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7.3 Where the Standard Model fails 182

A major theme of 20th Century physics is that we are surrounded by substructure: what

we see around us is built from smaller (often initially invisible) constituents and much of

the diversity we see can be efficiently understood as consequences of the properties of these

constituents. Furthermore this is a recursive process, with the constituents themselves often

built from still-smaller pieces: matter is made of molecules; molecules are made of atoms;

atoms made of nuclei and electrons; nuclei are built from nucleons (i.e. protons and neutrons);

nucleons are made of quarks and gluons; and so on.

Subatomic physics is the part of this story starting with nuclei and continuing on to the

smallest constituents known. We call particles ‘elementary’ if they have no substructure so far

as we can tell, and at present the list of such particles contains around 20 entries. The theory of

these particles and their mutual interactions is called the Standard Model and works extremely

well (with a few noteworthy exceptions). But history teaches us that this classification of the

elementary is at best provisional and may be changed in light of later evidence with finer

resolution. These notes summarize the evidence for the present picture, as well as the flaws it

is known to have, at a level appropriate for upper-year physics undergraduates. The reader is

assumed to be familiar with non-relativistic quantum mechanics, electromagnetism and the

rudiments of special relativity.

1 The story so far...

This section contains some preliminary background information needed to tell this story, and

starts by summarizing the first indications that there might be an interesting story to tell.

1.1 Prequel: substructure and atoms

The evidence that many of the properties of macroscopic things are best understood if those

things are regarded as being built of numerous much smaller constituents – atoms – started

to accumulate convincingly in the 19th and early 20th Centuries. Partly this came about as

the rules governing chemical reactions became clearer, with the emergence of a pattern of sys-

tematic properties for the elements, summarized by the periodic table (see Figure 9). Partly

it emerged with the realization that the thermal properties of fluids (and thermodynamics

in general) could be understood in terms of the random motion of their constituent atoms.

It was clinched by the development of quantum mechanics and the ability this brought to

compute the properties of simple atoms from first principles, including an understanding of

the patterns of the periodic table.
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Starting with Newton

In retrospect, the possibility that substructure could be useful was already implicit in the

recursiveness of Newton’s Laws. To see what this means, suppose that a macroscopic object,

O, is made up of a collection of N point-like atoms that mutually interact through forces Fij

(which describe the force acting on particle ‘i’ due to particle ‘j’), with the atoms labelled by

an index i, j = 1, · · · , N . Then Newton’s 2nd law for the motion of each atom is given by

m1 ẍ1 = + F12 + F13 + · · ·+ F1N + Fext 1

m2 ẍ2 = F21 + F23 + · · ·+ F2N + Fext 2

m2 ẍ3 = F31 + F32 + · · ·+ F3N + Fext 1 (1.1)

... =

mN ẍN = FN1 + FN2 + FN3 + · · · + FextN ,

where over-dots denote differentiation with respect to time – i.e. ẋ := dx/dt and ẍ := d2x/dt2

– while Fext i denotes any external forces (e.g. attraction by the Earth’s gravity etc.) acting

on atom number ‘i’.

The laws of motion for the entire macroscopic object must follow as consequences of

eqs. (1.1), and at first sight it seems remarkable that any simple laws should be possible at

all for macroscopic objects if this is so. A wonderful thing happens if all of these equations

are added together, however, since then Newton’s third law (which states that Fij = −Fji

for all i and j) implies that all of the Fij cancel in the sum, leaving

m1 ẍ1 +m2 ẍ2 + · · ·+mN ẍN = Fext 1 + · · ·+ FextN . (1.2)

This takes the same form as did Newton’s law for each atom:

M Ẍ = Fext , (1.3)

with total mass and net external force given by

M :=
N∑
i=1

mi , Fext :=
N∑
i=1

Fext i , (1.4)

provided one defines

X :=
1

M

N∑
i=1

mi xi . (1.5)

This shows that Newton’s law applies in the same way to the entire macroscopic object

provided the acceleration that appears in it is chosen to be the acceleration of the object’s

centre of mass — defined by (1.5).

Furthermore, this shows that Newton’s 2nd law is recursive in the sense that it also applies

equally well to various macroscopic subsets of macroscopic objects. For example suppose the
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Figure 1. A sketch (not to scale) of atoms in a macroscopic object, illustrating the difference between

the atomic position xi and its position, yi = xi −X, relative to the object’s centre of mass, X.

object described above can be regarded as the union of two pieces, denoted A and B, so

O = A ∪ B. (Maybe the macroscopic object considered above was the Earth-Moon system

and A is the Earth while B is the Moon.) Then all sums over i in the above argument can

be broken up into sums separately over A and B:

M =

N∑
i=1

mi =
∑
i∈A

mi +
∑
i∈B

mi =: MA +MB , (1.6)

and similarly

Fext =
N∑
i=1

Fext i =
∑
i∈A

Fext i +
∑
i∈B

Fext i =: FextA + FextB . (1.7)

So if we define

XA :=
1

MA

∑
i∈A

mi xi and XB :=
1

MB

∑
i∈B

mi xi , (1.8)

then

M Ẍ =

N∑
i=1

mi ẍi =
∑
i∈A

mi ẍi +
∑
i∈B

mi xi = MA ẌA +MB ẌB , (1.9)

where the last equality uses (1.8). Repeating the arguments leading to (1.3) separately for

each of objects A and B then implies

MA ẌA = FextA and MB ẌA = FextB , (1.10)

and (1.9) shows that these are consistent with (1.3).
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Taken together, the above arguments show that the relationship between Newton’s law

for the whole system and Newton’s law for its two subsystems is identical to the relationship

derived earlier with Newton’s laws for the N atoms, specialized to the case N = 2. (That is,

it is conceptually as if each of A and B were themselves to be considered to be ‘atoms’.)

This recursive nature of Newton’s laws shows that the laws themselves cannot tell what

the fundamental smallest objects are, and apply equally well at all levels of substructure. If

tomorrow evidence were to emerge that all of our atoms in eq. (1.1) turn out to contain still-

smaller teeny-weeny atoms, each of which themselves satisfy Newtons 2nd law, then nothing

in the above arguments need change at all (provided we assume the position xi to be an

appropriately defined centre-of-mass coordinate).

Of course just because the internal forces cancel when Newton’s 2nd law is summed over

atoms doesn’t mean that internal dynamics has no physical effect. For instance the average

kinetic energy of motion of the constituent atoms relative to their centre of mass is a source

of internal energy, since

Ekin =
N∑
i=1

1

2
mi ẋ

2
i =

1

2
M Ẋ2 +

N∑
i=1

1

2
mi ẏ

2 =:
1

2
M Ẋ2 + Eint , (1.11)

shows that it is an energy that survives even in the absence of motion of the object’s overall

centre of mass. In this expression yi := xi − X and no term linear in ẏi arises due to the

easily proven identity
N∑
i=1

mi yi = 0 , (1.12)

that follows directly from the definition (1.5) of X.

At this point Eint as defined above could equally well describe the energy of an overall

rigid rotation of the macroscopic body, or the kinetic energy associated with altering its shape,

or the random motion of its constituent atoms for an object whose macroscopic orientation

and shape do not change. Indeed the discovery that the properties of this type of random

internal energy reproduce those predicted by thermodynamics for large samples in equilibrium

led to a deeper understanding of the statistical origins of temperature and heat in addition

to providing part of the evidence supporting the existence of atoms.

Having the option to have substructure is not the same as there being compelling evidence

for substructure’s existence. This type of evidence mounted throughout the 19th century as

chemistry became a quantitative science, whose reactions are well-described by the picture of

molecular compounds swapping atoms. Rather than pursuing this story further (apart from

a brief discussion of the Bohr atom, below) the rest of this introduction switches over to the

line of thought that led to atoms themselves having substructure.
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1.1.1 More than just atoms

The first discovery of a particle we now still regard as elementary occurred during the closing

years of the 19th century. Many of these developments arose as unintended consequences of

the discovery of cathode rays that are the result of applying a high voltage to a small amount

of gas inside an otherwise evacuated tube. A very practical tube for producing these rays —

called a Crookes tube — was developed as early as 1875. The presence of the cathode rays

was inferred because they caused the gas in the tube (or any fluorescent material on the glass

wall of the tube) to glow. (This is the phenomenon on which fluorescent lights and televisions

were based until very recently).

Figure 2. A Crookes tube with (bottom panel) and without (top panel) voltage applied, showing the

fluorescense caused by the cathode rays when power is applied. The shadow of an obstacle shaped

like a Maltese cross is visible and shows that the rays travel in straight lines. (Figure source: Wikipedia

https://en.wikipedia.org/wiki/Crookes tube).

We now know what happens with these tubes. The applied high voltage strips electrons

from the gas atoms and the free electrons (i.e. the cathode rays) then are repelled by the

negative cathode and flow towards the positive anode. Similarly, the leftover positive ions (or

‘anode’ rays) drift from the positive anode towards the cathode. The fluorescence is caused

by collisions with these rays exciting gas atoms which emit light as they de-excite.

1.1.2 X rays

Many of the early workers with Crookes tubes (including Crookes himself, apparently) no-

ticed that photographic plates became fogged up if they were near the tube when it was in

use. Roentgen was the first to investigate in detail why this occurred, and by performing

experiments with various objects between the tube and the plates found that images could

be made of the dense parts within otherwise opaque objects. He determined that the plates
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were fogged because they were being exposed to some new rays he called x-rays. By showing

they moved in straight lines even in the presence of magnetic fields he showed these rays were

electrically neutral.

We now know x-rays to be photons that are somewhat more energetic than visible or UV

photons, and are emitted (like the fluorescent light) when excited electrons drop down into a

state very close to the nucleus.

1.1.3 Radioactivity

In 1896 Becquerel, in Paris, ran experiments seeking to determine whether fluorescent mate-

rials could be made to emit x-rays through exposure to sunlight. To this end he took a good

fluorescent compound, wrapped it in dark paper and placed it next to a photographic plate,

intending to expose it to sunlight. Although his plans were thwarted when it was overcast in

Paris that day, he nevertheless developed the plate and unexpectedly found that it had been

exposed.

On further experimenting he determined that the exposure was due to the spontaneous

emission of rays by the fluorescent material itself (rather than due to their fluorescing due to

an applied voltage), since the photographic plates would become fogged regardless of whether

or not the material was exposed to light or not. Furthermore, he found the rays responsible

to be electrically charged since their path could be deflected by applying a magnetic field.

Figure 3. A schematic of how the paths of various radioactive rays respond to magnetic fields. The

magnetic field points perpendicular to the page and is represented by the grid of dots. γ rays do not

bend while α and β rays bend in opposite directions (because the particles involved have opposite-sign

charges). β rays bend more strongly because their charge-to-mass ratio, q/m, is much larger. (Figure

source: http://www.particleadventure.org/radio part.html).

Over time it became clear that there are actually three different types of radioactive rays,

called α, β and γ rays. Each responds differently to a magnetic field, with α rays behaving
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like positively charged particles, β rays behaving like negatively charged particles and γ rays

behaving like electrically neutral particles (and so are not deflected by magnetic fields). We

now know what these ‘rays’ really are:

• α rays are made up of α particles, which are nuclei of 4He — that is, two neutrons and

two protons bound together. (Here the convention is that the left-superscript ‘4’ of 4He

counts the total number of protons and neutrons present in the nucleus.) These types

of Helium nuclei are particularly tightly bound and so very stable, and under certain

circumstances can escape as a group from much larger nuclei. (In Becquerel’s case it

was the Uranium contained in his fluorescent compound that was responsible.)

• β rays consist of very energetic electrons that can be produced within the nucleus,

usually through the decay of a neutron into a proton plus an electron (plus another

particle, called an antineutrino — more about which later) through the reaction1

n→ p+ + e− + νe . (1.13)

• γ rays are very energetic photons that differ from x-rays only by having more energy.

1.1.4 The electron

The nature of the cathode rays themselves was initially confused because of early experiments

that incorrectly indicated that they were not deflected by magnetic fields (and so must be

electrically neutral). (In retrospect these experiments were wrong because they were not able

to get a good enough vacuum in the tube, and as a result ionization of the gas partially

shorted out the voltage being applied to generate the electric field being used to test for

a charge.) The situation was definitively settled in 1897 in experiments performed by J.J.

Thompson, who was able to get a good enough vacuum in his apparatus to show that cathode

rays are bent by a magnetic field, and in a direction that corresponds to being oppositely

charged relative to α particles.

Furthermore, he used a clever combination of electric and magnetic fields to eliminate

experimental unknowns and thereby pin down the charge-to-mass ratio of cathode rays. To

do so Thompson produced cathode rays in the tube and deflected them by applying an electric

field, as shown in Fig. 5.

