

Supersymmetrical string theories.
Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory.
Physics Letters 149B 117122.
Heterotic String Theory. 1. The Free Heterotic String.

Heterotic String Theory. 2. The Interacting Heterotic String.
Nuclear Physics B267 (1986) 75.
Some Properties of O(32) Superstrings.

New Issues in Manifolds of SU(3) Holonomy.
Low-Energy Effective Action for the Superstring.
Nonrenormalization of flux superpotentials in string theory.

Construction of a crossing-symmetric,
Regge-behaved amplitude for linearly rising trajectories.
Nuovo Cimento **A57** 1907.

Alternative constructions of crossing-symmetric amplitudes with Regge behavior.
Physical Review **177** 23092311.

Shapiro, J. A. 1970.
Electrostatic analogue for the Virasoro model.

Superstring Modifications of Einstein’s Equations.

Vacuum Configurations for Superstrings.
Hierarchies from fluxes in string compactifications.

Zum Unitätsproblem in der Physik.
Klein, O. 1926.
Quantentheorie und nndimensionale Relativitästheorie.
Zeitschrift für Physik **A37** 895906.
Klein, O. 1926.
The Atomicity of Electricity as a Quantum Theory Law.
Witten, E. 1981.
Search for a Realistic Kaluza-Klein Theory.
Spontaneous Compactification of Space in an Einstein Yang-Mills Higgs Model.
Dynamics of Dimensional Reduction.
Calculation of Gauge Couplings and Compact Circumferences
from Self-consistent Dimensional Reduction.
Chiral Compactification on Minkowski × S² of \(N = 2 \)
Einstein-Maxwell Supergravity in Six-Dimensions.

New Gravitational Index Theorems and Supertheorems.
Nuclear Physics **B154** (1979) 301.
Ultraviolet sensitivity in higher dimensions.

UV sensitivity in supersymmetric large extra dimensions: The Ricci-flat case.

Compact hyperbolic extra dimensions: Branes, Kaluza-Klein modes and cosmology.

Näherungsweise Integration der Feldgleichungen der Gravitation.
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin
part 1: 68696.
Einstein, A. 1918.
Über Gravitationswellen.
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin
part 1: 154167.

Propagateurs et commutateurs en relativité générale.
Publications Mathématiques de l’Institut des Hautes Études Scientifiques **10** (1961)
293-344.

De Sitter vacua in string theory.
Systematics of moduli stabilisation in Calabi-Yau flux compactifications.

Bound states and power counting in effective field theories.

Effective field theory and matching in nonrelativistic gauge theories.

Effective field theory for ultrasoft momenta in NRQCD and NRQED.

An effective field theory for collinear and soft gluons: heavy to light decays.
Soft-collinear factorization in effective field theory.
Power counting in the soft-collinear effective theory.
Soft collinear effective theory and heavy to light currents beyond leading power.

An Effective field theory of gravity for extended objects.

Quantum Mechanics of One- and Two-Electron Atoms.
Springer Verlag doi:10.1007/978-3-662-12869-5.

[303] Sudakov, V.V. 1956.
Vertex parts at very high-energies in quantum electrodynamics.
Zhurnal Ékperimental’noi i Teoreticheskoï Fiziki **30** (1956) 87-95

Summing Sudakov logarithms in $B \to X_s \gamma$ in effective field theory.

Reparametrization invariance constraints on heavy particle effective field theories.

The HQET / NRQCD Lagrangian to order α/m^3.

Lorentz invariance in heavy particle effective theories.
Derivation of the Lamb shift using an effective field theory.

NRQED Lagrangian at order $1/M^4$.

Electron scattering and nuclear structure.

Über die Streuung von Strahlung durch freie Elektronen
nach der neuen relativistischen Quantendynamik von Dirac.
Zeitschrift fur Physik **52** (1929) 853.

Zur Quantentheorie der Molekeln.
Annalen der Physik **389** (20) 457484.

Radiative corrections to the muonium hyperfine structure: The $a^2(Za)$ correction.

Effective Field Theory Approach to Processes Involving Both Light and Heavy Fields.

An Effective Field Theory for the Calculation of Matrix Elements Involving Heavy Quarks.

Georgi, H. 1990.
An Effective Field Theory for Heavy Quarks at Low-energies.

Heavy Meson Form-factors From QCD.

All Possible Symmetries of the S Matrix.
Physical Review **159** 1251.

Weak Decays of Heavy Mesons in the Static Quark Approximation.

On Annihilation of Mesons Built from Heavy and Light Quark and anti-B0 ↔ B0 Oscillations.
(Yadernaya Fizika 45 (1987) 463).

Renormalization Group Scaling of the \(\frac{1}{m^2}\) HQET Lagrangian.

NRQED and next-to-leading hyperfine splitting in positronium.

Potential NRQED: The Positronium case.

Zur Fermischen Theorie des \(\beta\)-Zerfalls.
Zeitschrift fur Physik 104 (1937) 553.

Comment on Nonrelativistic QED and next-to-leading
hyperfine splitting in Positronium.

Effective Field Theory for Ultrasoft Momenta in NRQCD and NRQED.
Nuclear Physics Proceedings Supplement 64 (1998) 428 (hep-ph/970481);
Matching at one loop for the four quark operators in NRQCD,”

Zur Formulierung quantisierter Feldtheorien.

