Arts \& Science 2D06

NB: Mark values are given in brackets [] beside each problem. Write all your answers on the quiz paper. No books or notes allowed. Time to write quiz: 50 minutes.

Period of simple pendulum: $\quad T=2 \pi \sqrt{\frac{L}{g}} \quad$ Wave speed: $\quad v=f \lambda$
SHM equation of motion: $\quad x=A \cos (\omega t+\varphi) \quad$ where $\omega=\sqrt{k / m}=2 \pi / T$
Wave equation: $\quad y=A \sin (k x-\omega t+\varphi) \quad$ where $k=2 \pi / \lambda$

1. [3] (a) If a block on a spring is oscillating back and forth, is there any point in its motion where the acceleration is zero? Where?
(b) If a simple pendulum is swinging back and forth, is there any point in its motion where its acceleration is zero? Where?
2. [3] Plotted is the $x(t)$ motion for a particular simple harmonic oscillator. Which of the following is a correct mathematical form for its equation of motion? (Mark all correct versions.)
(a) $x=A \sin (\omega t)$
(b) $x=A \cos (\omega t)$
(c) $x=A \sin \left(\omega t+\frac{\pi}{2}\right)$
(d) $x=A \sin \left(\omega t-\frac{\pi}{2}\right)$
(e) $x=A \cos \left(\omega t+\frac{\pi}{2}\right)$
(f) $x=A \cos \left(\omega t-\frac{\pi}{2}\right)$
3. [4] A box of mass 2.0 kg slides at $3.5 \mathrm{~m} / \mathrm{sec}$ (horizontal, no friction) into an unstretched spring. The spring has $k=250 \mathrm{~N} / \mathrm{m}$.
(a) How far does the spring compress?
(b) How long does the box stay in contact with the spring?
4. [2] If a particle undergoes SHM with amplitude A, what is the total distance it travels in one period?
(a) zero
(b) A
(c) $2 A$
(d) $4 A$
5. [3] If two successive harmonics of a vibrating string are 1200 Hz and 1400 Hz , what is the frequency of the fundamental mode?
6. [5] A sinusoidal wave on a string has a period $T=0.020 \mathrm{sec}$ and travels forward with a speed $30 \mathrm{~m} / \mathrm{sec}$. At $t=0$, a particle on the string at $x=0$ has a location $y=0.015$ m and a velocity of $+4.0 \mathrm{~m} / \mathrm{s}$. From this information, calculate all the constants in the wave function $y=A \sin (k x-\omega t+\phi)$. (Hint: yes, you can calculate A from the given information.)