He assumed the cathode ray was made of particles with mass m and charge q (this sounds

uncontroversial to us, but at the time cathode rays were widely thought to be ‘disturbances

in the aether’), and that they are emitted from the cathode with speed v0. By applying a

1When ± or 2± or 3± appears as a superscript for a particle label it represents the particle’s electric charge

in units of the proton charge, e. Hence p or p+ is the proton and e− is the electron. The superscript is often

omitted for protons, as well as for neutral particles like neutrons (unless making a distinction with another

particle with the same symbol: e.g the particle π0 as opposed to π+ or π−).
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(a) No magnetic field (b) Magnetic field applied

Figure 4. A Crookes tube with a no magnetic field applied (left panel) and with a magnetic field

(right panel), showing how magnetic fields deflect cathode rays and so move the image of the Maltese

cross on the fluorescent screen. (Figure source: Wikipedia https://en.wikipedia.org/wiki/Crookes tube).

voltage between the plates marked P1 and P2 he arranged the particles to pass through a

constant electric field, E, and so to experience an electric force Fe = qE and acceleration

a = qE/m. The beam of particles is therefore deflected through an angle θ which Newton’s

Law gives to be

tan θ =
vy
vx

=
ayt

v0
=

(qE/m)(`/v0)

v0
=
qE`

mv2
0

, (1.14)

where the time spent between the plates is t = `/v0, where ` is the easily measured length of

the plates.

Although θ, E and ` could be measured, in order to infer q/m the problem was to

determine the unknown initial speed, v0. This he did by repeating the experiment with a

magnetic field applied pointing perpendicular to the page, whose strength is adjusted to cancel

the effects of the electric field so that the beam is not deflected at all. In order for this to be

true the magnetic force, Fm = q v×B, must cancel the electric force so their magnitudes are

related by Fe = Fm and so qE = qv0B. Solving then gives

v0 =
E

B
, (1.15)

and so using this in (1.14) allowed Thompson to determine the charge-to-mass ratio, q/m.

The result was found to be much larger than that found for other rays, such as α radiation.

In retrospect this was the discovery of the first particle we still regard as being elementary.

In particular, one sign that the cathode rays were something important was the fact that they

are universal: they always have the same value of q/m regardless of the kind of dilute gas

that is used in the tube. The same is not true of the ‘anode’ rays, which are the positively
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Figure 5. Thompson’s apparatus for identifying the charge-to-mass ratio of cathode rays. High

voltage is applied at the terminals marked + and − causing cathode rays to be emitted from the

cathode marked C. The rays are collimated by passing through slits S1 and S2 to form a beam

whose position can be seen on a fluorescent screen AO. Another voltage is applied between plates

P1 and P2, forming an electric field in between that deflects the beam direction. Three sample beam

trajectories are drawn, with the middle one corresponding to no voltage between P1 and P2 and the

other two (coloured) trajectories corresponding to electric fields in opposite directions. (Figure source:

http://web.calstatela.edu/faculty/kaniol/f2000 lect nuclphys/lect1/thompson electron.htm).

charged particles that are repelled by the anode and move towards the cathode. Anode rays

are produced when Crookes tubes are set up with the voltages reversed, so that the source

electrode at the left of above diagram is positively charged rather than negatively charged.

When this is done the value of q/m found for these rays is much smaller than for cathode

rays and, more importantly, has a value that depends on the precise gas used in the tube.

In retrospect what we now know is that applying a large enough voltage strips electrons

from the atoms of the rarefied gas, after which the negative electrons are repelled by the

cathode (and so are the cathode rays) while the positive ions are repelled by the anode

(and so make up the anode rays). The fact that cathode rays always look the same is now

understood because all atoms consist of electrons orbiting a nucleus, and although different

elements have different nuclei (and so differing numbers of electrons in orbit) they are all built

using the same type of electron.

1.1.5 Detection methods

A separate benefit of these various early experiments was the road they opened up to detecting

the presence of these various types of new particles. After all, radioactivity and x-rays had

always been around but went undetected because they were invisible to our senses. Their

presence was eventually found due to their influence on atoms in other materials, such as the

flourescent gas in a Crookes tube or the light-sensitive atoms in a photographic plate.
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In retrospect detection occurred because collisions of the new particles with atoms in

these materials excited the electrons within the atoms to higher-energy states and this was

detected when these electrons then de-excited back to the ground state (often doing so by

emitting light that was visible). Alternatively, more violent collisions between new particles

and ambient atoms sometimes knocked electrons completely out of their atoms (in which case

the rays were called ‘ionizing radiation’). Such collisions also could be detected by observing

the light emitted when the resulting ion subsequently recaptured another ambient electron,

and cascaded down to its atomic ground state. Alternatively, the knocked-out electrons

themselves can be detected by applying a voltage to the system and measuring the current

caused as the knocked-out electrons drift towards the positive electrode.

These basic principles (measuring the photons and/or electrons produced by atomic ex-

citation and/or ionization due to collisions with matter) remain the main techniques used for

detecting elementary particles even now (though of course the detectors are much improved

in efficiency relative to early days).

1.1.6 The nucleus

Having discovered the electron, and that electrons can be extracted from neutral atoms,

Thompson was led to speculate about what the structure of the atom might be. In the absence

of a better idea (and with the required tools like quantum mechanics not yet developed) he

proposed the ‘plum-pudding’ model of the atom. In this model the atom is imagined to

be a blob of positive charge (of unknown structure) within which electrons were uniformly

distributed like the raisins in a pudding.

To test this model Rutherford performed an experiment in which he bombarded a thin

gold foil with α particles that he obtained from the decay of a radioactive source. The idea

was to watch how the alpha particles were scattered by the electrons and the positive charge

within the atom, and use this to infer how they might be distributed. The apparatus is as

illustrated in Fig. 6.

Figure 6. Schematic illustration of the apparatus with which Rutherford intended to probe the

structure of the atom and test the plum-pudding model. The zinc-sulphide coated screen fluoresces

when hit by α particles and so allows the direction of the scattered beam to be measured. (Figure

source: Boston University http://physics.bu.edu/cc104/chapters10and11.html).
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By this time the electric charge of the electron had been measured (through the Millikan

oil-drop experiment of 1909) and so it was known that the electron had a charge equal in

size to (but opposite in sign from) the charge, q = e, of the Hydrogen ion (what we now

call the Hydrogen nucleus, or proton). The measurement of q/m for each then implied the

electron was 1836 times lighter than a proton, and so that α particles were much heavier

than electrons. As a result an α particle was expected only to scatter through a small angle,

if at all, when encountering an electron. The same would also be true for scattering from

a distributed positive charge distribution (as we see in detail in a later section), leading to

the expectation that a plum-pudding atom would give the result illustrated in the left-hand

panel of Fig. 7.

The experimental results therefore came as something of a surprise: while many alpha

particles did only scatter through small angles some scattered much more strongly, even

recoiling back into the same hemisphere from which they initially came (see the right-hand

panel of Fig. 7). Furthermore, the measured probability of scattering as a function of the angle

of the outgoing α-particle relative to its initial direction was consistent with that expected

for scattering from the Coulomb potential of a point charge (more about this distribution

below). Although Rutherford did not know the charge of a gold atom he thought it was likely

to be roughly half its atomic weight, and so Q ' 100 e. For this charge he could calculate

the point of closest approach to the atom’s central charge and so could put an upper limit on

the size of the charge distribution to be rN <∼ 10−14 m. This was already known to be much

smaller than the radius, rA ∼ 10−10 m, of the gold atom.

(a) Plum-pudding result (b) Nuclear result

Figure 7. Schematic illustration of the difference between what would be found in Rutherford’s

experiment if the plum-pudding model were true (left panel) and what was actually found (indicating

the presence of a very compact source of positive charge – i.e. the nucleus. (Figure source: Boston

University http://physics.bu.edu/cc104/chapters10and11.html).

1.1.7 The Nuclear Atom

The discovery of the nucleus set the stage for the development of atomic physics and quantum

mechanics. Atoms became understood to consist of Z electrons (each with charge −e) orbiting
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a nucleus with charge Z e and mass M where M = Am0 + δ is close to an integer times the

atomic mass unit, m0. Here δ can be negative but small: |δ| � m0 where m0 is roughly the

mass of a proton. (In practice m0 is usually taken to be 1
12 the mass of a Carbon nucleus,

since this is better measured.) The positive integer Z is called the atom’s atomic number or

nuclear charge and the positive integer A is called its atomic mass number or atomic weight.

We now know the nucleus to be a bound state built out of a total of Z protons and

N = A− Z neutrons (both of whose masses are similar to m0), and so the difference δ is to

do with the binding energy that is responsible for holding the protons and neutrons together.

Because protons each carry charge e and neutrons are neutral the nuclear charge is Q = Z e,

and this determines the number of electrons needed to make the total atom neutral. Because

chemical properties depend on the number of these electrons the number Z determines which

element the atom corresponds to.

Although all atoms for any element share the same value of Z, they may differ in the

number of neutrons present in their nucleus (and so differ also in their value for A). These

different isotopes of an element are represented by AX (where X is the symbol for the element

— e.g. He for Helium or W for Tungsten, and the superscript A is the isotope’s atomic

weight). When the value of the nuclear charge is meant to be emphasized explicitly it can

also be put in as a left-subscript,2 as in A
ZX. For example 12C or 12

6C represents the most

common isotope of Carbon whose nucleus contains 6 protons and 6 neutrons, while 14C or
14

6C represents a radioactive isotope of Carbon whose nucleus holds 6 protons but 8 neutrons.

For later purposes it is the success of the nuclear atom in explaining the chemical prop-

erties of elements, and of the frequency of the light emitted or absorbed during atomic tran-

sitions, that is particularly important. It had long been known that atoms only appeared to

absorb or emit light with specific frequencies, with the pattern of allowed frequencies being

characteristic of the element whose atom does the absorbing or emitting (see Fig. 8). The

pattern for the frequency of light emitted by Hydrogen atoms in particular was character-

ized by a set of phenomenologically successful formulae whose physical origins were poorly

understood.

The first steps at putting these formulae on a sound footing started with the conjecture

by Neils Bohr that spectral measurements could be understood if the electrons in an atom

were envisaged only to have specific allowed energies, labelled by a positive integer (now

called the principal quantum number) n = 1, 2, · · · . Bohr proposed that the frequencies of

light emitted from Hydrogen would correspond to an electron made a ‘quantum jump’ (or

transition) between two of the allowed energy levels, with the light’s frequency, ω, satisfying

Eupper − Elower = ~ω , (1.16)

2This notation leaves the right superscript free to indicate the ionic charge, should the nucleus not be

surrounded by a full complement of electrons.
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Figure 8. Top panel: the spectrum of light from a continuous source spread out using a prism.

Middle panel: the spectrum of light emitted by a hot gas, showing the characteristic frequencies that

are emitted by atomic transitions. Bottom panel: the absorption spectrum seen when light from a

source emitting a continuous spectrum is viewed after being partially absorbed by passing through the

same gas. Notice that emission and absorption occur at the same frequencies. (Figure source: Wikipedia

Commons https://commons.wikimedia.org/wiki/File:Spectral lines en.png).

where Eupper and Elower are the higher and lower electron energies. In particular the magni-

tudes of the allowed frequencies agreed with those observed by spectroscopists for Hydrogen

if the quantized electron states had energies

En ' −
α2

2n2
mec

2 , (1.17)

whereme is the electron mass and α = e2/(4π~c) ' 1/137 is the electromagnetic fine-structure

constant and n is the electron’s principal quantum number. The basic stability of atoms is

then guaranteed by energy conservation since the minimum-energy ground state (the state

with n = 1) has no lower-energy states into which it can decay.

A huge early success of quantum mechanics in its early days was its ability to derive

eq. (1.17) for the allowed energies for electrons in a Hydrogen atom. Quantum mechanics

obtains these energies as conditions for the existence of normalizable solutions to the time-

independent Schrödinger equation

− ~2

2me
∇2ψ − α

r
ψ = E ψ , (1.18)

where ψ(x) = ψ(r, θ, ϕ) is the wave function of an electronic moving within the Coulomb

potential of the central nucleus. This equation also predicts the electron to be labelled by

three integer quantum numbers: n, `, `z. The ‘principal’ quantum number, n = 1, 2, 3, · · · , is

the positive integer anticipated by Bohr, while the ‘angular-momentum’ quantum number, `,
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takes values ` = 0, 1, 2, · · · , n−1 for every n and the ‘magnetic’ quantum number take values

`z = −`,−`+ 1, · · · , `− 1, ` for every `.

Keeping in mind that an electron has spin 1
2 and so has two spin states, these assignments

mean that there are a total of

2
∑̀
`z=−`

1 = 2(2`+ 1) (1.19)

states that share any specific value for the pair (n, `), and so there are

n−1∑
`=0

2(2`+ 1) = 2n2 (1.20)

states sharing a specific value of n (and so also sharing a specific energy, En).

