Spatial Variation of CO Excitation in High=z Galaxies

Ghelsea E, Sharoni, Andrew Jo Bakern, Andrew la Hartls², Dieter Lutzs, Linda Ja Tacconisi, Steven No Longmoree Alasdair Po Thomson ${ }^{3}$, Amitipal Sa Tagore? , Gharles Ro Keetonis \& Allice E, Shapley ${ }^{8}$

${ }^{1}$ Rutgers, the State University of New Jersey ${ }^{2}$ University of Maryland ${ }^{3}$ Max-Planck-Institut für extraterrestrische Physik ${ }^{4}$ European Southern Observatory
${ }^{5}$ University of Edinburgh ${ }^{6}$ University of California, Los Angeles

CO in High-z Galaxies

- Observations of CO rotational Recent CO observations show that submillimeter galaxies (SMGs) have a common $\mathrm{CO}(3-2)$)
$\mathrm{CO}(1-0)$ line ratio of $\mathrm{r}_{3,1} \approx 0.6$ (in brightness temperature units; e.g., Swinbank et al. 2010; Harris et al. 2010; Ivison et al. 2011;' Danielson et al. 2011) indicating the presence of multi-phase molecular gas, in luding a substantial cold gas reservoir.
- Quasar host galaxies have $\mathrm{r}_{3,1}$ closer to unity, indicating they lack the cold molecular gas seen in MGs, and are well-described by a single-phase molecular ISM (Riechers et al. 2011).
- These results highlight the need for CO spectral line energy distributions (CO SLEDs) to be complete down to the lowest- J transition (using instruments like the Zpectrometer; Harris et al. 2007)
wish to determine hight z galaxies'star formation potential and their likely $z \sim 0$ descendents.

Resolution Effects

- While $r_{3,}$ is a powerful diagnostic for the presence of a multi-phase molecular ISM, more detailed characterizations of the gas physical conditions require full radiative transfer modeling (e.g., using the Large Velocity Gradient (LVG) approximation Wrat 2003; Weiß et al. 2007),
- In order to be confident about radiative transfer results, we must be certain that the different CO lines are being emit ted from the same gas clouds, which may not be the case in complicated sources like major mergers.
- Many studies of high-z sources also exploit the magnification provided by a gravitational lens; differential lensing (the variation in magnification factor across an extended source) could affect observed line ratios.
- Since low spatial and spectroscopic resolution observations can hide complicated source structures, interferometric map
ping of the CO SLEDs at high resolution is necessary if we are to determine the gas conditions that accompany the large ping of the CO SLEDs at high resolution
star formation rates seen in high- z galaxies.

SMM J00266+1708

- J00266 was firs

 (Smail et al. 2002)- Initial CO observations failed due to an incorrect optically-determined redshift (Frayer et al. 2000). eter on the Rotrations of the $\mathrm{CO}(1-0)$ line with the Zpectrometer on the Robert C. Byrd Green Bank Telescope con2007) of $z=2.742$.
- We followed up with observations at the Jansky Very Large Array (VLA) in $\mathrm{CO}(1-0)$, at the Plateau de Bure Interferometer (PdBI) in $\mathrm{CO}(3-2)$ and $\mathrm{CO}(5-4)$, and at the Submillimeter Array in $\mathrm{CO}(7-6)$ (Sharon et al. in prep.). - We discovered a second component in the mid.
- J00266 is likely comprised of two merging galaxies (Fig. 2): a blue component with dispersion-dominated kinematics and a single-phase molecular ISM, and a red component with a velocity gradient and a multi-phase mo-
lecular ISM (Fig 3). lecular ISM (Fig. 3).