Polyelectrons.

Harris, I. and Brown, L.M. 1957.
Radiative Corrections to Pair Annihilation.

\(\alpha^2\) corrections to parapositronium decay.

Three Photon Annihilation of an Electron Positron Pair.
Physical Review 75 (1949) 1696.

Adkins, G.S. 1996.
Analytic Evaluation of the Orthopositronium-to-Three-Photon
Decay Amplitudes to One-Loop Order.

Order ($\alpha^2 \Gamma, \alpha^3 \Gamma$) Binding Effects in Orthopositronium Decay.
Order $\alpha^3 \ln(1/\alpha)$ Corrections to Positronium Decays.
K. Melnikov and A. Yelkhovsky, $O(\alpha^3 \ln \alpha)$ corrections to positronium decay rates.

Electrodynamics displacement of atomic energy levels 3.
The Hyperfine structure of positronium.
Physical Review 87 (1952) 848.
Muonium and positronium potentials.
Complete result for positronium energy levels at order α^6.

Effective Lagrangians for Simulating Heavy Quark Systems.
Heavy quark bound states in lattice QCD.
Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium.

Parity nonconservation in the first order in the
weak-interaction constant in electron scattering and other effects.
Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 33 1531
(Soviet Physics JETP 6 (1957) 1184).

Lamb shift in light muonic atoms: Revisited.

The Lamb shift in dimensional regularization.

Classical Lumps and their Quantum Descendents.
Subnuclear Series 13 (1977) 297.

Nonlinear realizations 1: The Role of Goldstone bosons.

Vortex-line Models for Dual Strings.

Partially Broken Global Supersymmetry and the Superstring.

Characteristic forms and geometric invariants.

The partition function of a degenerate functional.
Communications in Mathematical Physics **67** (1979) 1.
Topological quantum field theory.
Communications in Mathematical Physics **117** (1988) 353.
Topological quantum field theories.

A complete action for the spinning string.

A locally supersymmetric and reparametrization invariant action for the spinning string.

Quantum geometry of the bosonic string.

Die Lineale Ausdehnungslehre Ein neuer Zweig der Mathematik.
(Verlag, Leipzig, 1844)

An experimental and theoretical guide to strongly interacting Rydberg gases.

Point-Particle Effective Field Theory I: Classical Renormalization and the Inverse-Square Potential.
 On the holographic renormalization group.

 The Large N limit of superconformal field theories and supergravity.
 International Journal of Theoretical Physics **38** (1999) 1113
 (*Advances in Theoretical and Mathematical Physics* **2** (1998) 231
 (hep-th/9711200).
 Witten, E. 1998.
 Anti-de Sitter space and holography.
 Advances in Theoretical and Mathematical Physics **2** (1998) 253
 (hep-th/9802150).
 Gauge theory correlators from noncritical string theory.

 Structure of the Nucleus.
 (Addison-Wesley, Reading Massachusetts, 1975; 2nd printing 1982).

 Two nucleon systems from effective field theory.
 Universality in few-body systems with large scattering length.

 Unified theory of nuclear reactions.
 Effects of Configuration Interaction on Intensities and Phase Shifts.

 Delta function potentials in two-dimensional and
 three-dimensional quantum mechanics.

 Über gewöhnliche Differentialgleichungen mit Singularitäten
 und de zugehörigen Entwicklungsm willkürlicher Funktionen.
 Mathematische Annalen **68** (1910) 220.
 von Neumann, J. 1929.
 Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren.
 Stone, M.H. 1932.
 On one-parameter unitary groups in Hilbert space.
 A Remark on Schrodingers equation with a singular potential.
Fall to the Centre in Atom Traps and Point-Particle EFT for Absorptive Systems.

Energy levels arising from resonant two-body forces in a three-body system.

[353] Burgess, C.P., Plestid, R. and Rummel, M.
Effective Field Theory of Black Hole Echoes.

Energy Levels of One electron Atoms.

Pionic atoms.
Annual Reviews of Nuclear and Particle Science 20 (1970) 467.

Energy level displacements in pi-mesonic atoms.

Point-Particle Effective Field Theory III: Relativistic Fermions and the Dirac Equation.

Conformality Lost.

Dynamical Systems III: Mathematical aspects of classical and celestial mechanics.

Multiphase averaging for classical systems.
(Springer, New York, 1988.)

Geometric Phases in Physics.
Classical electromagnetic forces of reaction: an exactly solvable model.

An Effective field theory of gravity for extended objects.
Physical Review D73 (2006) 104029 (hep-th/0409156);
Dissipative effects in the worldline approach to black hole dynamics.
Spin induced multipole moments for the gravitational
wave amplitude from binary inspirals to 2.5 Post-Newtonian order.
Journal of Cosmology and Astroparticle Physics 1209 (2012) 028
(arXiv:1203.2962 (gr-qc));

Theory of Disintegration of Nuclei by Neutrons.

Stringy Cosmic Strings and Noncompact Calabi-Yau Manifolds.

Spin waves in ferromagnets.
Reports on Progress in Physics 29 (1966) 285

Zur Theorie des Ferromagnetismus.
Zeitschrift für Physik 49 (1928) 619.
Holstein, T. and Primakoff, H. 1940.
Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet.
Physical Review 58 (1940) 1098.

General Theory of Spin-Wave Interactions.

Influence des fluctuations du champ moléculaire sur
les propriétés magnétiques des corps.
Annales de Physique 18 (1932) 5.
Bitter, F. 1937.
A Generalization of the Theory of Ferromagnetism.

van Vleck, J.H. 1941.

On the Theory of Antiferromagnetism.

Journal of Chemical Physics **9** (1941) 85.

Uber Abbildung von Mannigfaltigkeiten.

Analytic Proofs of the ‘Hairy Ball Theorem’ and the Brouwer Fixed Point Theorem.

Quantised Singularities in the Electromagnetic Field.

Proceedings of the Royal Society (London) A**133** (1931) 60.

Theory of the dispersion of magnetic permeability in ferromagnetic bodies.

Herring, C. and Kittel, C. 1951.

On the Theory of Spin Waves in Ferromagnetic Media.

Scattering of Neutrons by Spin Waves in Magnetite.

Slow Neutron Scattering by Ferromagnetic Crystals.

Proceedings of the Physical Society (London) A**64** 1097.

The Inelastic Scattering of Neutrons by Magnetic Spin Waves.

[375] For a more recent review see *e.g.*: Zaliznyak, I. and Lee, S. 2005.

Magnetic neutron scattering.

Quantum field theory in terms of vacuum expectation values.

Zur Theorie des Ferromagnetismus.

Deviations from $T^{3/2}$ Law for Magnetization of Ferrometals: Ni, Fe, and Fe +3% Si.

The resistance of pure mercury at helium temperatures.
Communications from the Laboratory of Physics at the University of Leiden 12 (1911) 120.

Ein neuer Effekt bei Eintritt der Supraleitfähigkeit.
Naturwissenschaften 21 (1933) 787.

On the Problem of the Molecular Theory of Superconductivity.
Physical Review 74 (1948) 562.

Experimental Evidence for Quantized Flux in Superconducting Cylinders.
Experimental Proof of Magnetic Flux Quantization in a Superconducting Ring.

Theory of Superconductivity.

Possible high TC superconductivity in the Ba-La-Cu-O system.

Superconductivity for Particular Theorists.
Progress in Theoretical Physics (Supplement) 86 (1986) 43.

The Electromagnetic Equations of the Supraconductor.

Possible new effects in superconductive tunnelling.

Probable Observation of the Josephson Tunnel Effect.

Josephson Currents in Superconducting Tunneling:
the Effects of Microwaves and Other Observations.

Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 20 (1950) 1064.
Abrikosov, A.A. 1957.
Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 32 (1957) 1442.
Gor’kov, L.P. 1959.
Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 36 (1959) 1364.

Magnetic properties and critical currents of superconducting alloys.
Magnetic Properties and Critical Currents of Supra-conducting Alloys.

The magnetic properties of superconducting alloys.

Phonons as goldstone bosons.

in Relativity, Groups and Topology II (proceedings of the Les Houches School, ed. C.

Modern Condensed Matter Physics.
(Cambridge Press, 2019).

Action functionals for relativistic perfect fluids.
Classical and Quantum Gravity 10 (1993) 1579 (gr-qc/9304026).

The Quantum mechanics of perfect fluids.

effective field theory for hydrodynamics:
thermodynamics, and the derivative expansion.

Gravitation.

Gravitation and Cosmology: Principles and
(John Wiley and Sons, 1972).

General Relativity.

effective field theory of dissipative fluids.

The Theory of a Fermi Liquid.
References

Zhurnal Ékperimental’noï i Teoreticheskoï Fiziki 30 (1956) 1058
(Soviet Physics JETP 3 (1957) 920).

Effective field theory and the Fermi surface.
In proceedings of the TASI school Recent directions in particle theory
(hep-th/9210046).

Renormalization group approach to interacting fermions.

Cluster Decomposition Properties of the S Matrix.

What is quantum field theory, and what did we think it is?
In Conceptual foundations of quantum field theory, 241-251,

The Quantum Theory of Fields, vol I.

Interaction between Electrons and Lattice Vibrations in a Normal Metal.
Zhurnal Ékperimental’noï i Teoreticheskoï Fiziki 34 1438
(Soviet Physics JETP 7 (1958) 996).

Introduction to Superconductivity.

(Wiley, 2004).

The Quantum Hall Effect: Novel Excitations and Broken Symmetries.
Lectures delivered at École d’Été Les Houches, July 1998
(arXiv:cond-mat/9907002 (cond-mat.mes-hall)).

New method for high-accuracy determination of
the fine-structure constant based on quantized Hall resistance.

Two-Dimensional Magnetotransport in the Extreme Quantum Limit.
Theory of Hall effect in a two-dimensional electron system.

Lectures on the Quantum Hall Effect.
(arXiv:1606.06687 (hep-th)).

Field Theories of Condensed Matter Physics.

Anomalous Quantum Hall Effect: An Incompressible
Quantum Fluid with Fractionally Charged Excitations.

Quantized Hall conductivity in two dimensions.

Quantized Hall Conductance in a Two-Dimensional Periodic Potential.

Single-particle states, Kohn anomaly, and pairing fluctuations in one dimension.

Quantum sine-Gordon equation as the massive Thirring model.

Soliton operators for the quantized sine-Gordon equation.

Bosonization as duality.

Self-dual fields as charge-density solitons.

Significance of electromagnetic potentials in quantum theory.

On the Theory of Identical Particles.

Quantum Mechanics of Fractional-Spin Particles.
References

Effective-Field-Theory Model for the Fractional Quantum Hall Effect.

Composite-fermion approach for the fractional quantum Hall effect.

Anyon Superconductivity and the Fractional Quantum Hall Effect.

Particle vortex duality and the modular group:
Applications to the quantum Hall effect and other 2-D systems.

Global phase diagram in the quantum Hall effect.

Duality in the quantum Hall system.

SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry.
In *Shifman, M. (ed.) et al. From fields to strings, vol. 2*
pp 1173-1200 (hep-th/0307041).
A Duality Web in 2+1 Dimensions and Condensed Matter Physics.
(arXiv:1902.05550 (hep-th)).

AdS/QHE: Towards a Holographic Description of Quantum Hall Experiments.
Lutken, C.A. and Ross, G.G.
Experimental probes of emergent symmetries in the quantum Hall system.
Nuclear Physics B **850** (2011) 321 (arXiv:1008.5257 (cond-mat.str-el)).

Non-Equilibrium Thermodynamics and its Statistical Foundations,
(Monographs on the Physics and Chemistry of Materials, Oxford Press 1984.)

[439] For classic textbook treatments see for example:
An Introduction to Fluid Dynamics.
Fluid mechanics.

A Course of Theoretical Physics (2nd revised ed.) Vol 6, (Pergamon Press, 1987).

Annalen der Physik 341 (1911) 493.

General Relativistic Variational Principle for Perfect Fluids.

Hamilton’s Principle and the Vorticity Laws for a Relativistic Perfect Fluid.

Perfect Fluid Theory and its Extensions.

Relativistic Fluid Dynamics: Physics for Many Different Scales.

Low-energy effective field theory for finite-temperature relativistic superfluids.
(arXiv:1108.2513 (hep-th)).

[446] For a classic discussions of dissipation in relativistic fluids see:
Tolman, R.C. 1934.
Relativity, Thermodynamics, and Cosmology.
For a more recent view see for example:
Absence of a local rest frame in far from equilibrium quantum matter.

[447] For textbook discussions see:
An Open Systems Approach to Quantum Optics.
(Springer Verlag, 1991).
The Theory of Open Quantum Systems.
(Oxford Press, 2002).
Quantum Dynamical Semigroups and Applications.
(Springer, 2007).

[448] See for example, Burgess, C.P. and Michaud, D. 1996.
Neutrino propagation in a fluctuating sun.

[449] Liouville, J. 1838.
Journal de Mathématiques 3 (1838) 349.

[450] This is textbook material:
Stars as laboratories for fundamental physics:
The astrophysics of neutrinos, axions, and other weakly interacting particles.
Physics of neutrinos and applications to astrophysics. (Springer, 2003).
Zuber, K. 2012.
Neutrino Emission from Supernovae.
(arXiv:1702.08713 (astro-ph.HE)).
Neutrino oscillations in matter.
Resonance enhancement of oscillations in matter and solar neutrino spectroscopy.
[453] Burgess, C.P., N.Z., Maltoni, M., Rashba, T.I.,
Cornering solar radiative zone fluctuations with KamLAND and SNO salt.
MHD origin of density fluctuations deep within the sun and their
influence on neutrino oscillation parameters in LMA MSW scenario.
[454] Ibn Sahl. 984.
On Burning Mirrors and Lenses (Baghdad).
For a textbook treatment see:
Principles of Optics.
(Cambridge 1959, latest reprint 2002).
Electrodynamics of Continuous Media.
References

The Reflexion of X-rays by Crystals.

The Zeno paradox in quantum theory.
Journal of Mathematical Physics **18** 756 .

On Quantum Theory of Transport Phenomena.
Progress in Theoretical Physics **20** (1958) 948.

Ensemble Method in the Theory of Irreversibility.
Journal of Chemical Physics **33** (1960) 1338.

Markovian Master Equations.
Communications in Mathematical Physics **39** (1974) 91.
Davies, E. 1976.
Markovian Master Equations II.

Proper Form of the Generator in the Weak Coupling Limit.
Zeitschrift für Physik **B34** (1979) 419.

Hot Accelerated Qubits: Decoherence, Thermalization, Secular Growth and Reliable
Late-time Predictions.

Hot Cosmic Qubits: Late-Time de Sitter Evolution and Critical Slowing Down.

On quantum statistical mechanics of non-Hamiltonian systems.

Lindblad, G. 1976.
On the generators of quantum dynamical semigroups.
Communications in Mathematical Physics **48** (1976) 119.

Completely positive semigroups of N-level systems.

Relaxation of Quantum Systems with Equidistant Spectra.
Zhurnal Éksperimental’nóĭ i Teoreticheskóĭ Fiziki **56** 264
Dynamical renormalization group approach to relaxation in quantum field theory.

Statistical-Mechanical Theory of Irreversible Processes I.
General Theory and Simple Applications to Magnetic and Conduction Problems.
Journal of the Physical Society of Japan **12** (1957) 570.
Martin, P.C., Schwinger, J. 1959.
Theory of Many-Particle Systems I.
On the equilibrium states in quantum statistical mechanics.
Communications in Mathematical Physics **5** (1967) 215.