Figure 9. The periodic table, that groups elements into columns, all of whose members share sim-

ilar chemical properties. The positive integer in each box is Z, the number of protons (or elec-

trons) that are present in the neutral atoms of that corresponding element. (Figure source: Wikipedia

https://en.wikipedia.org/wiki/Periodic table).

The counting of levels sharing the same energy then goes a long way towards understand-

ing the properties of the periodic table of the elements (shown in Fig. 9). The starting point

is the observation that it is the properties of the least well-bound electron in an atom that

control an element’s chemical properties, since these are the electrons that are the least well

bound to their own nucleus and so are most likely to be partly attracted to another nearby

nucleus (thereby forming the interatomic bonds that drive the formation of molecules). To see

how this helps understand the periodic table, neglect for illustrative purposes the repulsive

Coulomb interactions among the electrons and focus only on the interactions of each electron

with the nucleus. In this case each electron is described by a state satisfying (1.18), and so

also has the binding energy given by (1.17).
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Now comes the main point. If it is true that no two electrons can ever share the same

state (a proposal, justified below, called the Pauli Exclusion Principle), then the lowest energy

atomic configuration available for an atom containing Z electrons must fill the lowest energy

levels available, starting with the ground state (with n = 1) and then moving up to the n = 2

state and so on until all Z electrons are placed. Eq. (1.20) predicts that only two can sit in

the ground state (with n = 1), while 8 can sit in the n = 2 state once these are full, and 18

can have n = 3 and so on.

These resemble (with some caveats) the numbers of elements found in the top several rows

of the periodic table. Only atoms with Z = 1 (Hydrogen) or Z = 2 (Helium) can have all

electrons in the n = 1 ground state, and this corresponds to the periodic table’s top row. Then

the next 8 elements can have their outermost electron sit in an n = 2 state, corresponding to

the table’s second row. The outermost electron can be in an n = 3 state for the next 18 states

and so on. This last number is not the right number for the table’s third row but it is for

its fourth. These discrepancies are understood in detail once the approximation of dropping

inter-electron Coulomb repulsion is dropped. These interactions are more important for the

lower rows of the periodic table rather than for the upper rows because as n gets larger it

gets ever easier for repulsion to compete with the binding energy of the outermost electron

1.1.8 Bosons vs fermions

But what justifies the Pauli exclusion principle? Why shouldn’t all electrons just sit all

together in the ground state? The main reason for this goes back to whether electrons are

bosons or fermions. But what are bosons and fermions?

The main point is that all elementary particles are identical. That means that any

probability involving more than one particle, such as (for example) the joint probability,

P (x1,x2) = |Ψ(x1,x2)|2, to find the two particles to be located at the two position x1 and x2

must be symmetric: P (x1,x2) = P (x2,x1) under any pairwise interchange of particles. This

means in turn that the two-particle wavefunction must satisfy

Ψ(x1,x2) = ±Ψ(x2,x1) . (1.21)

Identical particles that satisfy (1.21) with upper (+) sign are called bosons while those that

satisfy (1.21) with the lower sign (−) are called fermions. Both types of particles exist in Na-

ture. It happens that all particles with integer spin (0, 1, 2, · · · ) — such as photons, gravitons,

Helium nuclei and the Higgs boson — are bosons while those with half-integer spin (1
2 ,

3
2 , · · · )

— such as electrons, protons and neutrons — are fermions. (This connection between statis-

tics and spin is not just an experimental fact; it is also a mathematical consequence of merging

relativity and quantum mechanics, called the spin-statistics theorem.)

We can now see why no two fermions can ever be in the same quantum state. Sup-

pose to this end that two identical non-interacting particles are independent of one another

but interact with a common potential energy V (x) (such as the gravitational field of the
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Earth). In quantum mechanics the wave-function, Ψ(x1,x2, t), for these particles satisfies the

Schrödinger equation

i
∂Ψ

∂t
= − 1

2m

(
∇2

1 +∇2
2

)
Ψ +

(
V (x1) + V (x2)

)
Ψ . (1.22)

Because each term in this equation involves only x1 or x2 (and not both at once) it is always

satisfied by the solution

Ψ(x1,x1, t) = ψ(x1, t) ψ̃(x2, t) , (1.23)

where ψ(x) and ψ̃(x) are any two solutions to the single-particle Schrödinger equation

i
∂ψ

∂t
= − 1

2m
∇2ψ + V (x)ψ . (1.24)

A product solution like (1.23) is what one would expect if the two particles were statistically

independent inasmuch as the joint probability distribution for finding them at a particular

pair of positions also factorizes:

P (x1,x2, t) = |Ψ(x1,x2, t)|2 = |ψ(x1, t)|2|ψ̃(x2, t)|2 = P (x1, t)P̃ (x2, t) , (1.25)

as should statistically independent ensembles.

But condition (1.21) forbids choosing Ψ(x1,x1, t) = ψ(x1, t) ψ̃(x2, t), and instead requires

this to become at best

Ψ±(x1,x2, t) =
1√
2

[
ψ(x1, t)ψ̃(x2, t)± ψ(x2, t)ψ̃(x1, t)

]
, (1.26)

where the upper (lower) sign applies for bosons (fermions). The two particles can never be

in the same state because this last expression clearly shows that Ψ−(x1,x2, t) vanishes if we

ever try to choose ψ = ψ̃.

1.1.9 The proton and neutron

Besides discovering the nucleus, Rutherford also pointed the way towards many experiments

that followed since much would be learned about the structure of nuclei and their constituents

by colliding them with other particles at high energies and studying what comes out. In the

early days the particle beams used to probe the structure of atoms were α-particles coming

from radioactive decays. Included amongst the discoveries arrived at in this way was the

discovery of the particles we now know to be the constituents of atomic nuclei: protons and

neutrons.

Protons were discovered to be nuclear constituents in experiments performed, again by

Rutherford, in 1917 (but reported in 1919). In these Rutherford studied the inelastic3 (and

first ever man-made) nuclear reaction

α+ 14
7N→ 17

8O + p , (1.27)

3A reaction is inelastic if the initial and final kinetic energies are not equal, so some internal energy is either

absorbed or released.
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by bombarding air with α particles. He determined that after the bombardment the air con-

tained traces of Hydrogen that had not been previously present, and (rightly) concluded that

he had knocked a Hydrogen nucleus out of one of the atomic nuclei. (It was the accumulation

of traces of Helium outside of radioactive materials that similarly led to the conclusion that

α particles were Helium nuclei.) The emerging proton was later seen more directly when the

reaction took place within a cloud chamber, which is an early detector that allowed the direct

measurement of the track of a quickly moving charged particle.

Since this discovery showed that nuclei could emit protons and β decays showed that

nuclei could emit electrons it was natural to guess that nuclei were somehow built from

protons and electrons. And because protons and electrons were known to carry equal but

opposite electric charges, and protons were much more massive than electrons, the proper

nuclear charge, Z, and mass number, A, could be achieved if nuclei could somehow be built

from A = Z+N protons plus N electrons, since this would ensure an atomic charge of Z and

an atomic mass number of A.

Several things undermined this proposal in the end. First, nobody had a good explanation

of the forces that would be required to bind protons and electrons into nuclei in this way. But

this was not too daunting before the discovery of quantum mechanics because nobody then

could understand how electrostatic attraction between electrons and protons could explain

the orbits of electrons in an atom either. The discovery of quantum mechanics in the 1920s

then resolved the problem of understanding how electrons move within atoms, but contrary

to expectations it did not also in itself resolve the riddle of nuclear structure.

Quantum mechanics specifically undermined the idea that electrons and protons could

bind within a nucleus in several ways. First, because both electrons and protons are fermions

this model predicts that nuclei should satisfy Bose statistics whenever N = A − Z is even,

and should satisfy Fermi statistics whenever N is odd. In 1929 this ran into trouble once the

vibrational spectrum of the Nitrogen molecule was measured. The 14N nucleus has charge

Z = 7 and mass A = 14 and so was expected to consist of 14 protons plus 7 electrons and

therefore be a fermion. Yet observations instead showed that the statistical weights for the

energy levels of the Nitrogen molecule required the wave-function to be symmetric under

interchange of the Nitrogen nuclei: that is these nuclei behave as bosons. (More generally,

observations show that nuclei are fermions whenever A is odd and are bosons whenever A is

even.) Furthermore, it was also realized that the uncertainty principle requires the energy

of an electron localized within something so small as a nucleus to be much higher than the

energy associated with the electrons seen to emerge from nuclei in β decays.

Exercise 1.1: Use position-momentum uncertainty relations, ∆x∆p ≥ ~/2, to

estimate the lower limit to an electron’s momentum if it is localized within a

nucleus of size 1 fm = 10−15 m. Given the relativistic energy-momentum relation,

E2 = p2c2 + m2c4, and electron mass (mc2 = 511 keV) what is the electron’s
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kinetic energy (Ekin = E − mc2) corresponding to this momentum? How does

this compare with the maximum electron energy (about 17 keV) seen in tritium

β decay?

The ingredients required to properly understand the nucleus were finally in hand once

the neutron was discovered in 1932. The discovery was just missed by Walther Bothe and

Herbert Becker who found in 1931 that α particles bombarding Boron or Lithium produced

some sort of radiation that was not bent by electric and magnetic fields. They therefore

assumed these rays were γ rays, but this was made to seem doubtful because of the discovery

by Irene Joliot-Curie and Frederic Joliot that these rays when impinging on paraffin (or other

things containing Hydrogen) caused the production of very energetic protons. In 1932 James

Chadwick, again by probing nuclei with α particles through the reaction [exercise 1]

α+ 9
4Be→ 12

6O + n , (1.28)

showed that the new rays were electrically neutral particles whose mass was similar to that

of a proton. Unlike γ rays, because of their mass neutrons carry enough momentum to knock

a Hydrogen nucleus out of a sample when colliding with one, which explained the earlier

observations with paraffin.

The discovery of the neutron allowed a number of things to be understood. Besides giving

a better picture of the nucleus (more about which later), it opened the door to understanding

β decay to be the result of neutrons within the nucleus decaying into protons and electrons

(plus, it turned out, another undetected particle, the neutrino about which nothing was known

at that time).

Neutrons also provided a new probe with which to bombard other nuclei, and they are

particularly useful for this purpose (compared with protons or α particles) because their elec-

trical neutrality means they are not repelled by the target nucleus’ electric charge. Enrico

Fermi found in 1934 that stable elements could be induced to become radioactive by bom-

barding them with neutrons, and by 1938 Otto Hahn, Lise Meitner and Fritz Strassmann

discovered nuclear fission when they found that bombardment by neutrons could also split

heavy nuclei into much much smaller pieces than happens through ordinary radioactivity.

1.2 Units and scales

For future purposes it is worth recording the units used throughout the rest of the notes.

1.2.1 Electron-Volts

Historically, the prominent role played by cathode rays made the electron-Volt a natural unit

of energy:
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An electron-Volt (or eV for short) is defined as the energy acquired by an electron

falling through a voltage difference of one Volt, which implies 1 eV = 1.602176565×
10−19 J.

The usual metric conventions apply for multiples of this unit: 1 meV = 10−3 eV, 1 keV =

103 eV, 1 MeV = 106 eV, 1 GeV = 109 eV, 1 TeV = 1012 eV, and so on.

Electron volts continue to be used as natural units, but no longer because of cathode

rays. Electron volts prove to be useful units for nuclear and particle physics because the rest

mass of a proton (or a neutron) is, in energy units, 0.938 GeV (or 0.940 GeV). Because most

matter is made of protons, neutrons and electrons, and because most of their mass comes

from the rest mass of the protons and neutrons in their nuclei, this means that if you know the

mass of an object in GeV then you also know how many nucleons it contains. For instance,

knowing that there is 1.782661845(39)× 10−25 kg per GeV/c2 allows us to convert the mass

of the Sun to

M� = 1.9885(2)× 1030 kg

(
1.782661845(39)× 10−25 kg

GeV/c2

)−1

' 1.1155× 1055 GeV

c2
, (1.29)

and so see that the Sun contains roughly 1055 nucleons.

1.2.2 Fundamental units

Another convenient choice is to use units so that the main fundamental constants of nature

are set to unity: i.e. choose units of length, time and temperature so that all three of the

(reduced) Planck constant, speed of light and Boltzmann constant satisfy ~ = c = kB = 1.

If this is done then it is no longer necessary to keep track of factors of these constants in

expressions, which helps declutter formulae and makes it easier to see which variables are the

important ones.

