Molecular gas excitation and the evolutionary connection between SMGs and AGN at z~2-3

Chelsea E. Sharon ${ }^{1}$, Dominik Riechers ${ }^{1}$, Jacqueline Hodge ${ }^{2}$, Chris Carilli ${ }^{2}$, Fabian Walter ${ }^{3}$, Ran Wang ${ }^{4}$, Axel Weiß ${ }^{5}$, Frank Bertoldi ${ }^{6}$, Jeff Wagg ${ }^{7}$, and Kirsten Knudsen ${ }^{8}$
${ }^{1}$ Cornell University, ${ }^{2}$ NRAO, ${ }^{3}$ MPIA, ${ }^{4}$ KIAA Beijing, ${ }^{5}$ MPIfR, ${ }^{6}$ Universität Bonn, ${ }^{7}$ SKA Organization, ${ }^{8}$ Chalmers University of Technology

Background

Observations of CO rotational line ratios probe the physical conditions (density, temperature, etc.) of the molecular gas reservoirs that fuel star formation Initial observations of $\mathrm{z} \sim 2-3$ submillimeter galaxies (SMGs) and AGN-host galaxies showed a systematic difference in the $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ line ratio between the two populations (e.g., Swinbank et al. 2010; Harris et al. 2010; Ivison et al. 2011; Riechers et al. 2011) where SMGs have a multi-phase molecular ISM that includes a large cold gas res ervoir and AGN-host galaxies have only a warmer single-phase molecular ISM.
This observed dichotomy potentially supports an evolutionary connection between the two populations where an AGN phase ends rapid star formation in SMGs (via outflows or suppressed accretion) or the molecular gas has been funneled by gravitational torques via mergers to a small high-excitation region near the central supermassive black hole. However, this dichotomy was based on a small sample (13) of well-studied galaxies.

Figure 1. The $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ line ratio as a function of redshif
for the complete sample of galaxies. Dark symbols are our new
detections and light symbols are sources from the literature.

Observations

We observed CO(1-0) with the Karl G. Jansky Very Large Array for most z~2-3 SMGs and AGN-host galaxies with existing $\mathrm{CO}(3-2)$ measurements.
We successfully detected 11 galaxies and obtained upper limits for three more; Figure 1 shows the $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ ratio for the entire sample and three of our strongest detections are in Figure 2
atios, to anese observine gas masses and gas-to-dust

Original Distribution
Do SMGs and AGN host galaxies have different $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ line ratios?

Figure 3. Cumulative distribution of
$\mathrm{CO}(3-2) \mathrm{CO}(1-0)$ line ratio measure-
 and SMGs (red) from Swinbank et al.
(2010), Harris et al. (2010), Ivison et (2010), Harris et al. (2010), Ivison et
al. (2011), and Riechers etal. (2011).
$r_{3,1}=\frac{\int S_{\nu}(\mathrm{CO}(3-2)) d v}{\int S_{\nu}(\mathrm{CO}(1-0)) d v}\left(\frac{\nu_{\mathrm{CO}(1-0)}}{\nu_{\mathrm{CO}(3-2)}}\right)^{2}$
In Figures 3 and 4 we show the cumulative distribution and histogram of the 13 original $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ line ratio measurements (in units of brightness temperature, $\mathrm{r}_{3,1}$) for z~2-3 SMGs and AGN-host galaxies clearly showing a tight cluster of SMGs near $r_{3,1}=0.6$ and AGN-host galaxies near $\mathrm{r}_{3,1}=1.0$.
For our expanded sample of 26 galaxies, we find that the $\mathrm{r}_{3,1}$ distributions for SMGs and AGN-host galaxies (Figures 5 and 6) are consistent with being drawn from the same parent population ($\mathrm{p}>0.1$) and having the same average $\mathrm{r}_{3,1}(\mathrm{p}>0.14)$ even when forcing ambiguously classified galaxies into categories most in line with previous results or removing weak detections. Some galaxies have been re-classified and some line Some galaxies have been re-classified and some line ratio measurements have been updated to reflect the
most recent interferometric detections.
The disappearance of the dichotomy between these galaxy classes may be caused by including sources that are not as well studied (causing incorrect classifications) and that some of the SMGs may have buried AGN (in addition to the updated line measurements mentioned previously).

