Arts \& Science 2D06

NB: Mark values are given in brackets [] beside each problem. Write all your answers on the quiz paper. No books or notes allowed. Time to write quiz: 50 minutes.

Period of simple pendulum: $\quad T=2 \pi \sqrt{\frac{L}{g}} \quad$ Wave speed: $\quad v=f \lambda$
SHM equation of motion: $\quad x=A \cos (\omega t+\varphi) \quad$ where $\omega=\sqrt{k / m}=2 \pi / T$
Wave equation: $\quad y=A \sin (k x-\omega t+\varphi) \quad$ where $k=2 \pi / \lambda$
Two-slit interference: $\sin \theta=m \lambda / d$ and $\sin \theta=(m+1 / 2) \lambda / d$
Diffraction: $\sin \theta=\mathrm{m} \lambda / \mathrm{a}$

1. [2] If the amplitude of a simple harmonic oscillator is doubled, which of the following quantities will be most affected? (Explain your answer.)
(a) Frequency
(b) Period
(c) Maximum speed
(d) Maximum acceleration
(e) Total energy
2. [3] Blue light of wavelength λ passes through a single slit and forms a diffraction pattern on the screen. If the blue light is then replaced by red light of wavelength 2λ, the original diffraction pattern can be reproduced if the slit width is: (Explain your answer.)
(a) made four times smaller
(b) made two times smaller
(c) kept unchanged
(d) made two times bigger
(e) made four times bigger
3. [5] A simple pendulum of length 0.3 meters is released from an angle of 4 degrees. How much time does it take the pendulum to reach its highest speed? How much time does it take if the pendulum is released from 2 degrees instead?
4. [5] A sinusoidal wave travels along a stretched string. A particle on the string has a maximum velocity of $1 \mathrm{~m} / \mathrm{s}$ and maximum acceleration of $100 \mathrm{~m} / \mathrm{s}^{2}$. Find the frequency (f) and amplitude (A) of the wave.
5. [5] An interference pattern is made by shining light on two narrow slits spaced 0.3 mm apart. The distance between the first and the fourth minimum on a screen 50 cm behind the slits is 5.0 mm . What is the wavelength of the light used in this experiment?
[20] total marks
