Arts \& Science 2D06

NB: Mark values are given in brackets [] beside each problem. Write all your answers on the quiz paper. No books or notes allowed. Time to write quiz: 40 minutes.

Solution for quadratic equation: $\quad x=\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a$
Uniform acceleration: $\quad x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \quad v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$

1. [3] Stones A and B are thrown directly upward from the ground. A's initial speed is 3 times greater than B's. Which statement below is most nearly correct?
(a) A takes 9 times longer than B to come back to the ground
(b) A takes 3 times longer than B to come back to the ground
(c) A takes $\sqrt{3}$ times longer than B to come back to the ground
(d) A and B take the same time to go up and come down
(e) A takes one-third as long as B to come back to the ground.

Now use the space below to explain your choice.
2. [2] A plane is flying at constant velocity as shown by the dashed line. It drops a mailbag at point P, and the bag lands on the ground a few seconds later. Which of the statements below is most nearly correct? (Ignore air resistance)
(a) The bag lands directly below point P
(b) When the bag lands, the plane is ahead of it
(c) When the bag lands, the plane is directly above it
(d) When the bag lands, it is ahead of the plane.
3. [5] The equation of motion of a particular projectile is given by

$$
\mathbf{r}(\mathrm{t})=(6 \mathrm{t}) \mathbf{i}+\left(6 \mathrm{t}-4.9 \mathrm{t}^{2}\right) \mathbf{j}
$$

(a) Where is it at $t=0$?
(b) What is the equation for its velocity $\mathbf{v}(\mathrm{t})$? Write it using the unit vector \mathbf{i}, \mathbf{j} notation.
(c) What is its initial velocity \mathbf{v}_{0} and "launch angle" θ ?
(d) If it is launched on level ground, where (x, y) does it land?
4. [5] A stone is thrown straight upward with a speed of $23 \mathrm{~m} / \mathrm{s}$. How much time does it take to reach a height of 12 meters above its 'launch' point?
5. [5] A ball thrown horizontally at $v_{0}=22 \mathrm{~m} / \mathrm{s}$ from the top of a building, lands 34 m from the base of the building. How high is the building?
[20] total marks