Theorie der Opaleszenz von homogenen Flüssigkeiten und
Flüssigkeitsgemischen in der Nähe des kritischen Zustandes.
(The Theory of the Opalescence of Homogeneous Fluids
and Liquid Mixtures near the Critical State.)
Annalen der Physik **33** (1910) 1275.

[466] Rayleigh, Lord 1881.
On the Electromagnetic Theory of Light.
Rayleigh, Lord 1899.
On the transmission of light through an atmosphere containing
small particles in suspension, and on the origin of the blue of the sky.

Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time.
Notes on black-hole evaporation.
Quantum Gravity: The New Synthesis.

Quantum Field Theory, Horizons and Thermodynamics.

Feynman Rules for Any Spin.

Covariant Propagators and Vertex Functions for Any Spin.

Conservation of Isotopic Spin and Isotopic Gauge Invariance.

La renormalisation des constants dans la théorie de quanta”.

Quantum Electrodynamics at Small Distances.

Scaling laws for Ising models near T_c.

Physics **2** (1966) 263.

Renormalization group and critical phenomena 1.
Renormalization group and the Kadanoff scaling picture.

Renormalization group and critical phenomena 2.
Phase space cell analysis of critical behavior.

Critical exponents in 3.99 dimensions.

Effective average action for gauge theories and exact evolution equations.

Overlapping divergences and the S-matrix.

High-energy behavior in quantum field theory.

Consequences of anomalous Ward identities.

Consistent and Covariant Anomalies in Gauge and Gravitational Theories.

Algebraic Study of Chiral Anomalies.

Communications in Mathematical Physics **102** (1985) 157.