Once these units are used then we can measure any physical quantity in terms of a unit

of length, say. (We could equally express everything in terms of a unit of time, or in terms of

a unit of energy.) That is, if we say a time interval is measured in meters: ∆t = 3 m, what

we mean is that the time corresponds to how long it takes light to travel 3m, so there is an

implicit unwritten factor of c = 1. The result in seconds can be found from ∆t = 3 m/c =

(3 m)/(3.0 × 108 m/s) = 10−8 s. The required power of c (or ~ or kB) can be found using

dimensional analysis. These units only make sense because everybody agrees on the values

of c, ~ and kB. The same argument allows mass to be written in units of energy where what

is really meant by m = 27 J is m = (27 J)/c2 = (27 J)/(3.0× 108 m/s)2 = 3.0× 10−15 kg.

Similarly the universal constant ~ = 1.1×10−34 J-s allows energy to be converted to units

of inverse seconds (or for time to be measured in units of inverse Joules). That is, we can

arrange that ~ = 1 (i.e. use natural units) if we measure energy in units of s−1 = 1.1× 10−34
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J. If someone tells us in natural units that E = 80 s−1 then dimensional analysis tells us that

there is an implicit, unwritten factor of ~ = 1 and so to get the energy in Joules we write

E = 80 s−1 × ~ = (80 s−1)(1.1× 10−34 J s) = 8.8× 10−33 J.

Because ~ has dimensions of (energy) × (time) it follows that ~c = 3.3 × 10−26 J-m

has dimensions (energy) × (distance). This allows us to measure energy in inverse metres

(or length in inverse Joules). For instance, the appropriate power of ~c = 1 that allows

a statement like E = 42 m−1 to make dimensional sense is E = (42 m−1)~c and so E =

(42 m−1)(3.3× 10−26 J m) ' 1.4× 10−24 J.

Finally, we set kB = 1.4× 10−23 J/K to unity by agreeing to measure energy in degrees

K or (more commonly) by measuring temperature in units of energy. In particular the choice

made with fundamental units is to define the Joule as a unit of temperature so that 1 degree

K equals 1.3807 × 10−23 J, since this ensures that kB = 1. To convert temperature in J to

temperature in K we just divide by kB: e.g. T = 280 J in fundamental units really means

the temperature in K is given by T = (280 J)/kB = (280 J)/(1.4× 10−23 J/K) = 2× 1025 K.

Table 1. A selection of scales known to arise in nature

Measure in eV Physical systems with these dimensions

10−32 eV Hubble scale (inverse size/age of the universe as a whole)

10−23 eV parsec (inverse distance to the nearest stars)

10−15 eV light-second (inverse size of the Sun)

10−7 eV inverse metre (everyday objects)

meV energy levels of electrons shared by atoms in materials

eV energy levels of outermost atomic levels

(e.g. 1st Hydrogen excited state: 3.4 eV )

keV energy levels of deeper atomic electrons for heavier elements

(e.g. Hydrogen-like ground state with atomic no. Z: 13.6 Z2 eV )

MeV nuclear energy levels (1 - tens of MeV)

electron rest mass (mec
2 ' 0.5 MeV)

GeV nucleon rest mass (mpc
2 ' mnc

2 ' 0.94 GeV)

TeV highest accelerator energies (LHC energy: 14 TeV)

1010 GeV energies of the most energetic cosmic rays at Earth

Mpc
2 ' 1.2× 1019 GeV Planck mass: Mp = (~c/GN)1/2

1.2.3 Hierarchies of scale

It is particularly useful to combine the above choices and so both adopt fundamental units

and express all remaining quantities in dimensions that are a power of energy, with energy

– 21 –



measured in electron-Volts. This is very useful because the world around us is built from

atoms and nuclei and so the scale of many phenomena are set by the size of the underlying

physical properties like atomic or nuclear energy levels or particle rest masses. But these

latter quantities have simple values expressed in terms of eV, so knowledge of a temperature

or a distance in eV often also sheds light on the kind of physics (atomic, nuclear or other)

involved (see Table 1).

For these purposes it is more useful to have ~ and kB expressed using eV than with Joules.

The corresponding present best numbers (and the value of c, for completeness) are

~ = 1.054571726(47)× 10−34 J s = 6.58211928(15)× 10−22 MeV s , (1.30)

kB = 1.3806488(13)× 10−23 J / K = 8.6173324(78)× 10−5 eV / K , (1.31)

and

c = 2.99792458× 108 m/s , (1.32)

so

~c = 1.973269718(44)× 10−7 eV m = 197.3269718(44) MeV fm , (1.33)

where 1 femto-metre (or 1 Fermi or 1 fm) = 10−15 m turns out to be close to the radius of a

nucleus (which in turn is about 10−5 the radius of an atom). Roughly speaking these imply

the following convenient rule-of-thumb conversions:

1 fm−1 ∼ 200 MeV ∼ (7× 10−24 s)−1 , (1.34)

and

1K ∼ 9× 10−5 eV . (1.35)

For convenience the Appendix provides several tables that convert between standard units

for various quantities and their corresponding expressions in eV. When using these units it is

useful to orient oneself by ordering several commonly occurring scales in physics as expressed

in eV, as done in Table 1.

1.2.4 Cross-section units

Another possibly new unit used in these notes is the unit for scattering cross section (usually

represented by the symbol σ). As is described in more detail in §2.3.1, a cross section is a

useful measure of the likelihood of a reaction occurring when two different groups of particles

are collided with one another. It has units of area, and can be loosely thought of as the area

presented to a beam of particles by a target.

The default units for cross section would therefore seem to be m2 or perhaps cm2, but

these are not so useful when considering targets the size of nuclei which are typically of order
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1 fm – or 10−15 m– in radius. For this reason the standard conventional unit for cross section

in nuclear and particle physics is the barn (or b) defined as

1 b = 10−24 cm2 = 10−28 m2 = (10 fm)2 . (1.36)

The usual metric prefixes apply, so 1 mb (or millibarn) is 10−27 cm2, 1 µb (or microbarn) is

10−30 cm2, 1 nb (or nanobarn) is 10−33 cm2, 1 pb (or picobarn) is 10−36 cm2 and 1 fb (or

femtobarn) is 10−39 cm2, and so on.

1.3 Lies, Damn Lies, and Measurement Errors

In reality any measurement has errors, and so any inference of physical properties (like par-

ticle masses, or energy levels, or decay rates) is uncertain inasmuch as repeated ‘identical’

measurements can return different values for the same quantity. This subsection provides a

cartoon of some aspects of how these errors can be modelled probabilistically.4

Such uncertainties essentially make the result, x, of any particular measurement a random

variable, with a characteristic probability distribution, p(x), defined so that the probability

that a measurement gives a result lying in a small interval x and x+ dx is given by

P [x ∈ (x, x+ dx)] = p(x) dx . (1.37)

If −∞ < x < ∞ defines the range of all possible mutually exclusive outcomes of such a

measurement, then the non-negative function p(x) satisfies the normalization condition

P [x ∈ (−∞,∞)] =

∫ ∞
−∞

dx p(x) = 1 . (1.38)

Given such a random variable one can define expectation values, 〈 f(x) 〉, for functions,

f(x), as the sum over x of f(x) weighted by the probability density p(x):

〈 f(x) 〉 :=

∫ ∞
−∞

dx f(x) p(x) . (1.39)

Two special cases of this are the distribution’s mean

µ := M(x) := 〈x 〉 :=

∫ ∞
−∞

dx x p(x) . (1.40)

and variance

σ2 := V(x) :=
〈
(x− µ)2

〉
=
〈
x2
〉
− µ2 =

∫ ∞
−∞

dx (x− µ)2 p(x) . (1.41)

4Quantum mechanics itself is intrinsically probabilistic and implies that repeated incompatible measure-

ments – like alternating position and momentum measurements, for example – do not give precisely the same

results on each iteration, and this happens even for ideal measurements. But that is not the worry here; the

complaint is instead about the myriad of small uncontrolled influences – i.e. ‘errors’ – that reflect our imperfect

understanding of the measurement process and whose influence can cause results to vary even for repeated

classical measurements.
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As defined, σ2 is positive and its square-root, σ, is called the distribution’s standard deviation.

σ is a measure of the range of x values that are likely to be returned by repeated measurements.

Exercise 1.2: A random variable defined on the interval 0 ≤ x < ∞ has an

exponential probability distribution p(x) = Ae−x/a for positive constants A and

a. Compute the value of A required to ensure that
∫∞

0 dx p(x) = 1. Compute the

mean, µ, and standard deviation, σ, for this distribution.

Exercise 1.3: A random variable defined on the interval 0 ≤ x < ∞ has a

probability distribution

p(x) =
1

Γ(a)b a
xa−1 e−x/b (Gamma distribution) (1.42)

for positive constants a and b. [Here Γ(a + 1) = aΓ(a) with Γ(1) = 1 is Euler’s

Gamma function.] Verify that
∫∞

0 dx p(x) = 1. Show, for this distribution, that

the mean is µ = ab and the variance is σ2 = ab2.

Error propagation

Sometimes one wishes to quantify how an error in one variable causes errors in other variables

that are derived in terms of the first one. For example, for relativistic particles energy and

mass are related to one another by E =
√

p2 +m2 (using units for which c = 1), and one

might wonder how much an uncertainty in E is caused by an error in the measurement of m.

Consider therefore a secondary quantity, y = f(x), that is defined in terms of a random

variable with known probability density p(x). The mean and variance of y can be found using

µy = M(y) = 〈 y 〉 = 〈 f(x) 〉 =

∫ ∞
−∞

dx f(x) p(x) , (1.43)

and

V(y) =
〈

(y − µy)2
〉

=

∫ ∞
−∞

dx
[
f(x)− µy

]2
p(x) . (1.44)

A notion of the uncertainty in y is given by its standard deviation, Σ, where Σ2 := V(y).

There is a relatively simple estimate for the sizes of 〈 y 〉 and Σ in the event that p(x) is

sharply peaked around the mean, µ, (and the function f(x) is not). In this case the above

two integrals receive most of their support near x = µ and it becomes a good approximation

to Taylor expand f(x) around x = µ,

f(x) ' f(µ) + (x− µ) f ′(µ) +
1

2
(x− µ)2f ′′(µ) + · · · , (1.45)

within the integrand, leading to the expression

〈 y 〉 ' f(µ) + f ′(µ)

∫ ∞
−∞

dx (x− µ) p(x) +
1

2
f ′′(µ)

∫ ∞
−∞

dx (x− µ)2 p(x) + · · ·

= f(µ) +
σ2

2
f ′′(µ) + · · · . (1.46)
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This shows that the leading approximation is 〈 y 〉 = 〈 f(x) 〉 ' f(µ), and the error of dropping

subdominant terms is of order 1
2 σ

2 f ′′(µ), which is small when f(x) is relatively slowly varying

– compared to p(x) – near x = µ. Using 〈 y 〉 ' f(µ) and (1.45) in the variance for y then

gives the leading part

Σ2 =
〈
(y − 〈 y 〉)2

〉
'
∫ ∞
−∞

dx
[
f(x)− f(µ)

]2
p(x) ' [f ′(µ)]2

∫ ∞
−∞

dx (x− µ)2 p(x) + · · ·

' σ2[f ′(µ)]2 + · · · , (1.47)

and so an estimate of the error in y generated by the error in x is given by

Σ ' σ f ′(µ) . (1.48)

This is particularly simple for power-laws, f(x) = Cxn for constants C and n, since it implies

that the fractional errors are then related by Σ/µy ' σf ′(µ)/f(µ) = nσ/µ.

Gaussian probability (Normal distribution)

Gaussian statistics are defined by the probability distribution

p(x) =
1√

2πσ2
e−(x−µ)2/(2σ2) , (1.49)

also called a Normal distribution, N (µ, σ2). This is a particularly important type of proba-

bility distribution because (as seen below) combining a large number of independent random

processes often leads to a normal distribution even if the original processes do not themselves

obey Gaussian statistics. Although proving this assertion goes beyond the scope of this sec-

tion, it is the underlying reason Gaussian statistics are chosen in the rest of the notes to be

the probability density relevant to discussions of measurement error.

Exercise 1.4: Prove that the parameter µ appearing in (1.49) is the distribution’s

mean — i.e. show that 〈x 〉 = µ. Similarly prove that σ2 is its variance, inasmuch

as 〈(x− µ)2〉 = 〈x2〉 − µ2 = σ2.