Figure 2-O Oerladid contours of the CO(3-2) channel maps,
rized by the chanelsel relative velocities. The beam size is shown colorized by the channes's relative velocities. The beam size is show
in the lower left corner Only the positive (solidid) and negative

$J_{\text {upper }}$

SMM J14011+0252

 - J14011 $(z=2.5652)$ was detected in the SCUBA LensSurvey (Smail et al. 2002) and was the first SMG to be detected in any CO line (Frayer et al. 1999). - J14011 has been followed up extensively at optical wavelengths, including Ha integral field spectroscopy (e.g.,
Barger et al. 1999; Tecza et al. 2004; Nesvadba et al. 2007). Barger et al. 1999; Tecza et al. 2004; Nesvadba et al. 2007)

- Our CO(1-0) detection with the Zpectrometer gave $\mathrm{r}_{3,1}=0.76 \pm 0.12$ (Harris et al. 2010).
the VLA (Fig. 4; Sharon et al. in prep.).
- The line ratio maps indicate the presence of an excita tion gradient parallel to the lensing shear (Fig. 5). range of conditions (lower (higher) $\mathrm{T}_{\text {kin }}$ models prefer higher (lower) H_{2} densities), they favor optically thin em sion in the south and optically thick emission in the north (C_{1} observations produce temperatures in line with the
 southern/optically thin CO emission; Walter et al. 2011)

SDSSJ0901+1814

- J0901 is a strongly lensed star-forming galaxy 2.2597) discovered in a a systematic Sloan Digital Sky Survey search (Dieh J0901 is similar to both Lyman break galaxies and SMGs), - We observed the CO(3-2) line at the PdBI (Baker et al. in prep.) and the $\mathrm{CO}(1-0)$ line at the VLA (Sharon et al.
 (Fig. 7) and the pereliminary exist across the three images (Fig. 7) and the preliminary source
indicate that J0901 is a disk galaxy.
- J0901's complex kinematic structure has allowed us to develop a detailed model for the lensing potential (using a non-parametric source reconstruction algorithm developed by A. S. Tagore that provides a major extension to C. R. Keeton's Lensmodel software)

While the integrated CO maps place initial constraints on the mass distribution of the lens, this model can be fur-
ther refined by requiring the lensed images in each velocity channel within the full data-cube to trace back to the same spatial location.

- Differences in the line shape and strengths between the three images indicate that differential lensing may be - The $\operatorname{CO}(3-2) / \mathrm{CO}(1-0)$. cates that the lower excitation gas is more spatially extended than the higher excitation gas.

che

Conclusions

- Observations of the complete CO excitation ladder, including a cold gas tracer like $\mathrm{CO}(1-0)$, are necessary in order to btain an accurate picture of the molecular gas conditions in high-redshift galaxies.
\cdot In addition, it is crucial that observations be made at high spectral and spatial
structures or gravitational lensing are not affecting the excitation analysis.
High-resolution mapping of mid- and low-J transitions has revealed:
components have different kinematic structures
and different excitation conditions.
- A SMG with an internal excitation gradient that is strongly confirmed using high-resolution mapping of $\mathrm{CO}(1-0)$;
ability to detect the gradient is aided by the coincidental alignment of the gravitational lensing shear.
\cdot A strongly-lensed, UV-selected disk galaxy with a clear spatially extended cold
- A strongly-lensed, UV-selected disk galaxy with a clear spatially extended cold gas phase.
in high-z galaxy populations.

References

al. 2011,MNRAS, 10, 1687 • Diehl, H.T. et al. 2009, ApJ, 707, 686 • Frayer, D. T. et al. 1999, ApJ, 514 L13 • Frayer, D. T. et al. 2000, AJ, $120,1668 \cdot$ Hainline, K. N. et al. 2009, ApJ, 701,52 • Harris, A.I. et al. 2007, ASPCS, 375, 72 • Harris, A. I. et al. 2010, ApJ, 723, $1130 \cdot$ Ivison, R. J. et al. 2011, MNRAS, $412,1913 \cdot$ Nesvadba, N. P. H. et al. 2007, ApJ, 657, $725 \cdot$ Riechers, D. A.et al. 2011, ApJL, 739, 32 - Sharon, C. E. et al. 2012 (in preparation) • Smail, I. et al. 2002, MNRAS, 331,495•SwinWalter, F. et al. 2011, ApJ, 730, $18 \cdot$ Ward, J. S. et al. 2003, ApJ, 587, 171 • Weiß, A. et al. 2007, ASPCS, 375, 25Rutgers