Index

SU(3) × SU(2) × U(1), 211
't Hooft naturalness, 229
1PI action, 24, 105, 245
accidental symmetries, 215
action, boundary, 115
adiabatic approximation, 130, 131
adjoint representation, 551
angular momentum, d dimensions, 358
annihilation operators, 11, 538
anomalies, 105, 217
anomalous dimension, 42
anomalous magnetic moment, 298
anomaly cancellation, 108, 217
anomaly cancellation, Green-Schwarz, 108
anomaly coefficient, 106, 110
anomaly matching, 104, 217, 447
anti-de Sitter space, 260
antiferromagnets, 388
antiparticles, 277, 544
anyons, 453
approach to equilibrium, 502
asymptotic freedom, 189
Bardeen, 433
baryon-number violation, 220, 222
BCS instability, 429, 433
BCS theory, 433
bino, 239
boundaries, 44, 46, 447
boundary action, 115
boundary charges, 179
boundary condition, justification for linear, 117
boundary condition, Robin, 117
boundary conditions, 116
boundary conditions, induced, 116
boundary conditions, Neumann, 120
boundary conditions, PPEFT, 347, 352
boundary currents, 177, 447
boundary effects, 177
boundary-localized fields, 121, 448
brane, 122
Bunch-Davies vacuum, 255
Callan-Symanzyk evolution, 358
canonical normalization, 39, 545
casimir energy, 182
causics, 136
centre of mass motion, 344
charge conjugation, 156, 555
charge radius, 326
charge-conjugation matrix, 521
charged-current weak interactions, 151
chemical potential, 421
Chern-Simons form, 262
Chern-Simons interaction, 346, 445
chiral SU(2), 192
chiral SU(3), 209
chiral interactions, 105, 151
chiral logarithms, 206
chiral perturbation theory, 111, 187, 191, 194
chiral perturbation theory, baryons, 202
chiral perturbation theory, subleading orders, 204
chiral symmetry, 192, 213, 229
chiral theory, 447
Christoffel symbol, 410, 516, 562
CKM matrix, 152
classical electromagnetism as an effective theory, 155
cluster decomposition, 425, 538, 541
CMB radiation, 247
coherece, 480
coherece volume, 492
Coleman-Mandula theorem, 314, 554
collective coordinates, 336
colour, 187, 211
compactification, 260, 264
compactification scale, 267
conformal Killing vector, 418
conserve currents, 83, 105, 155, 169, 176, 193, 198,
297, 315, 316, 393, 396, 397, 410, 463
contection interaction, 353
conventions, 512
Cooper, 433
correlation functions, 17
correlation functions, connected, 20
coset, 95
coset space, 94, 553
cosmic microwave background, 225, 247
cosmological constant problem, 235
Coulomb potential, 307
covariant derivative, 410, 562
covariant derivatives, 99
CPT theorem, 556
creation operators, 11, 538
critical opalescence, 509
cross-section, 537
current algebra, 198
curvature conventions, 516
curvature tensor, 179
cutoffs, 25
cutoffs, drawbacks of, 54
CVC hypothesis, 204
dark energy, 236, 247
dark matter, 211, 214, 237, 247
dark sector, 214
Dashen's theorem, 209
de Sitter space, 260, 419
Debye energy, 435
Decay rates, 536
decoherence, 470
decoupling, 159
decoupling subtraction, 67, 164, 190
degenerate systems, 420
delta-function potential, 353, 358
density matrix, 466
density matrix, reduced, 468
Deser formula, 376
diffeomorphisms, 219, 561
dilaton, 261
dimensional analysis, 39
dimensional analysis, toy model, 42
dimensional reduction, 264
dimensional regularization, 65, 70, 523
dimensional regularization, in effective field theory, 65
dipole approximation, 310
dipole moment, 349
Dirac conjugate, 151
Dirac quantization, 446
domain wall, 336
domain walls, 335
effective action, 17
effective action, ILPI, 28
effective action, IPI, 21
effective action, logic, 75, 76
effective action, nonlocal, 402
effective action, total derivative terms, 44, 46, 115
effective action, toy model, 9
effective action, Wilson, 32
effective hamiltonian, 11
effective potential, 22
effective theories, gravity, 243
effective theories, symmetries, 81
effective theories, time-dependent, 247
effective theory, boundaries, 118
effective theory, lumps, 335
Efimov effect, 367
EFT of the centre-of-mass coordinate, 335
Einstein frame, 262
Einstein frame metric, 262
Einstein summation convention, 515
electromagnetic fields, 282
electroweak boson masses, 166
electroweak hierarchy, 170
electroweak hierarchy problem, 230
engineering dimension, 39
equilibrium distribution functions, 461
equivalence theorem, gauge/goldstone bosons, 166
Euler's gamma function, 65
exact renormalization group, 58
exponential decay law, 495
extinction coefficient, 491
extra dimensions, 264
extrinsic curvature, 179
fall to the centre, 364
Fermi constant, 153, 233
Fermi energy, 420
Fermi lagrangian, 153, 173
Fermi level, 421
Fermi liquids, 423
Fermi surface, 420
Fermi theory, 150
Fermi's golden rule, 398, 456, 489, 495, 536, 541
fermion charges, Standard Model, 214
fermion families, 213
ferromagnets, 388
Feynman rules, 53
field redefinitions, 45
Fierz identity, 186
Feynman's golden rule, 398, 456, 489, 495, 536, 541
fluctuations about time-dependent backgrounds, 139, 247
fluid mechanics, 460
Flux quantization, 404
Fock space, 539
form factors, 298, 314
fundamental units, 512
Furry's theorem, 156
Galileon interaction, 134
galileons, 134
gauge group, of the standard model, 211
gauge invariance, 283, 345
gauge symmetries, 82
gauge symmetry, linearized, 169
gauge theories, 557
gauge theory, 154
gaugino, 239
general covariance, 219, 223
General Relativity, 241, 561
generating functionals, 17
generating functionals, low-energy, 27
generations of fermions, 213
GKSL equation, 500
global symmetries, 82
gluons, 187, 211
God, given by, 116
Goldberger-Trieman relation, 203
Goldstone boson, 5, 14, 94, 141, 194, 335, 388
Goldstone’s theorem, 81, 87, 93, 193
grand unified theories, 225
gravity, UV completion, 257, 264
Green-Schwarz anomaly cancellation, 108
GREFT, 241
group representation, 550
group theory, 550
group, compact, 552
group, Lie, 550
hadrons, 187
Hawking radiation, 247
heat kernel techniques, 272
Heaviside step function, 308, 573
heavy-quark effective theory, 313
Hierarchy problem, 224
hierarchy problem, 170
Higgs boson, composite, 230
Higgs decay, 167
Higgs mass, 167
Higgs mechanism, 100, 400, 559
Higgs self-coupling, 167
higgsino, 239
high-energy/low-energy split, 25
higher-derivative theories, 132
HQET, 313
Hubble expansion, 225
Hubble scale, 247
hypercharge, weak, 211
hyperfine splitting, 320
in vacuum, 17
index of refraction, 481, 484
induced metric, 179, 340
inflationary models, 248
infrared divergences, 301
initial-data requirements, 132
integrating in, 459
integrating out (definition), 32
interaction picture, 469
interaction, irrelevant, 43
interaction, marginal, 43
interaction, relevant, 43
interactions, irrelevant, 41
interactions, marginal, 41
interactions, non-renormalizable, 41
interactions, relevant, 41
interactions, renormalizable, 41
interactions, strong, 187
intrinsic curvature, 179
inverse-square potential, 364
irrelevant interaction, 43
irrelevant interactions, 41, 220
isometry, 410, 564
isospin symmetry, 192
Jeans instability, 247
Josephson effect, 406
Kalb-Ramond field, 261
Kaluza-Klein states, 265
Kaluza-Klein theories, 264
kaonic atoms, 374
Killing metric, 552
Killing vector, 411, 418, 564
Killing vector, conformal, 418
kinetic theory, 461