In principle, p(x) can be used to extract the probability that a measurement of x returns

a result in any given range of values. For instance
∫ b
a dx p(x) = P (a, b) is the probability of

finding x in the interval a ≤ x ≤ b. Some useful probability statements that follow for the

normal distribution are:

P [µ− σ ≤ x ≤ µ+ σ] ' 0.6826895

P [µ− 2σ ≤ x ≤ µ+ 2σ] ' 0.9544997

P [µ− 3σ ≤ x ≤ µ+ 3σ] ' 0.9973002 (1.50)

P [µ− 4σ ≤ x ≤ µ+ 4σ] ' 0.9999367

P [µ− 5σ ≤ x ≤ µ+ 5σ] ' 0.9999994
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which give the probabilities of finding x to lie within 1, 2, 3, 4 and 5 standard deviations of

the mean. A related (and similar) set of useful probabilities given by the Normal distribution

are

P [µ− 1.645σ ≤ x ≤ µ+ 1.645σ] ' 0.90

P [µ− 1.960σ ≤ x ≤ µ+ 1.960σ] ' 0.95

P [µ− 2.576σ ≤ x ≤ µ+ 2.576σ] ' 0.99 (1.51)

P [µ− 3.290σ ≤ x ≤ µ+ 3.290σ] ' 0.999

which give the range around the mean whose probability equals 90%, 95%, 99% and 99.9%.

Exercise 1.5: Suppose that the probability for a runner to complete a marathon

in time t is given by a Normal distribution, N (µ, σ2) (where in principle µ and σ

take different values for each runner, and for the purposes of argument we allow

t to run from −∞ to ∞ even though in reality we know t must be positive).

Suppose group A consists of runners, for all of whom µA = 270 minutes and

σA = 15 minutes, while all the runners from group B have µB = 270 minutes

with σB = 20 minutes (so both groups are equally fast on average but group B is

more variable). Suppose 1000 members of group A and 1000 members of group

B try out for the Olympic team by running a marathon for which only those who

finish in less than 240 minutes are eligible to qualify. How many members from

each of group A and group B should be expected to be eligible to qualify for the

Olympic team? How many of each group are eligible if they are instead required

to complete the marathon in 225 minutes?

Sampling and statistics

If errors are described by a Normal distribution, the value µ is the ‘real’ value the experimenter

is trying to measure and σ is the size of the error forced on him/her by the measurement

technique used. The goal is to design the experiment to minimize σ and thereby return

measured values that are as close as possible to µ.

In practice experimenters usually do not know in advance what p(x) is — or, for a Normal

distribution, what µ and σ are. In principle this information can be extracted from the results

of repeated measurements because P (a, b) is related to (though not quite the same as) the

fraction of times a sequence of identical measurements should find a result to lie between a

and b. Strictly speaking, however, the fraction of repeated measurements that lie in (a, b)

only precisely agrees with the probability P (a, b) in the limit that the experiment is repeated

an infinite number of times.

But any real experiment can only be done a finite number of times, producing a series of

measurements xi, with i = 1, · · · , N . Given such a sample of measurements the experimenter
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wants to infer p(x) — or, for a Normal distribution the values of µ and σ. How can this

be done? And how does the quality of this inference depend on things like the number of

measurements, N , included in the sample? The idea is to choose an appropriate combination

of the random variables, xi, that has the property that it converges to the quantity of interest

in the limit of infinite sample size, N →∞. Two examples of statistics5 that can be estimators

in this sense are the sample mean

x̄ :=
1

N

N∑
i=1

xi , (1.52)

and the sample variance

s2 :=
1

N − 1

N∑
i=1

(xi − x̄)2 . (1.53)

These respectively prove to be estimators for the mean, µ, and variance, σ2, of the underlying

probability distribution.6

Any function of a random variable is itself a random variable, and this is true in particular

for both x̄ and s2. That is, one can imagine drawing a sequence of N samples multiple times

and finding that the mean and variance of these samples vary each time because the N -tuple

of results, {x1, · · · , xN}, also varies in each repetition. One can ask what the probability

distribution is for x̄ and s2, given that each of the variables xi is drawn from an ensemble

with probability density p(x).

There is a general answer to this question for the statistic x̄, and it is such an important

result that it has a name: the central-limit theorem. This states that as N → ∞ the proba-

bility distribution for the variable x̄ converges to a Normal distribution (1.49) with mean and

variance given by:

M(x̄) =
1

N

N∑
i=1

µi = µ and V(x̄) =
1

N2

N∑
i=1

σ2
i =

σ2

N
. (1.54)

What is remarkable about this statement is that it holds for any p(x) provided this has finite

mean and variance. In particular, for large N the mean of x̄ converges to µ, with a spread

around this mean of size√
V(x̄)

M(x̄)
=

√∑
i σ

2
i∑

i µi
=

σ√
N µ

=
1√
N

(√
V(x)

M(x)

)
. (1.55)

For samples of size N the distribution of x̄ about its mean µ is smaller by a factor of 1/
√
N

than is the spread about µ for each xi separately.

5A ‘statistic’ is defined as a function of the random variables, xi, that does not depend on any new

parameters.
6Choosing the denominator in s2 to be N − 1 rather than N here turns out to be required to ensure that

s2 is an ‘unbiased’ estimator for the probability distribution’s variance, σ.
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When p(x) itself is a Normal distribution then the probability distribution for s2 is also

known. The variable

z =
(N − 1)s2

σ2
then satisfies a chi-squared distribution χ2

N−1 , (1.56)

for N − 1 degrees of freedom, where the χ2
n probability distribution function is given by

p(χ2;n) =
1

2n/2Γ(n/2)

(
χ2
)(n/2)−1

e−χ
2/2 for 0 ≤ χ2 <∞ . (1.57)

Here Γ(x) is Euler’s gamma function, defined by Γ(x + 1) = Γ(x) and Γ(1) = 1, and so also

satisfies Γ(1/2) =
√
π.

Furthermore if the xi are statistically independent and Normally distributed then both

x̄ and s2 are statistically independent. And if the xi are independent and x̄ and s2 are

independent then the xi must be distributed Normally.

Exercise 1.6: Suppose a variable −∞ < x < ∞ is described by a probability

distribution function p(x). Suppose a sequence of N independent measurements

are made that determine whether x is positive or not. The probability that x is

positive in any one measurement is p :=
∫∞

0 p(x) dx. Show that the probability of

obtaining precisely n results with x > 0 out of N independent trials is given by

the binomial distribution:

P (n;N, p) =
N !

n!(N − n)!
pn(1− p)N−n , (1.58)

which satisfies
∑N

n=0 P (n,N, p) = 1 for all 0 ≤ p ≤ 1. Show that the expected

number of outcomes with x > 0 and the variance in this number are given by

〈n 〉 :=
N∑
n=0

nP (n;N, p) = Np and
〈
n2
〉
− 〈n 〉2 = Np(1− p) . (1.59)

This shows how the fraction 〈n 〉/N of outcomes with x > 0 in a sample of

measurements is an estimator for the probability p.

Exercise 1.7: Show that in the limit N → ∞ and p → 0 (with the product

pN = µ held fixed) the binomial distribution of the previous problem becomes

the Poisson distribution

P (n;N, p)→ P (n, µ) :=
1

n!
µne−µ , (1.60)

for which 〈n 〉 =
〈
n2
〉
− 〈n 〉2 = µ. Useful for showing this is Stirling’s formula

for the factorial of a large number:

N ! '
√

2πN NNe−N (for N � 1) . (1.61)

What is the variance of the distribution P (n, µ)?
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Exercise 1.8: Plot the Binomial distribution of Exercise 6 as a histogram for

N = 50 and p = 0.4. On the same plot graph the Normal distribution with the

same variance and mean and thereby see the Central Limit Theorem in action. A

criterion for how big N must be in order to approximate the Binomial distribution

with the Normal distribution is to ask for the 3-σ range of the Normal distribution,

(µ− 3σ, µ+ 3σ), to lie within the range (0, N), which requires

N > 9

(
1− p

p

)
and N > 9

(
p

1− p

)
. (1.62)

This (and the previous problem) shows in particular how convergence to a normal

distribution can be slow when p is very close to 0 or to 1.

Exercise 1.9: A particular reaction is predicted by a theory (the Standard Model,

say) to occur N times in an accelerator experiment during a given period of time.

But because the actual reactions are random events if the same experiment is

repeated (each time for the same period of time) the number of events actually

observed each time varies. Suppose the probability of actually observing n events

in any one iteration of the experiment is given by the Poisson distribution P (n, µ)

of Exercise 1.7 with mean µ = N . With this distribution what is the probability

of finding n to be larger than N by three standard deviations? What is the

probability of finding n to be larger than N by five standard deviations?

Statistical and Systematic errors

With the above cartoon of statistics in our pocket, more can be said about what it means

when an experimentalist says that a physical quantity, say E, is measured and the result is

E = E0 ±∆E . (1.63)

If this is all that is said, usually what is being given is the mean and the standard deviation:

E0 = M(E) and (∆E)2 = V(E) , (1.64)

of a sequence of measurements (or sample) {Ei} where i = 1, · · · , N , assumed to be randomly

distributed with some probability distribution p(E). Often (but not always) the distribution

for this sample is assumed to be a normal distribution, in which case the variance is distributed

by a χ2 distribution.

Sometimes results are instead quoted as ‘confidence intervals’ (C.L.), with a statement

like

E0 −∆E < E < E0 + ∆E with 95% C.L. (1.65)
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Translating this into a standard deviation is possible if the distribution p(E) is known, with

the conversion factors appropriate to a Normal distribution given in (1.50) and (1.51). For

instance, inspection of (1.51) shows that 95% confidence level means that the quoted value

for ∆E is related to standard deviation, σ, by ∆E ' 1.960σ.

Of course the nature of uncertainty is that it is uncertain, and not all errors are reliably

well-described as probabilistic. For instance sometimes there is simply a ‘mistake’ when

analyzing an experiment, such as when there is a real physical effect that is present in reality

but missing in the experiment’s interpretation. This can happen both because of an honest-to-

God mistake, or because the effect is not yet properly understood. In this case the error might

not be equally biased in all directions, making it poorly described by a random sampling of a

Gaussian (Normal) distribution. Such errors are often called ‘systematic’ errors (as opposed to

‘statistical’ errors for which probabilistic models are usually more suitable). When systematic

errors are known to be present, careful experimenters sometimes quote errors of both types,

as in: E = E0 ±∆E1 (sys.)±∆E2 (stat.).

What keeps things interesting is that one cannot always be sure at any given time that

one understands all possible sources of error.

1.4 Relativistic kinematics

Table 1 shows that many energies of interest for this course are larger than the electron and

proton rest energies, so for these it is important to use relativistic kinematics. This section

is a refresher on those aspects of Special Relativity relevant to what follows.

1.4.1 Rotational invariance

From a practitioner’s perspective Special Relativity is the statement that the laws of physics

(i.e. of nature) are invariant under a symmetry, so before diving in it is worth first reviewing

how things work for a similar symmetry: the invariance of nature’s laws under rotation of an

observer’s reference frame.

Laws in physics (such as Newton’s 2nd Law or the definition of kinetic energy)

F = ma or Ekin =
m

2
v · v , (1.66)

always come to us in the form vector = vector or scalar = scalar, but never have the form

vector = scalar, say. There is a good reason for this, which is worth articulating explicitly.

In practice we usually use equations like F = ma as a collection of component equations

Fx = max , Fy = may , Fz = maz , (1.67)

where, for example, components like Fi = ei·F (for i = x, y, z) denote the dot product between

F and a basis of orthogonal unit vectors, ei, pointing along each of the three rectangular

coordinate axes (and ditto for ai and ei · a). We usually take for granted that the laws are
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equally true regardless of the orientation in space used for the three basis vectors, ei. We can

do so, but only because nature’s laws don’t have unusual forms like vector = scalar.

What is important is that both sides of equations like (1.66) transform in the same way

under rotations, since this is what ensures component equations like (1.67) are the same7 for

any orthogonal basis vectors, ei. For instance, suppose we have two triads of orthonormal

basis vectors, ei and e′i, related to one another by rotation. Because rotation is linear (i.e.

the rotation of zero is zero and the rotation of a and the rotation of b sum to the rotation of

a + b) rotated basis vectors must be related by matrix multiplication e′x
e′y
e′z

 = R

 ex

ey

ez

 =

Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz


 ex

ey

ez

 , (1.68)

where Rij are a collection of 9 real coefficients. We can write this relation more compactly in

terms of the components of R using the notation

e′i =
∑

j=x,y,z

Rij ej = Rij ej , (1.69)

where the last equality introduces the Einstein summation convention, which suppresses the

summation symbols by stating that any repeated subscript is implicitly meant to be summed

over its entire range of values.

