PHY 4B03 - Problem Set #3

Due: November 9, 2012 (in class)

- 1. Griffiths, 4.16.
- 2. Griffiths, 4.40.
- 3. Griffiths, 5.39.
- 4. Griffiths, 5.43.
- 5. A capacitor comprises a conducting sphere of radius a and a concentric hollow conducting sphere of radius b surrounding the first sphere. The space between the two spheres is filled with two concentric layers of dielectric materials of permittivity ϵ_1 and ϵ_2 . The boundary between these two dielectric layers is located at a radius R. Calculate the capacitance of this capacitor. Also, determine the capacitance of an isolated metallic sphere of radius a surrounded by a spherical dielectric layer of radius a and permittivity ϵ .
- **6.** A wire is bent as shown in the figure below. Determine the magnetic field at the point P (i.e., at the centre of the wire's circular turn of radius R).

[Additional problems for Graduate Students: Griffiths – 4.32 and 5.56]