kink solution, 336
KMS condition, 502, 510
Landau levels, 444
Landau-Ginzburg field, 406
Landau-Zener methods, 507
large logarithms, 60
large-N limit, 492
Legendre transform, 21
leptons, 151
Levi-Civita tensor, 395, 445
Lichnerowicz operator, 267
Lie algebra, 94, 554
Lie algebra, structure constants, 551
Lie derivative, 395, 410, 561
Lie group, 94, 550
light by light scattering, 160
light propagation, 480
Lindblad equation, 500
Liouville equation, 467
local equilibrium, 463
London equations, 418
loop expansion, 23
loop expansion, validity of, 55
Lorentz anomalies, 219
low-energy theorems, 75
LSZ reduction, 321, 518, 573
lump, Nambu action, 341
lump, Polyakov action, 341
lumps, 335
lumps, electromagnetic couplings, 345
magnetic moment, anomalous, 298
magnetic monopole, 395, 446
magnons, 388, 392
Majorana spinor, 521
Mandelstam invariants, 263
marginal interaction, 43
marginal interactions, 41
mass dimension of fields, 39
mass generation, see-saw mechanism, 222
master equations, 498
matching, 67
matching conditions, 181
Maxwell equation, 481
mean-field theory, 471
mean-field theory, domain of validity, 492
Meissner effect, 404
mesonic atoms, 374
mesons, pseudoscalar, 194
method of regions, 62, 66, 80, 291
metric conventions, 516
metric, Einstein frame, 262
metric, induced, 179, 340
metric, string frame, 262
metric, target space, 570
Migdal’s theorem, 431
minimal flavour violation, 216
minimal subtraction, 66
minimal subtraction scheme, 526
Minkowski metric, 516
mixed anomalies, 219
mixed state, 466
modified minimal subtraction, 66, 526
moduli, 266, 337
modulus stabilization, 266
molecular scattering, 325
MSW oscillations, 479
Mukhanov variable, 256
multipole moments, 329, 347
Møller wave operators, 532
Nakajima-Zwanzig equation, 498
Nambu action, 341
Nambu-Goldstone boson, 87
naturalness, 225
naturalness, ’t Hooft, 229
Navier-Stokes equations, 415, 463
Neumann boundary conditions, 120
neutrino interactions, 475
neutrino mass, 222
neutrino masses, 220
neutrino oscillations, resonant, 506, 507
neutrino propagation in matter, 475
neutrons, 168
Newton’s gravitational constant, 170, 233
Noether current, 83, 105, 193, 203, 315, 393, 396–398, 410, 411
Noether’s theorem, 83, 463, 542
non-renormalizable interactions, 41
non-renormalization theorems, 263
nonrenormalizable interactions, 220
NRQCD, 324
NRQED, 317
NRQED, matching, 318
nuclear shifts of atomic levels, 369
occupation-number representation, 539
Ohm’s law, 445
one light-particle irreducible, 29
one-particle irreducible, 24
one-particle reducible, 24
open systems, 459, 466
open systems, subsectors, 466
optical theorem, 206
optical theorem, open systems, 473
order parameter, 87, 193, 345, 389, 560
ortho-positronium, 324
Ostrogradsky ghost, 134
out vacuum, 17
para-positronium, 324
parameter drift, 144
parity, 555
parity invariance, 156
parity violation, 151
Parke formula, 507
particle flavour, 152
particle-antiparticle systems, 316
Pauli blocking, 420
perfect absorber, 369
perfect emitter, 369
phonons, 410, 433
photon, 211
photons, 168
pion-nucleon coupling, 203
pionic atoms, 374
Planck length (reduced) value, 246
Planck mass, 170
Planck mass (reduced) value, 246
PMNS matrix, 152, 173, 475
pNRQED, 310
Poincaré symmetry, 339, 411
point lamps, 341
point particles, 341
polarizability, 325, 480
Polyakov action, 341
portal, scalar, 226
portals, 227, 239
positronium, 317, 320
positronium annihilation rate, 324
potential NRQED, 310
power counting, 50, 157, 243, 321
power counting, using cutoffs, 54
power counting, using dimensional regularization, 70
power counting, with loops, 55
power divergences, 60
PPEFT, 353
PPEFT, relativistic bosons, 377
primordial fluctuations, 211, 225, 247
proper Lorentz transformation, 555
proper time, 342
pseudo-Goldstone boson, 92, 193
pseudo-real representations, 106
pure state, 466
QCD scale, 190
quantum action, 21
Quantum Chromodynamics, 187
quantum corrections in the solar system, 246
Quantum Electrodynamics, 154, 317
quantum field theory review, 538
quantum fields, free, 541
quantum fields, nonrelativistic, 541
quantum fields, relativistic, 544
quantum fields, spin half, 545
quantum fields, spin one, 546
quantum fields, spin two, 548
quantum fields, spin zero, 544
quantum Hall effect, 442
quark charges, 189
quark mass ratios, 210
quarkonium, 324
quarks, 151
qubit, 502
Ramond-Ramond scalar, 383
Rayleigh scattering, 326
reduced density matrix, 468
reduced mass, 307
redundant interaction, 44, 296, 370
reflection, 482
refraction, 482
relevant interaction, 43
relevant interactions, 41
renormalizable interactions, 41
renormalizable interactions, why they are important,
renormalization, 353
renormalization group, 60, 162, 357, 496
renormalization group, exact, 58
renormalization group, limit cycle, 367
renormalization scheme, 161, 525
renormalization scheme, mass independent, 162
renormalization scheme, on-shell, 526
renormalization, on-shell scheme, 301
renormalization, physical rationale, 63
renormalization-group improvement, 162
representations, reducible, 553
resonant neutrino oscillations, 506, 507
resummation of large logarithms, 162
Ricci tensor, 563
Riemann tensor, 179, 241, 516, 548, 562
Riemann zeta function, 264
rotating wave approximation, 500
Rutherford scattering, 383
S-matrix, 532
scalar field, 279
scalar portal, 226
scattering amplitude, 52, 376
scattering length, 327, 376
scattering states, 531
scattering theory, 531
scattering, delta-function potential, 383
scattering, inverse-square potential, 383
scattering, light by light, 160
scattering, Rutherford, 383
scattering, toy model, 6
Schrödinger field theory, 276
Schrieffer, 433
Schur’s lemma, 571
Schwarzschild geometry, 246
Schwarzschild radius, 246
screening, 179
see-saw mechanism, 222
semiclassical approximation, 5
semiclassical expansion, domain of validity, 55
semiclassical expansion, justification, 23
semiclassical limit, toy model, 5
Slavnov-Taylor identities, 49
slepton, 238
slow-roll inflation, 252
SMEFT, 220
SMEFT, dimension-five interactions, 221
SMEFT, dimension-six interactions, 222
Snell’s law, 482
soft-pion theorems, 198
solar mass, value, 246
solar radius, value, 246
solitons, 336
Sommerfeld enhancement, 291
sound speed, 140
spectrum, toy model, 5
spinning particle, 343
spurion, 196
squark, 238
Standard Model, 150, 211
Standard Model fermions, 151, 523
Standard Model gauge group, 211
Standard Model scalar potential, 212
Standard Model, anomaly cancellation, 217
Standard Model, beyond, 220, 224
Standard Model, fermion content, 214
statistical degeneracy, 421
step function, 308, 573
sterile particle, 214, 226
Stokes theorem, 44, 115
stress-energy tensor, 142
string coupling, 259
string frame, 262
string frame metric, 262
string scale, 258
string scattering amplitude, 263
string tension, 258
string theory, 257, 258
string theory, heterotic, 260
string theory, spectrum, 259
string theory, Type I, 260
string theory, Type IIA, 260
string theory, Type IIB, 260
strings, 258, 335
strings, closed, 259
strings, open, 259
strong CP problem, 226
strong interactions, 187, 211
Stuckelberg field, 401
Stueckelberg 'trick', 100
Index

