Molecular Gas Conditions in AGN Host Galaxies and Submillimeter Galaxies at z~2

Chelsea E, Sharon, Dominik Rifechersi, dacqueline Hodges Chris Carillis, Fabian Walier, Ran Wangis. Axel Weibe Frank Bertoldio defi Wagg and Kirsten knudsen ${ }^{3}$ ${ }^{1}$ Cornell University, ${ }^{2}$ NRAO, ${ }^{3} \mathrm{MPIA},{ }^{4} \mathrm{KIAA}$ Beijing, ${ }^{5} \mathrm{MPIfR}$, ${ }^{6}$ Universität Bonn, ${ }^{7}$ SKA Organization, ${ }^{8}$ Chalmers University of Technology

Background

- Observations of CO rotational line ratios probe the physical conditions (density, temperature, etc.) of the molecular gas reservoirs that fuel star formation.
- Initial observations of $\mathrm{Z} \sim 2-3$ submillimeter galaxies (SMGs) and AGN-host galaxies showed a systematic difference in the $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ line ratio between the two populations (e.g., Swinbank et al. 2010; Harris et al. 2010; Ivison et al. 2011; Riechers et al. 2011) where SMGs have a multi-phase molecular ISM that includes a large cold gas res ervoir and AGN-host galaxies have only a warmer single-phase molecular ISM.
- This observed dichotomy potentially supports an evolutionary connection between the two populations where an AGN phase ends rapid star formation in SMGs (via outflows or suppressed accretion) or the molecular gas has been funneled by gravitational torque via mergers to a small high-excitation region near the central supermassive black hole.
- However, this dichotomy was based on a small sample (13) of well-studied galaxies.

Observations

- We observed $\mathrm{CO}(1-0)$ with the Karl G. Jansky Very Large Array for most z $\sim 2-3$ SMGs and AGN-host galaxies with existing $\mathrm{CO}(3-2)$ measurements. - We successfully detected 10 galaxies and obtained upper limits for four more; Figure 1 shows the $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ ratio for the entire sample and three of our strongest detections are in Figure 2
- We also use these observations to robustly determine gas masses and gas-to-dust ratios, and to clean the Schmidt-Kennicutt relation of potential excitation biases.
Figure 2. CO(1-0) inte-
grated line maps or triee

Figure 7. $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ line ratio
as a function of the $\mathrm{CO}(3-2)$ line
FWHM. Lower limits as a function of the $\mathrm{CO}(3-2)$ line
FWHM. Lower limits are hhown in
oray We see no systemat dif gray. We see no systematic difference
between SMGs and AGN-host galaxbetween SMGs and AGN-host gala
ies, but we do sea a trend of higher
CO excitation at lower line widths CO excitation at lower line widths
(slope of $(2.731 .51 .6) \times 1 \times 10{ }^{-3}$ (km se
This is consistent with a spatially This is consistent with a spatially
extended cold gas phase that is no extended cold gas phase that is not
well-mixed with any higher excitatio molecular gas phases. We expect
some natural scatter about this tren some natural scater about this trend
due to the galaxy orientation relative due to the galaxy orie
to our line of sight.
 Figure 8. $\mathrm{CO}(3-2) \mathrm{CO}(1-0)$ line ratio
as a function of the far infrared-to-CO
line luminosity (i.e., star formation line luminosity nie.e. starf forradation
efficiciency). Lower limits are shown in efficiency). Lower limits are shown i
gray. In addition to our $z \sim \sim$ sample, gray. In adadition to our $\mathrm{z}-2$ sample,
we also show points for a collection
of local infrared-bright galxies fire of local infrared-bright galaxies from
Yao e al. (2003). For both the low Yao et al. (2003). For both the low
and high-redshift galaxies we see anc high-redshift galaxies we see a
strong trend of incrasing gas exita
tion for higher star formation efticiention for higher star forming gation extitici-en-
cies. We also see that the high redshift cies. We also see that the high redshit
galaxies have larger star formation galaxies have larger star formatio
efficiencies than the low redshift
galaxies. efficiencies
galaxies.

Further Analysis

- We also compare the $\mathrm{CO}(3-2) / \mathrm{CO}(1-0)$ line ratio for SMGs and AGN-host galaxies as a funcion of a third observed paramete
In general, we do not find the CO line excitation correlates with other parameters of the galaxies, with the exception of the CO(3-2) FWHM (Figure 7) and the star formation efficiency (Figure 8; see also Yao et al. 2003).
- We use the matched $\mathrm{CO}(1-0)$ and $\mathrm{CO}(3-2)$ line measurements to clean the Schmidt-Kennicutt relation of potential excitation bias.
- We find no significant change in the offset or slope of the integrated Schmidt-Kennicutt law between versions which use $\mathrm{CO}(1-0)$ and versions which use $\mathrm{CO}(3-2)$, whether or not we ex clude AGN or apply magnification corrections (Figures 9 and 10).
If we include low-redshift infrared-bright gal axies (Yao et al. 2003) in the analysis of the Schmidt-Kennicutt relation, the slope increase significantly and the normalization changes; the normalization is the only term which shows a significant difference between the two CO lines.

Summary

We evaluate an expanded sample of $\mathrm{z} \sim 2-3 \mathrm{gal}-$ axies for differences in CO line excitation, including 10 sources with new $\mathrm{CO}(1-0)$ detections

 and four new $\operatorname{CO}(1-0)$ upper limits.e find no significant change in either the offset or index of the integrated SchmidtKennicutt relation unless we include low-redshift infrared-bright galaxies; the offset for the combined low- and high-redshift sample is the only
excitation-dependent parameter that we found.