Given the matrix R the transformation of the components of any vector can be read off

from the definitions:

F ′i = F · e′i =
∑

j=x,y,z

Rij F · ej =
∑

j=x,y,z

Rij Fj = Rij Fj , (1.70)

and similarly a′i = Rij aj . In matrix form these becomeF ′x
F ′y
F ′z

 = R

Fx

Fy

Fz

 and

 a′x
a′y
a′z

 = R

 ax

ay

az

 , (1.71)

with the same matrix R, so the components of Newton’s 2nd Law therefore becomeF ′x
F ′y
F ′z

−
ma′x
ma′y
ma′z

 = R

Fx

Fy

Fz

−R

max

may

maz

 = R


Fx

Fy

Fz

−
max

may

maz


 . (1.72)

This shows (because R is invertible) why the components of Newton’s Law automatically

apply in all rotated reference frames given that they apply in any one particular reference

7That is: if Fi = mai in one frame this automatically ensures F ′i = ma′i for any rotated reference frame.
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frame. What is important in the above argument is that every term in the equation transforms

linearly, and each term transforms under rotations in exactly the same way, such as in (1.72).

It is also useful to be able to explicitly compute the coefficients Rij for a specific rotation,

and it is useful to know how many independent components of R there are. (In particular,

does the matrix R above contain more than just the freedom to perform rotations?) For

these purposes what is important is that all 9 of the components of R are not independent

because equivalent observers also agree on the magnitude of any vector (and not just agree

when a vector is zero, which is all something like (1.72) requires).

So we ask R not to change the orthonormality of the basis vectors, which is compactly

expressed by e′i · e′j = ei · ej = δij , with δij denoting the Kronecker symbol whose defining

properties are δij = 0 if i 6= j and δij = 1 if i = j. To see what this implies for Rij take the

dot product of (1.69) with itself, which shows

δik = e′i · e′k =
∑

j=x,y,z

∑
l=x,y,z

RijRkl ej · el =
∑

j=x,y,z

∑
l=x,y,z

RijRkl δjl =
∑

j=x,y,z

RijRkj , (1.73)

or equivalently, with the Einstein summation convention,

δik = e′i · e′k = RijRkl ej · el = RijRkl δjl = RijRkj . (1.74)

Now the term on the far right-hand side is RijRkj = Rij(R
T )jk = (RRT )ik where RT denotes

the transpose of the matrix R and the last equality uses the definition of matrix multiplication.

This shows that the matrix R is not an arbitrary one because it must satisfy the condition

RRT = I where I is the unit matrix (whose components are δik); that is to say R must be

an orthogonal matrix.8

Since (RRT )T = RRT is a 3 by 3 symmetric matrix, it has 6 independent components

and so the condition RRT = I imposes 6 conditions among the 9 components of the matrix

R. Using these 6 conditions to eliminate 6 of the components of R suggests R should contain

a total of 3 free parameters, which turns out to be true. An arbitrary rotation matrix R

turns out to be expressible in terms of products of a basic set of three independent rotations:

a (clockwise) rotation about each of the three axes:

Rx(θx) =

 1 0 0

0 cx sx

0 −sx cx

 , Ry(θy) =

 cy 0 sy

0 1 0

−sy 0 cy

 , Rz(θz) =

 cz sz 0

−sz cz 0

0 0 1

 , (1.75)

which for brevity writes ci = cos θi and si = sin θi for i = x, y, z and the three angles, θi,

are the three independent parameters in terms of which any 3-dimensional rotation can be

described. It is straightforward to show that all three of these satisfy9 Ri(−θi) = [Ri(θi)]
T =

[Ri(θi)]
−1 for any θi, and so any matrix built from products of them must satisfy the defining

property RRT = I for arbitrary θi.

8Because it involves the set of 3-by-3 orthogonal matrices this group of rotations is often called O(3).
9Unusually, there is no Einstein summation convention used here.
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1.4.2 Lorentz transformations

That familiar story about rotations sets up the following story about relativity. Special

relativity states that the laws of nature are invariant under changes of reference frame in

space and time amongst observers that move at constant velocity relative to one another, in

such a way that all observers measure the same value for the speed of light. This condition

can be framed in a very similar way in space-time as is done above for rotations in space.

To this end we use a basis of four unit vectors in space-time, three space unit vectors ei

as before plus one vector pointing in the time direction, et. Rather than labelling space and

time separately we collectively write the coordinates as

{xµ} = {x0, x1, x2, x3} = {c t, x, y, z} (1.76)

using a Greek index µ = 0, 1, 2, 3 and the convention that µ = 0 corresponds to a time direction

rather than a spatial one. (Very soon we adopt units with c = 1 in which case x0 = t.) We

wish to set up vectors in space-time (or 4-vectors), whose components — denoted V µ — are

obtained by taking dot products with a basis of vectors in space-time.

The dot product used in obtaining these components is the same as before in the spatial

directions, but is modified in the time direction. This modification is chosen to ensure that

the requirement that observers agree on the speed of light corresponds to the requirement

they agree on the lengths of all 4-vectors in spacetime. To see what this means consider now

a spherical light front that is emitted at some spatial position at a given time, (t,x). After a

small time interval, dt, the position of the light front is given by the sphere of spatial radius

dx · dx = c2dt2, so the set of points swept out by this light front (called the future light-cone

of the emission event) satisfies

0 = ds2 := −c2dt2 + dx · dx =


cdt

dx

dy

dz


T 
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



c dt

dx

dy

dz

 (1.77)

=
3∑

µ=0

3∑
ν=0

dxµ ηµν dxν = ηµν dxµ dxν .

The quantity ds2 defined here is called the invariant space-time interval, and special relativity

requires all inertial observers must agree on its size.

The second line of (1.77) defines the components, ηµν , of the Minkowski metric for space-

time. The very last equality uses the Einstein summation convention for the indices µ and ν

to suppress the summation signs. Notice ds2 need not be positive: in particular ds2 = 0 for

the surface of an expanding light wave, and intervals for which ds2 = 0 are therefore called

light-like or null. Intervals with ds2 > 0 are called space-like because they include directions
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separated only in space and not in time, while those with ds2 < 0 are called time-like because

they include purely temporal intervals.

Special Relativity boils down to the requirement that inertial observers must be related by

transformations that preserve the invariant interval, so its implications can be found in much

the same way that rotations in the earlier section must preserve the magnitudes of vectors.

Provided the laws of physics are expressed in terms of vectors for these transformations they

will be the same for all such observers. To find what these transformations are we write a

general linear transformation as yµ =
∑

ν Λµν x
ν = Λµν x

ν , or in matrix form
y0

y1

y2

y3

 =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3



x0

x1

x2

x3

 . (1.78)

Requiring the interval ds2 to be invariant for all 4-vectors requires the transformations Λµν

must satisfy (switching permanently now to the Einstein summation convention)

ηµν = Λλµ ηλρ Λρν = (ΛTηΛ)µν . (1.79)

Transformations that satisfy (1.79) are called Lorentz transformations, and because ΛTηΛ

is a symmetric 4 by 4 matrix they impose 10 conditions on the 16 components of Λ, leaving a

6-parameter family of symmetries. But three of these parameters are old friends, since when

Λ is restricted to act only in the spatial directions,

Λ =


1 0 0 0

0 R1
1 R

1
2 R

1
3

0 R2
1 R

2
2 R

2
3

0 R3
1 R

3
2 R

3
3

 , (1.80)

condition (1.79) reduces to (1.74) and shows that the 3 by 3 submatrix R must be a spatial

rotation.

The three new transformations are those that mix spatial directions with the time direc-

tion, and it is straightforward to verify that three independent solutions that satisfy (1.79)

are given by the boosts

Λx(βx) =


chx shx 0 0

shx chx 0 0

0 0 1 0

0 0 0 1

 , Λy(βy) =


chy 0 shy 0

0 1 0 0

shy 0 chy 0

0 0 0 1

 , Λz(βz) =


chz 0 0 shz

0 1 0 0

0 0 1 0

shz 0 0 chz

 ,

(1.81)

where chi := coshβi and shi := sinhβi for i = x, y, z.
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What do these transformations mean physically? To determine this consider the action

of Λx on the space-time coordinates: yµ = Λµνx
ν , where we drop the x subscript on Λ. Also

writing βx = β, this corresponds to the four component equations

y0 = x0 coshβ + x1 sinhβ , y1 = x0 sinhβ + x1 coshβ , y2 = x2 and y3 = x3 , (1.82)

or c t′ = c t coshβ + x sinhβ and x′ = c t sinhβ + x coshβ if y0 = c t′, x0 = c t, y1 = x′ and

x1 = x etc. These describe the coordinates of two observers that move relative to one another,

as may be seen by asking how the curve y1 = y2 = y3 = 0 (i.e. the origin of the spatial yµ

coordinates) looks in the xµ coordinates. In particular, setting y1 = x′ = 0 implies x and t

are related by

x = −c t sinhβ

coshβ
= −c t tanhβ (1.83)

which shows the two observers move with constant relative speed, v, given by

v

c
= tanhβ , (1.84)

and so (using cosh2 β − sinh2 β = 1, which implies tanh2 β = 1− 1/ cosh2 β)

coshβ =
1√

1− v2/c2
=: γ and sinhβ =

v/c√
1− v2/c2

=
γ v

c
, (1.85)

where the first combination defines the quantity γ(v). Eliminating β in favour of v in (1.82)

reveals it to be the standard Lorentz transformation giving the time dilaton and the length

contraction associated with motion along the x-axis:

t′ = γ(t+ xv/c2) , x′ = γ(v t+ x) , y′ = y and z′ = z . (1.86)

The transformations Λy and Λz similarly describe relative motion along the y and z axes.

Boosts in an arbitrary direction can be built as appropriate products of Λx, Λy and Λz.

The quantity β related to v by (1.84) is called the rapidity of the relative motion and

is useful because it transforms very simply when two successive boosts are performed in the

same direction. That is, because matrix multiplication shows Λx(β1)Λx(β2) = Λx(β1 + β2)

the relativistic law for the addition of velocities is simply the addition of the two rapidities:

β12 = β1 +β2. In terms of the speed, v, use of multiple-angle formulae for the hyperbolic trig

functions shows the addition law for v is the familiar one

v12

c
= tanhβ12 =

sinh(β1 + β2)

cosh(β1 + β2)
=

coshβ2 sinhβ1 + coshβ1 sinhβ2

coshβ1 coshβ2 + sinhβ1 sinhβ2

=
tanhβ1 + tanhβ2

1 + tanhβ1 tanhβ2
=

(v1 + v2)/c

1 + v1v2/c2
. (1.87)

In particular v1 < c and v2 < c imply v12 < c and v12 = c if either v1 = c or v2 = c.

Exercise 1.10: Calculate the relation between the coordinates {t′, x′, y′, z′} and

{t, x, y, z} obtained by first performing a boost in the x direction with speed v

followed by a boost in the y direction with speed u.
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1.4.3 Kinematic 4-vectors

Given this formulation of Special Relativity in terms of Lorentz transformations we see that

the principle of Special Relativity amounts to the requirement that the laws of physics be

Lorentz invariant. This will be automatic if these laws are expressed exclusively in terms of

things that transform in the same way, that is laws of the form: 4-vector = 4-vector. Since

laws of physics are cast in terms of position, velocity, momentum and acceleration, we next

seek to identify the 4-vectors containing each of these.

Consider for these purposes a particle moving along some trajectory r(t) in space, not

necessarily with constant velocity. Such a particle sweeps out a world-line in spacetime, and

points along this world-line can be described by a one-parameter family of position 4-vectors

xµ(t) =


c t

x(t)

y(t)

z(t)

 which has tangent
dxµ

dt
=


c

dx/dt

dy/dt

dz/dt

 =

(
c

dx/dt

)
=

(
c

v

)
,

(1.88)

using the coordinates, t, x, y, z, of a specific observer. Although this has spatial components

that agree with the particle’s velocity, the problem with this definition is that it is not a

4-vector. That is, although any small displacement in spacetime, dxµ, always transforms as a

4-vector, dxµ′ = Λµν dxν , the time differential, dt, is not a Lorentz-invariant measure of time

and so dxµ/dt does not transform as a 4-vector.

