Arts \& Science 2D06

NB: Mark values are given in brackets [] beside each problem. Write all your answers on the quiz paper. No books or notes allowed. Time to write quiz: 50 minutes.

Solution for quadratic equation: $\quad x=\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a$
Surface area of sphere: $\quad A=4 \pi r^{2} \quad$ Volume of sphere: $\quad V=\frac{4}{3} \pi r^{3}$
Bernoulli's equation: $\quad P+\rho g y+\frac{1}{2} \rho v^{2}=$ const
Period of simple pendulum: $\quad T=2 \pi \sqrt{\frac{L}{g}} \quad$ Wave speed: $\quad v=f \lambda$
SHM equation of motion: $\quad x=A \cos (\omega t+\varphi) \quad$ where $\omega=\sqrt{k / m}=2 \pi / T$
Air pressure at sea level $\quad P_{0}=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Density of air at sea level $\quad \rho_{\text {air }}=1.29 \mathrm{~kg} / \mathrm{m}^{3}$
Density of water $\quad \rho_{H 2 O}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

1. [3] In simple harmonic motion of a mass+spring system, the mass's acceleration is proportional to its:
(a) velocity.
(b) frequency.
(c) amplitude.
(d) displacement.
(e) all of the above.

Explain/derive your choice in the space below.
2. [4] At position A within a tube containing a compressible fluid that is moving with steady laminar flow, the speed of the fluid is $12.0 \mathrm{~m} / \mathrm{s}$ and the tube has a diameter 12.00 cm . At position B , the speed of the fluid is $18.0 \mathrm{~m} / \mathrm{s}$ and the tube has a diameter 6.00 cm . What is the ratio of the density of the fluid at position A to the density of the fluid at position B?
3. [3] You are originally 1.0 m beneath the surface of a pool. If you dive from there to 2.0 m beneath the surface, what happens to the absolute pressure that you will feel?
(a) It increases by a factor of 4 .
(b) It increases by a factor of 2 .
(c) It increases, but by a factor smaller than 2 .
(d) It decreases by a factor of 2 .
(e) It does not change.

Explain/derive your choice in the space below.
4. [5] A piece of aluminum with a mass of 1.0 kg and density of $2700 \mathrm{~kg} / \mathrm{m}^{3}$ is suspended from a string and then completely immersed in a container of water.
(a) Determine the volume of the piece of aluminum.
(b) Determine the tension in the string after the metal is immersed in the container of water.
5. [5] A mass of 1.53 kg is attached to a spring and the system is undergoing simple harmonic oscillations with a frequency of 1.95 Hz and an amplitude of 7.50 cm . What is the total mechanical energy of the system?
[20] total marks

