NB: Mark values are given in brackets [] beside each problem. Write all your answers on the quiz paper. No books or notes allowed. Time to write quiz: 50 minutes.

Solution for quadratic equation: $\quad x=\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a$
Uniform acceleration: $\quad x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \quad v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$

1. [3] A car moves on a horizontal road with constant velocity v. Which of the following statements is false? (Ignore air resistance.) Explain/derive your choice in the space below.
(a) Its acceleration is zero at all times.
(b) A graph of its position vs. time yields a straight line.
(c) The slope of the graph in (b) is $v^{2} / 2$.
(d) The velocity vector \mathbf{v} points in the direction of the car's motion.
2. [3] A tennis ball is thrown upward with speed v_{0}, and takes a time T to reach its maximum height H. Which of the following statements is true? (Ignore air resistance.) Explain/derive your choice in the space below.
(a) It reaches $H / 2$ in $T / 2$.
(b) It has speed $v_{\circ} / 2$ at $H / 2$.
(c) It has speed $v_{\circ} / 2$ at $T / 2$.
(d) It has speed v_{0} at $2 T$.
3. [4] Suppose the equation of motion of an object is given by

$$
x(t)=35-6.5 t-1.3 t^{2}
$$

where x is measured in meters. Find (a) its average velocity between 1 and 3 seconds, and (b) its instantaneous velocity at $t=4$ seconds.
4. [5] Two stones are thrown from the edge of a cliff of height 100 m . One is thrown straight up at $5 \mathrm{~m} / \mathrm{s}$, while the other is thrown straight down 2 seconds later at $20 \mathrm{~m} / \mathrm{s}$. Where and when will the two stones meet each other?
5. [5] A ball is launched from ground level and after 3 seconds its velocity is:

$$
\mathbf{v}=20 \mathbf{i}-4 \mathbf{j} \mathrm{~m} / \mathrm{s} .
$$

Find how long the ball is in the air, i.e., from the time it was launched until the time it lands.
[20] total marks