Much better instead to use arc-length measured along the particle world-line as the

parameter, with distance defined using the invariant interval, s(t), measured along the particle

world-line. For any particle moving slower than the speed of light the infinitesimal interval

measured along the world-line,

ds2 = −c2dt2 + dx(t) · dx(t) = −c2dt2
(

1− 1

c2

dx

dt
· dx

dt

)
= −c2dt2

(
1− v · v

c2

)
, (1.89)

is both Lorentz-invariant and always negative. So we define the infinitesimal proper time

interval, dτ , along the particle world-line by:

dτ2 := −ds2

c2
:= dt2 − dx · dx

c2
= dt2

(
1− v2

c2

)
, (1.90)

where v2 := v · v as usual. This gets its name because it agrees with the time interval, dt,

measured by a clock that is instantaneously in the rest frame of a particle; (i.e. one for which

dx = 0 in the interval dt). Notice that (1.90) implies such a clock evolves in the way required

by time-dilation relative to an observer at rest because a proper-time interval, dτ , is related

to the interval, dt, of the observer at rest by10

dt

dτ
=

1√
1− v2/c2

= γ . (1.91)

10We choose the positive root here so that dτ is positive whenever dt is.
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This suggests defining the velocity 4-vector, or 4-velocity, uµ, by

uµ :=
dxµ

dτ
=

dxµ

dt

dt

dτ
=

1√
1− v2/c2

(
c

v

)
=

(
γ c

γ v

)
, (1.92)

and this indeed transforms like a 4-vector, uµ → Λµν u
ν , because of the transformation rule

dxµ → Λµν dxν and the invariance of the interval dτ . Notice that this definition implies a

particle’s 4-velocity always has the following invariant norm:

ηµν u
µuν = −(u0)2 + u · u = −γ2

(
c2 − v · v

)
= −c2 . (1.93)

The particle’s 4-momentum is defined as being proportional to the 4-velocity:

pµ := muµ =

(
γ mc

γ mv

)
=

(
E/c

p

)
, (1.94)

where we use the standard definitions for the relativistic momentum and kinetic energy:

E = γ mc2 and p = γ mv . (1.95)

Eq. (1.93) and the definition pµ = muµ implies E and p are related to one another by

ηµνp
µpν = −(E/c)2 + p2 = −(mc)2 , (1.96)

which implies the standard energy-momentum relation

E =
√

p2c2 + (mc2)2 , (1.97)

that for |pc| � mc2 approximately reproduces the nonrelativistic expression E ' mc2 +

(p2/2m) + O[(pc)4/(mc2)3]. This allows m to be interpreted as the particle’s rest-mass.

(From here on we use the words rest-mass and mass interchangeably.) It also can be rewritten

in the following two useful results giving γ and v in terms of E and p:

γ =
E

mc2
and

v

c
=

p c

E
. (1.98)

Exercise 1.11: As an example of the utility of knowing that quantities like pµ

and uµ transform as 4-vectors under Lorentz transformations, prove that

E = −uµ pµ = −ηµν uµ pν , (1.99)

is Lorentz-invariant and gives the energy of a particle with 4-momentum pµ as

seen by an observer with 4-velocity uµ. (Hint: use that E is the same in all

frames plus the information that uµ = {c, 0, 0, 0} in the rest-frame of the observer

for which uµ is the 4-velocity.

– 37 –



In the absence of an external force Einstein’s generalization of Newton’s 2nd Law states

that pµ is strictly conserved, and this encodes both conservation of kinetic energy and con-

servation of momentum for a free particle.

Although inertial observers must move relative to one another with constant velocity,

nothing in special relativity stops you from considering how these observers describe the

trajectory of particles that accelerate. For instance, consider a trajectory describing a particle

that accelerates along the x axis from rest at x = 0, until its speed reaches v = vmax at which

point it then decelerates back to rest a distance ` away and then returns to x = 0, again at

rest according to the specific rule

xµ(t) =
{
ct, x(t), y(t), z(t)

}
=

{
ct, ` sin2

(
vmaxt

`

)
, 0, 0

}
. (1.100)

Here the inertial observer’s time, t, is used to label points on the curve, with 0 ≤ t ≤ T =

π`/vmax describing the entire round trip. The turning point at x = ` is achieved at t = 1
2 T ,

and because the instantaneous particle speed seen by the inertial observer is

v(t) =
dx

dt
= vmax sin

(
2vmaxt

`

)
, (1.101)

the maximum speed on the outbound leg takes place at t = (π`/4vmax) = 1
4 T .

The proper time measured by a clock riding with the particle along such a trajectory is

dτ2 = −ds2

c2
= −ηµν

dxµ(t)dxν(t)

c2
=

[
1− v2

c2
(t)

]
dt2 , (1.102)

and so the instantaneous 4-velocity and 4-acceleration are

uµ =
dxµ

dτ
=

dt

dτ

dxµ

dt
=

1√
1− v2 (t) /c2

{
c, v (t) , 0, 0

}
and aµ :=

d2xµ

dτ2
=

dt

dτ

duµ

dt
=

dv/dt

[1− v2(t)/c2]2

{
v(t)/c, 1, 0, 0

}
, (1.103)

with
dv

dt
=

2v2
max

`
cos

(
2vmaxt

`

)
. (1.104)

In relativistic Newtonian mechanics the force responsible for this motion is described by

a 4-vector, Fµ = maµ, and all inertial observers must agree on the proper acceleration given

by the Lorentz-invariant definition

a2 := ηµν a
µaν = aµa

µ =
1

[1− v2(t)/c2]3

(
dv

dt

)2

. (1.105)
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Exercise 1.12: Compute the proper time, 4-velocity, 4-momentum and 4-acceleration

for the following trajectories: (a) constant proper acceleration along the z axis,

xµ(u) = {` sinh(αu), 0, 0, ` cosh(αu)}, and (b) uniform circular motion in the x-y

plane, xµ(u) = {ct, d cos(ωt), d sin(ωt), 0}. What is the physical interpretation of

the parameters `, α, d and ω used in these trajectories?

Exercise 1.13: Suppose a family of light rays having frequency ω is sent parallel

to the x-y plane at an angle θ to the x axis, and so has 4-momentum kµ =

{~ω?, (~ω?/c) cos θ, (~ω?/c) sin θ, 0}. Show that this satisfies kµk
µ = 0, as it must

if it is tangent to the trajectory of a light ray. Use the relation E = ~ω and

E = −ηµν uµkν to evaluate the frequency of the photons that is measured by

observers moving along the accelerated trajectories in the previous exercise.

2 Calculational tools I

Since much of what we know about subnuclear physics comes from studying collisions and

decays, in this section we collect some useful tools for analyzing these types of processes.

Measurement of a decay or scattering rate carries two kinds of information: information

following from conservation laws and information that goes beyond simple conservation. Con-

sequences of conservation laws have the advantage of being very robust: their validity does

not depend on the details of the forces involved so long as these conserve the things of interest

(e.g. energy, momentum, angular momentum, electric charge etc). It is the information that

does not follow simply from conservation that is most informative about the nature of the

interactions that are responsible for a decay or a scattering event.

2.1 Conserved quantities

There are a number of quantities that are known whose conservation, or approximate con-

servation, plays an important role in constraining scattering and decay processes. All experi-

ments performed to date are consistent with the following quantities being exactly conserved:

• Energy - Momentum, pµ, is believed to be exactly conserved, and the conservation of

the four components of 4-momentum contain what would be (for Newtonian physics)

the separate conservation laws of energy and momentum.

• Angular Momentum is believed to be exactly conserved, and so each particle is assigned

a value for its total angular momentum, J , with J = 0, 1
2 , 1,

3
2 , · · · , and contains 2J + 1

states corresponding to the allowed values of the 3rd component of angular momentum,

J3 = −J,−J+1, · · · , J−1, J . The rules of combining angular momenta then restrict (for

example) the spins and orbital angular momenta that can appear among the daughter

products in terms of the spin of a decaying particle.
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• Electric charge, Q, is also believed to be exactly conserved, and all particles ever seen

experimentally have an integer multiple of the proton charge, e, though there is nothing

in principle11 that requires this (and so would forbid having fractional charges).

• Baryon number, B, appears to be conserved in practice, though the best theories at

present do not require this conservation to be exact. Protons and neutrons (plus other

particles, called baryons) each carry baryon number B = +1 and their anti-particles (the

antiproton and antineutron) carry baryon number B = −1. Other particles mentioned

to this point, such as electrons, have B = 0.

• Lepton number, L appears to be conserved in practice, but need not be exactly conserved

in principle. Of the particles discussed to this point, electrons, muons and neutrinos all

carry lepton number L = +1, and their antiparticles carry lepton number L = −1. All

others (in particular protons and neutrons) carry L = 0.

There are also a number of quantities that appear to be approximately conserved, in the

sense that they are conserved by almost all of the interactions in nature, and so are for most

purposes useful conservation laws. But they are broken by small detectable amounts in a few

specific situations. The most important of these for the purposes of the first half of these

notes are

• Electron number, Le, is defined so that the electron, e−, and electron neutrino, νe, carry

Le = +1 while their antiparticles, e+ and νe, carry Le = −1. All other particles carry

Le = 0.

• Muon number, Lµ, is defined in a similar way as electron number, but for muons. Muons

and muon neutrinos, µ− and νµ, carry Lµ = +1 while their antiparticles, µ+ and νµ,

carry Lµ = −1. All other particles carry Lµ = 0.

• Isospin, T and T3, are two approximately conserved labels that particles carry that are

very much like the labels J and J3 for angular momentum, with T = 0, 1
2 , 1,

3
2 , · · · and

T3 = −T,−T + 1, · · · , T − 1, T . Unlike for angular momentum the states corresponding

to different labels for T3 are different particles (rather than just different ‘spin’ states

of the same particle). We shall see how the approximate conservation of T and T3

expresses how nuclear forces seem to treat several types of particles (notably protons

and neutrons) in almost exactly the same way.

11More precisely: within the framework of the Standard Model combined with General Relativity the con-

dition that there be no gauge anomalies (including mixed gravitational anomalies) actually does determine all

ratios of electric charge. But if one broadens the framework to include more, hitherto undetected, particles the

same need not remain true. Here an ‘anomaly’ is when the classical conservation of a charge fails to survive

quantization (which can sometimes happen), and a ‘gauge anomaly’ is when such an anomaly occurs for a

charge (like electric charge) that is the source of a long-range force. Gauge anomalies are believed not to arise

in sensible theories since they violate either the unitarity of quantum mechanics or Lorentz-invariance.
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As discussed in more detail below, before the discovery of neutrino oscillations in the 1990s

both Le and Lµ were also believed to be effectively12 exact conservation laws. Table 2 gives

a table of these quantum numbers for the most commonly occurring particles:

Table 2. Charge assignments for a selection of common particles

Particle (symbol) rest mass J Q/e B L Le Lµ T T3

photon (γ) 0 1 0 0 0 0 0 0 0

proton (p) 938 MeV 1
2 +1 +1 0 0 0 1

2 +1
2

antiproton (p) 938 MeV 1
2 −1 −1 0 0 0 1

2 −1
2

neutron (n) 940 MeV 1
2 0 +1 0 0 0 1

2 −1
2

antineutron (n) 940 MeV 1
2 0 −1 0 0 0 1

2 +1
2

electron (e−) 0.511 MeV 1
2 −1 0 +1 +1 0 0 0

positron (e+) 0.511 MeV 1
2 +1 0 −1 −1 0 0 0

muon (µ−) 106 MeV 1
2 −1 0 +1 0 +1 0 0

antimuon (µ+) 106 MeV 1
2 +1 0 −1 0 −1 0 0

electron neutrino (νe) < 2 eVb,d 1
2 0 0 +1 +1 0 0 0

electron antineutrinoa (νe) < 2 eVb,d 1
2 0 0 −1 −1 0 0 0

muon neutrino (νµ) < 10 MeVc,d 1
2 0 0 +1 0 +1 0 0

muon antineutrinoa (νµ) < 10 MeVc,d 1
2 0 0 −1 0 −1 0 0

charged pion (π±) 140 MeV 0 ±1 0 0 0 0 1 ±1

neutral pion (π0) 135 MeV 0 0 0 0 0 0 1 0

a It is not yet known experimentally whether neutrinos are different from antineutrinos.

b Measured in tritium beta decay for νe and inferred for νe using CPT.

c Measured in π± decay.

d Cosmology gives model-dependent bounds on the sum of neutrino masses: <∼ 1 eV. Neutrino-oscillation

experiments indicate differences between neutrino masses are nonzero and much smaller than an eV.

For all scattering and decay process conservation of these quantities means that their

sum over all particles in the initial state must agree with the sum over all particles in the

final state.

2.2 Decays: general properties

A decay process is a reaction in which a single particle transmutes itself into two or more

other particles, such as the reaction

P → D1 +D2 +D3 + · · ·+DN , (2.1)

12That is, it was thought that they were not exact in principle, but that in practice all non-conserving

reactions were so small as to effectively never be observable.
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in which the ‘parent’ particle, P , decays into N ‘daughter’ particles, D1 through DN . Such a

decay is called an N -body decay because of the number of decay daughters present. (Normally

energy and momentum conservation require N ≥ 2.) A great many examples of decays of

this type are observed since almost all known particles found in nature eventually decay, so

it is the exception rather than the rule for a particle to be stable.

Sometimes the decay in question can be understood because the parent is built from

smaller things and the decay represents either the decay of a constituent or the re-arrangement

or escape of some of the constituents. Most nuclear decays (the source of ordinary radioac-

tivity) turn out to be of this type:

• α Decays: correspond to the escape of a small He4 nucleus (i.e. an α-particle) from

a nucleus, and so always lower both Z and N by two (and so lower A by four): e.g.
238

92U→ 234
90Th+α is an example of a 2-body α-decay that is the start of the natural

Uranium radioactive chain.