Our New Distribution

Figure 7. CO line luminosity, not
corrected corrected for magnification by gravi-
tational lensing, as a function of the
CO(3-2) line FWWH $\mathrm{CO}(3-2)$ line FWHM. Harris et al.
(2012), Bothwell etal. (2013) ald (2012), Bothwell et al. (2013), and
Goto \& Toft (2015), find a trend in Co line luminosity with line FWHM
for SMGs (cf. Carilli \& Walter 2013) for SMGs (cf. Carilli \& Walter 2013)
and propose using the trend for estiand propose using the trend for esti-
mating lensing magnifications (Harri et al. 2012) or for measuing distances to cosmological sources (it the sc
is reduced; Goto \& Toft 2015).

Figure 8. CO line luminosity, cor-
rected for magnification, as a function rected for magnification, as a function
of the $\mathrm{CO}(3-2)$ line FWHM. Again, of the $\mathrm{CO}(3-2)$ line FWHM . Again,
we see no clear trend with line we see no clear trend with line
FWHM, unlike Harris etal. (2012 Bothwell et al. (2013), and Goto \& Toft (2015). While many of the lumi-
nosities drop, as expected when cornosities drop, as expected when cor-
rected for lensing, the luminosities span a wider range, of vamues. We sus.
peet this is due to the inhomogneity pect this is due to the inhomogeneity
of our sample when compared to of our sample when compared to
others which were selected in a
uniform manner, this may also uniform manner, this may also
explain why Carilli \& Walter (2013) find no correlation.

Further Analysis

We compare the $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ line ratio for SMG

 and AGN-host galaxies as a function of a third parameter. In general, we do not find the CO line excitation correlates with other parameters of the galaxies, with the exception of the star formation efficiency (e.g., Yao et al. 2003).We also do not find the trend in CO luminosity with line FWHM that is proposed to have some predicitive power for determining lensing magnifications (Figures 7 and 8 ; e.g., Harris et al. 2012). This is likely due to the relative inhomogeneity of our sample. We use the matched $\mathrm{CO}(1-0)$ and $\mathrm{CO}(3-2)$ line mea surements to clean the Schmidt-Kennicutt relation of potential excitation bias. We find no significant change in the offset or slope of the integrated SchmidtKennicutt law between versions which use $\mathrm{CO}(1-0)$ and versions which use $\mathrm{CO}(3-2)$, whether or not we exclude AGN or apply magnification corrections (Figures 9 and 10). If we include low-redshift U/LIRGs (Papadopoulos et al. 2012; Greve et al. 2014) and infrared-bright galaxies (Yao et al. 2003) in the analysis of the Schmidt-Kennicutt relation, the slope increases significantly and the normalization changes; the normalization is the only term which shows a significant difference between the two CO lines.

Figure 9. The integrated Schmidt-
Kennicutt relation (the far infrared Kennicutt relation (the far infrared
luminosity ys. Co ine luminosity) for
our sample. We how Co(our sample. We show COMinosity) for
colors) and $C O(3-2)$ (light measurements for each source as well as a small number of other r iigh-
redshifts systems for comparison redshift systems for comparison
(labeled). Luminosities have not
correctel corrected for mangosifification hy by gravitational lensing.
 Figure 10. The interated Schmidt-
Kennicutt realation (then far infrared
luminosity vs. CO line luminosity for luminosity s. CO line luminosity) for
our sample as well as a sample of our sample as well as a sample of
low-z U/LIRGs (Papadopoulos et low-2012; Greve et al. 2014) and infrared-bright talaxies (Yayo e tal.
2003) , corrected for mantifiction by 2003), corrected for magnification
gravitational lensing. We show gravitational lensing. We show
$\mathrm{CO}(1-0)$ (dark colors) and $\mathrm{CO}(3-2)$ (light colors) measurements for each
source as well as for a mall number source as well as for a small number
of other high- s systems for compariof other high-z systems for compari-
son (labeled). The solid line is the fit to just the high-redshift sample and the lashed
galaxies.

Summary

We find that the gas excitation as probed by the $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ line ratio corr by the $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ line ratio corre lates with the star formation efficiency, lates with the star formation efficiency, but no other galaxy properties.

We do not find the trend in CO luminosity with the FWHM found in other studies, likely due to the inhomogeneity of our sample.

[^0]
[^0]:

