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1. Introduction

Pattern recognition (PR) can be viewed as a search for structure in data. A
wide spectrum of the PR-based algorithms have been recently proposed for dif-
ferent astronomical applications — ranging from automated spectral classifica-
tion (Vieira and Ponz 1998) to constructing of all-sky catalog of billions stars
and galaxies (Greene et al. 1998). PR algorithms can be divided into two big
groups: supervised, and unsupervised ones (Duda and Hart 1973, p.45). Algo-
rithms belonging to the first group are designed to recognize objects of known
nature. On the contrary, the unsupervised PR techniques are used when the
nature of the objects is not known a priory. This paper describes two different
PR algorithms aimed to make analysis and classification of the neutral hydrogen
distribution in 21 cm spectral line data-cubes. The first algorithm (described in
the section 2) is a supervised one; it deconvolves the HI distribution observed
in external galaxies into a set of superimposed expanding superbubble struc-
tures (plus the slowly variating background) — on the basis of a lattice of the
supershell models. Section 3 describes an unsupervised PR technique designed
to classify HI features of unknown nature using the density estimation of the
brightness temperature distribution.

2. Automated supershell recognition in external galaxies

For more than two decades the expanding HI supershell structures have been
observed both in Milky Way (Heiles 1979), and in nearby spiral and irregular
galaxies (see e.g. Brinks and Bajaja 1986, Puche et al. 1992). The size of the
shells range from hundreds to more than a thousand parsecs, and the observed
HI mass sometimes exceeds 10° Mg. It is generally believed that most of the
expanding supershells are powered by a combined action of stellar winds and
consequent supernova explosions from associations of O and B stars. Many
analytical and numerical models have been developed to explain the phenomena
of a supershell (see review by Bisnovatyi-Kogan and Silich, 1995).

Until recently the task of identifying expanding shells (often far from being
spheric) in confusing HI background was solved solely with a use of recognition
properties of human eye and brain. Thilker et al. (1998) were the first to propose
for this purpose the classical PR approach — using a cross-correlation between
data (observed HI distribution) and a template (projected supershell model) for
all possible translations of the template. To make this procedure feasible for 3D
images containing millions of pixels the pattern matching is performed in the
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Figure 1.  Histograms showing the characteristics of all HI supershells de-
tected in NGC 2403. Panel (a) indicates an HI mass for each structure.
Panel (b) demonstrates that our detections usually have modest kinetic en-
ergy. Panel (c) shows the distribution of dynamical age for each structure.
Finally, Panel (d) presents the distribution of Ny, the number of stars having
M > 7 M, needed to power each expanding bubble.

frequency domain using the cross-correlation theorem (Ritter and Wilson 1996,
p.229): d @t = F7Y[F(d)F*(t)]. Here the symbol & denotes cross-correlation,
d is a data function, ¢ is a template function, ' and F~! denote direct and
inverse Fourier transforms, and the operation of complex conjugation is denoted
by the asterisk. Local maxima of the cross-correlation function correspond to
the regions where the observed HI distribution is well matched by the template
model function. Applying this analysis for a lattice of supershell models the
final catalog of the shell detections can be generated.

In Mashchenko et al. (1998b) we improved upon the original method by im-
plementing the two-dimensional numerical hydrodynamical code for generating
the model templates. Another major improvement was using a noise-corrected
estimator of the normalized correlation coeflicient 7 as a robust measure of the
quality of matching between model and observational data. It can be shown
that 7 is an invariant of linear transformations of the template function. This
can have the following physical interpretation: 7 is an invariant of both 1) pres-
ence of the locally homogeneous background emission (assuming that the gas is
optically thin), and 2) density of the surrounding quiescent gas (it is valid if the
mechanical luminosity of the source of energy is not known a priory, and if one
can neglect all physical processes which have non-linear dependency on the gas
density — such as a radiative cooling, and self-gravity of the gas).

We have applied the developed PR technique to detect supershells in the
spiral galaxy NGC 2403 (Mashchenko et al. 1998b). As a result, we obtained a
catalog of some 600 shells and supershells. Histograms for a few characteristics
of the detected supershell population are shown in the Fig. 1.
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3. HI features classification

The problem of dividing the features extracted from HI emission data-cubes
into physically meaningful classes without any a priory assumptions about their
nature belongs to the domain of unsupervised pattern recognition.

We define an HI feature either as a contiguous region in spectral line data-
cube with all pixels having values above some specified threshold brightness
temperature value (for an analysis of the objects which are believed to be com-
plete), or as a small sub-cube (to deal with the small pieces of highly incomplete
or diffuse objects).

Ghazzali et al. (1998) proposed to base the classification of HI features on
the analysis of the density estimation of the brightness temperature distribution
for all pixels belonging to the feature. In Mashchenko et al. (1998a) we proposed
a PR algorithm, which divides features into different classes on the basis of their
brightness temperature distributions p. As a measure of dissimilarity between
any two features we use the following quantity:

it Selp(®)
VAT p3(T)

where p; and py are the density of the brightness temperature distribution for
the first and second feature, and T is the brightness temperature. One can show,
that 0 < d < 2. For identical distributions d = 0.

We calculate the dissimilarity d taking into account two following PR in-
variants: (1) we allow for a presence of the locally homogeneous background
(assuming, that the gas is optically thin), and (2) when our features are com-
plete objects (not sub-cubes), the invariant of the distance to the object is used.

Having calculated the dissimilarity d for all pairs of features, the fuzzy
clustering of the dissimilarity matrix can be carried out. Currently we use the
algorithm fanny proposed by Kaufman and Rousseeuw (1990). The number of
clusters to find K is an input parameter. For a given K the fuzzy clustering
algorithm calculates for each feature K values of the cluster membership (or
affiliation) coefficient C,,, (0 < Cy, < 1).

To test whether the developed PR technique can perform a physically mean-
ingful classification of HI features, we applied the algorithm to the region cen-
tered (both spatially and in velocity) at the location of Sh2-203 HII region in
CGPS 21 cm spectral line data-cube (English et al. 1998). The size of the re-
gion is 2°.25x2°.5x28.84 km /s (450x500x35 pixels). The region was splitted into
9x10x7=630 smaller sub-cubes with the size 0°.25x0°.25x4.12 km/s (50x50x5
pixels). The Fig. 2 shows the smoothed distribution of the membership coef-
ficient C', as contours for one particular cluster (total number of clusters K
is equal to 3). One can get an impression, that the pieces of the gas which
brightness temperature distributions constitute this cluster follow the walls of
the shocked material surrounding the HII region. The values of ), for the front
shell wall (right image) are comparable with C', values for the rear wall (left
image) notwithstanding the big difference in their HI emission brightness. The
location of the maximum of the membership coefficient distribution for the front
wall coincides both spatially and in velocity (Fich et al. 1990) with the location
of the local maximum in ionized matter distribution. This (along with the lower
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Figure 2.  The smoothed distribution of the membership coefficient C,,
(with levels at Cy,, = 0.3,0.4,...1.0) calculated for K = 3, cluster No.3 (con-
tours) superimposed with the HI distribution (grey-scale) for 3 different ve-
locity channels

HI column density) can be explained by assuming that the front wall of the shell
is partially ionized.
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