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We evaluate an expanded sample of z~2-3
galaxies for differences in CO line excita-
tion, including 11 sources with new
CO(1-0) detections and three new
CO(1-0) upper limits.

For our expanded sample, we find that
the CO(3-2)/CO(1-0) line ratio distri-
butions for SMGs and AGN-host galax-

ies are consistent with being drawn
from the same parent population

(p>0.1).

Summary

We find that the gas excitation as probed
by the CO(3-2)/CO(1-0) line ratio corre-
lates with the star formation efficiency,
but no other galaxy properties.

We do not find the trend in CO luminosity
with the FWHM found in other studies,

likely due to the inhomogeneity of our
sample.

We find no significant change in either the
offset or index of the integrated Schmidt-

Kennicutt relation unless we include low-
redshift infrared-bright galaxies; the offset

for the combined low- and high-redshift
sample 1s the only excitation-dependent
parameter that we found.
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