Stueckelberg field, 100, 452
Sudakov logarithms, 293
superconductivity, 400, 433
superficial degree of divergence, 79
supergravity, 260
supersymmetry, 231, 232, 259
surface currents, 447
surface polarization energy, 178
symmetric space, 554
symmetries broken by t-dependent backgrounds, 138
symmetries, abelian, 93, 98
symmetries, anomalous, 105
symmetries, approximate, 91, 105
symmetries, discrete, 555
symmetries, explicit breaking, 98, 100
symmetries, formulation in field theory, 81
symmetries, gauge, 98, 100, 169
symmetries, global, 548
symmetries, implications in quantum mechanics, 81
symmetries, internal, 554
symmetries, internal vs external, 83
symmetries, linear realization, 13, 90, 138
symmetries, local, 557
symmetries, low energy, 12, 68
symmetries, low-energy realizations, 89
symmetries, nonabelian, 94
symmetries, nonlinear realization, 14, 68, 93, 94, 95, 194, 388, 566, 567
symmetries, particle representation, 84
symmetries, spacetime, 335, 410, 554
symmetries, unbroken, 83
symmetry breaking, explicit, 91, 196, 393
symmetry breaking, spontaneous, 13, 86, 93, 98, 100, 166, 192, 339, 388, 549
tadpole graphs, 21
target-space metric, 195, 253, 340
technical naturalness, 224, 229
technicolour, 231
tetrad, 517
thermal scattering, 487
Thomson scattering, 305, 351, 489
time dependent perturbation theory, 533
time dependent systems, 126
time reversal, 555
time-dependent background, 127, 247
time-dependent background, fluctuations, 139
time-dependent background, sound speed, 140
time-ordered correlation functions, 17
topological order, 450
topology, 44
total derivatives, 44
toy model, 5, 126, 131
toy model, 1LPI action, 29
toy model, boundaries, 116
toy model, classical approximation, 29
toy model, dimensional analysis, 42
toy model, effective action, 9
toy model, high-energy/low-energy split, 26
toy model, loop calculation, 34
toy model, loops, 57, 72
toy model, low-energy limit, 8
toy model, matching, 68
toy model, nonabelian, 566
toy model, redundant interactions, 45
toy model, scattering, 6
toy model, semiclassical limit, 5
toy model, spectrum, 5
toy model, Wilson action, 34
two-dimensional conductivity, 443, 445
two-level atom, 502
Uehling interaction, 332
Uehling term, 318
uncertainty principle, 11
unitarity bound, 103
unitary gauge, 100, 212, 561
unitary gauge, gravity, 256
unstable particles, 317
vacuum polarization, 180, 181, 525
validity of the loop expansion, 55
Veneziano amplitude, 263
vertex correction, 300
vierbein, 517
vortices, 335
W boson, 150, 171, 211
W boson mass, 170, 171
warp factor, 264
wave equation, 481
Wave packets, 533
weak decays, 152
weak hypercharge, 211
weak interactions, 150, 211, 475
weak interactions, charged currents, 151
weak mixing angle, 475
weak-mixing angle, 151
Weinberg angle, 151, 475
well-posed initial-value problem, 136
Wess-Zumino action, 111
Weyl spinor, 521
Weyl tensor, 548
Wick rotation, 27, 48, 65, 523
Wigner-Eckart theorem, 485
Wilson action, 32
Wilson coefficient, 302, 315
wino, 239
world-volume extrinsic curvature, 343
world-volume reparameterization invariance, 340
Yang’s theorem, 174
Yukawa interactions, 215
Z boson, 171, 211
Z boson mass, 171
zero mode, 338