Arts \& Science 2D06

NB: Mark values are given in brackets [] beside each problem. Write all your answers on the quiz paper. No books or notes allowed. Time to write quiz: 50 minutes.

Solution for quadratic equation: $\quad x=\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a$ centripetal $a_{c}=v^{2} / r \quad$ linear K.E. $=(1 / 2) m v^{2} \quad$ Rotational K.E. $=(1 / 2) I \omega^{2}$
Energy conservation $\quad E=K+U \quad$ Gravitational force: $\quad F_{g}=G M m / r^{2}$
Elastic collisions, target m_{2} stationary: $\quad v_{1}=\frac{\left(m_{1}-m_{2}\right)}{\left(m_{1}+m_{2}\right)} u_{1}, \quad v_{2}=\frac{2 m_{1}}{\left(m_{1}+m_{2}\right)} u_{1}$
$G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$ (Newton's law of gravity constant)
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ (acceleration of gravity near surface of Earth)
$M_{E}=5.98 \times 10^{24} \mathrm{~kg}$ (mass of Earth) $\quad R_{E}=6.37 \times 10^{6} \mathrm{~m}$ (radius of Earth)

1. [2] Two kids, Mary and John, sit on a spinning merry-go-round. Mary is on the outer rim and John is halfway between the center and the rim. Mary's tangential (linear) velocity is: (Explain/derive your answer in the space provided.)
a) same as John's
b) twice John's
c) half of John's
d) $1 / 4$ of John's
e) four times John's
2. [3] A cart moving at speed v on a frictionless track, collides with an identical cart at rest. The two carts stick together after they collide. What is their velocity after colliding? (Explain/derive your answer in the space provided.)
a) v
b) 0.5 v
c) zero
d) $-0.5 v$
e) $-v$
3. (a) [3] Find the force due to gravity on the Moon's surface.
(Use $M_{\text {moon }}=7.35 \times 10^{22} \mathrm{~kg}$ and $R_{\text {moon }}=1.74 \times 10^{6} \mathrm{~m}$)
(b) [2] Find also the acceleration due to gravity on the Moon's surface. How does it compare to the gravitational acceleration on the Earth's surface?
4. [5] A hunter standing in a boat at rest on a lake shoots a rifle horizontally. The bullet has a mass of 50 g and travels at $350 \mathrm{~m} / \mathrm{s}$ relative to the gun's barrel. The hunter, rifle, and boat together have a mass of 300 kg . What is the speed of the boat right after the rifle is fired?
5. [5] A solid disk $\left(I=0.5 M R^{2}\right)$ of radius 1.60 m and mass 2.30 kg rolls without slipping to the bottom of an inclined plane. If the height of the inclined plane is 5 m , what is the angular velocity of the disk when it reaches the bottom?
[20] total marks