• β Decays: usually13 correspond to the spontaneous decay of a neutron within the nu-

cleus, whose occurrence is no surprise given that free neutrons are also seen to decay.

The decay reaction for a free neutron is n → p+ + e− + νe, (where p or p+ denotes a

proton and e− denotes an electron while νe is a particle called an ‘electron anti-neutrino’

— more about this later). Since the decay takes a neutron to a proton it always in-

creases Z by one and leaves A unchanged, such as for the decay of radioactive Carbon:
14

6C→ 14
7N+e−+ νe (which is the one used for carbon-14 radioactive dating). As we see

later, in these decays the outgoing electron (and neutrino) are created at the instant of

the decay and were not previously rattling around within the nucleus.

• γ Decays: correspond to the emission of a photon as the nuclear constituents fall from

an excited energy level to one at lower energies (like the ground state), and so do not

change Z or A at all. These are the nuclear analogs of the emission of light by atomic

transitions wherein an excited electron jumps down to a lower energy level. The main

difference is that nuclear γ transitions emit considerably more energy due to the larger

energy differences between nuclear energy levels compared with atomic energy levels.

Neutron decay is an example where the bound state involved in a decay is not a nucleus

but is instead something else. We shall see that neutrons (and more broadly all of the observed

particles that take part in the nuclear force — i.e. protons, neutrons and many other unstable

particles such as ‘pions’, π± or π0) are built from still-smaller constituents called quarks, and

some decays happen because of a decay of an underlying quark. For instance protons and

neutrons are built from two types of quarks, u and d, with a proton being a 3-quark bound

13But not always: for some nuclei β decays can emit positrons — antiparticles to electrons — or sometimes

they instead absorb an atomic electron into the nucleus.
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state uud while a neutron is a udd state, and neutron decay arises because of the decay of an

underlying quark: d→ u+ e− + νe.

Exercise 2.1: Use conservation of electric charge, baryon number and lepton

number, and the information that p is built as a uud bound state while n is a udd

bound state, to infer the charge, baryon number and lepton number of the u and

d quarks. What do these assignments mean for the charge, baryon number and

lepton number assignments of the π± where π+ is a ud combination and π− is a

ud combination?

Not all decays involve the rearrangements or decays of constituents, however, since par-

ticles that appear to be elementary are also known to decay. So far as we know the decay

of a d quark is an example of this, as are other examples like the decay µ− → e− + νe + νµ

(where µ− — called a ‘muon’ — is an elementary particle that is 200 times heavier than

an electron, and νµ is a neutrino — called the ‘muon neutrino’ — that differs from the νe).

It is the appearance of two types of neutrino here that make this reaction consistent with

conservation of Le and Lµ, since Le(µ
−) = 0 and Le(e

−) +Le(νe) +Le(νµ) = +1− 1 + 0 = 0

while Lµ(µ−) = +1 and Lµ(e−) + Lµ(νe) + Lµ(νµ) = 0 + 0 + 1 = +1.

Neutron decays are also instructive for another reason. If neutrons are unstable the

miracle is that any nuclei are stable at all, but (as we shall see) many are. Absolutely stable

nuclei are stable because the increased Coulomb energy associated with the new proton’s

electric charge can make the prospective daughter nucleus heavier than the putative parent

(and so the decay is forbidden by energy conservation). This observation teaches us (at least)

two things: first, it shows that even for unstable nuclei the actual nuclear β-decay rate is not

simply related to the decay rate of a free neutron. Nuclear decay rates range over many orders

of magnitude in size precisely because their computation often requires detailed knowledge of

the structure of the parent and daughter nucleus.

The stability of some nuclei — in spite of free-neutron decay — also shows that con-

servation laws can explain why some particles never decay. Energy conservation requires all

daughter particles to be lighter than their parent and so the lightest particle carrying a con-

served charge must be stable. So far as is known conservation laws are the reason why all

of the stable elementary particles do not decay. For instance, electrons are absolutely stable

because electric charge is conserved and there is no lighter particle carrying charge into which

the electron can decay. Similarly, protons would be absolutely stable if baryon number, B, is

conserved, but because we do not know whether B is exactly conserved there are doubts as

to whether or not the proton is exactly stable. (Even if unstable its decay lifetime is known

to be much longer than the age of the universe, so any failure in B conservation must be

extremely small.)
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2.2.1 Decay Kinematics

Conservation laws strongly restrict the properties of decays, and sometimes control whether

or not a decay takes place at all. For instance for neutron decay, n → p + e− + νe, electric

charge balances because a neutron is electrically neutral and so the initial total charge is

Qi = Q(n) = 0. For the decay products the proton and electron have opposite charge and

the antineutrino is neutral, so Qf = Q(p) +Q(e−) +Q(νe) = +e− e+ 0 = 0. Baryon number

also balances because Bi = Bf = +1 with Bi = B(n) carried by the decaying neutron while

Bf = B(p)+B(e−)+B(νe) = +1+0+0 is carried purely by the final proton. Lepton number

is balanced because the initial neutron has Li = L(n) = 0 while the final lepton number is

Lf = L(p) + L(e−) + L(νe) = 0 + 1 − 1 = 0. Lepton number would not be conserved if the

antineutrino had instead been a neutrino, or if it carried L = 0.

Energy and momentum conservation similarly relate the initial and final states, with

EP =

N∑
a=1

Ea and pP =

N∑
a=1

pa , (2.2)

where Ea and pa are the energy and momentum of particle Da. Because each particle sat-

isfies E =
√

p2 +m2, where m is that particle’s rest mass, and because the energy and the

momentum of the initial particle can be chosen when setting up the experiment, there are a

total of 3N unknowns (the components of the N final momenta) one would wish to deter-

mine. These unknowns are subject to the 4 constraints given in (2.2), and so in general we

expect there to be 3N − 4 free components of momentum that are not determined purely

from energy-momentum conservation.

This counting is particularly simple in the rest-frame of the decaying particle, for which

pP = 0 and so EP = mP . Consider first a two-body decay, P → D1 + D2, for which N = 2

and so only 3N − 4 = 2 of the 6 components of p1 and p2 are undetermined by energy-

momentum conservation. In this case because pP = 0 momentum conservation requires the

final momenta must sum to zero:

p1 + p2 = 0 , (2.3)

so the two daughter particles emerge back-to-back in the decaying particle rest frame. This

implies, in particular, that the magnitudes of their momenta are equal, and so therefore the

energies of the two final particles in this frame must be related by

E2
1 −m2

1 = E2
2 −m2

2 . (2.4)

But energy conservation also implies the energies in this frame must satisfy

E1 + E2 = mP , (2.5)
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which only has solutions (for nonzero real momenta) if m1 +m2 < mP . These two equations

can be solved to determine the energies of both particles completely, giving:

E1 =
m2
P +m2

1 −m2
2

2mP

and E2 =
m2
P +m2

2 −m2
1

2mP

. (2.6)

In particular, E1 → E2 → 1
2 mP in the limit m1 = m2 or when m1 6= m2 but m1 +m2 � mP .

Exercise 2.2: Derive eq. (2.6) from eqs. (2.3) and (2.5) for two-body decay.

Consider the decay π+ → µ+νµ and suppose muon neutrinos (νµ) emerge from

π+ decay and their energy (in the pion rest frame) is Eνµ . Suppose the mass, mνµ ,

of the muon-neutrino (νµ) is inferred using measurements of Eνµ and the pion and

muon masses, and that the result is consistent with vanishing mνµ . What is the

maximum error that can be allowed for each of mπ, mµ and Eνµ in order for the

95% confidence limit on mνµ to be 1 eV or smaller? (Assume the errors in each of

these quantities is a Gaussian random variable and that all three are uncorrelated

with one another.)

[Bonus: consult the Particle Data Group webpage for the measured values of mπ

and mµ and their errors. Are these good enough to not prevent determining

mνµ < 1 eV at 95% confidence?]

Crucially: for two-body decays the energy of each of the decay products is completely

determined (in any particular reference frame) by energy-momentum conservation. All that

the details of the physics responsible for the decay can do is predict the likelihood for one

of the particles to come out in a particular direction. (Even this is not possible if the initial

parent particle is rotation invariant — i.e has no spin — since then all directions are equally

likely.)

The same is not true when there are three or more particles in the final state. In this

case momentum conservation in the decay rest frame implies

p1 + p2 + p3 = 0 , (2.7)

which can be used to determine the momentum of one of the daughters in terms of the other

two. But this does not fix the magnitude of each of the particle momenta separately, so energy

can be shared between the other two particles consistently with overall energy conservation,

which in the decay rest-frame states

E1 + E2 + E3 = mP . (2.8)

Unlike for two-body decays, for three-body (or more-body) decays energy-momentum con-

servation is consistent with daughter particles emerging with a distribution of energies. For

instance, in nuclear β-decay the electron is seen to emerge from the decay with a distribution

of energies, as in Fig. 10, rather than a unique energy, and this is historically the way that

the existence of the antineutrino was initially inferred.
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Figure 10. The distribution of electron energies obtained from the β decay of a nucleus. Because

more than one energy is possible we know β decay cannot be 2-body and so must involve at least three

particles in the final state. (Figure source: http://www.ohio.edu/people/piccard/radnotes/alphabeta.html).

2.2.2 Decay rates

The rest-frame decay probability per unit time (or decay rate), Γ, for a given particle is a

characteristic of that particle as intrinsic to it as is its mass or spin. The value of Γ depends

on the details of the interactions responsible for the decay, and because of this measurements

of Γ can be informative about these interactions.

Because the decay of any one particle is a random event decay measurements involve sta-

tistical properties of a collection of identical decaying individuals, so we need the probability

distribution, P(t), for a particle’s continued survival at time t, given its existence at an initial

time t0. Now Γ is time-independent and Γ dt gives the probability for decay to occur in any

given short time window, dt, so the probability of there not being a decay in this interval is

1−Γ dt. Consequently the survival probability, P(t+ dt) = P(t) + dP, at time t+ dt is given

in terms of the survival probability, P(t), at t by

P(t) + dP = P(t) (1− Γ dt) and so dP = −ΓP(t) dt , (2.9)

where the factor P(t) after the first equality is the probability of surviving to time t, while

the second factor is the probability of also surviving the next interval dt.

The result dP/dt = −ΓP integrates to give an exponential distribution

P(t) = Γ e−Γ(t−t0) , (2.10)

with an integration constant chosen to normalize the result on the interval t0 ≤ t <∞. This

shows that one way to measure Γ is by measuring the mean life, τ , of the decaying particles

to survive (given their presence at the initial time t0), defined by

τ :=

∫ ∞
t0

dt (t− t0)P(t) =
1

Γ
. (2.11)
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Another way to get at the same quantity is by counting the population of undecayed

particles in a sample as a function of time. For a collection of n0 particles at time t0 the

number of surviving particles at a later time t is n(t) ∝ P(t), and so

n(t) = n0 e
−Γ(t−t0) . (2.12)

Another measure of Γ is then the half-life, τ1/2, defined as the time taken for half of a given

sample to decay (a result which doesn’t depend on the size of the initial sample for exponential

decays):

n(t− t0 = τ1/2) =
n0

2
=⇒ τ1/2 =

ln 2

Γ
' 0.693 τ . (2.13)

The decay rate of a moving particle differs from the rest-frame rate because of time

dilation. In a reference frame for which the decaying particle has speed v = p/E the mean

decay life is longer by the Lorentz transformation formula

τ(E) = γ τ =
τ√

1− v2
=
Eτ

m
and so Γ(E) =

mΓ

E
. (2.14)

Time-dilation of decay lifetimes is a well-established experimental fact. For example,

muons were initially discovered once radiation detectors were developed because we are con-

stantly bombarded (several per square metre per second at the Earth’s surface) by energetic

muons coming down from the top of the atmosphere. Muons are produced there as byprod-

ucts of nuclear reactions when cosmic rays — i.e. mostly energetic protons — hitting the

Earth from space collide with atomic nuclei in the upper atmosphere. But muons produced

in the lab are seen to decay with lifetimes of about a microsecond, and at face value this

causes a problem since even if moving at the speed of light a particle can move only 300

m in a microsecond. The problem is that the top of the atmosphere (where the muons are

produced) is many kilometres up and so how can the muons live long enough to get down to

the Earth’s surface to be discovered? The resolution is time dilaton: although muons decay

in microseconds in their rest frame, they are sufficiently energetic that they live long enough

to an observer at rest on the Earth to survive the trip through the atmosphere.

2.2.3 Line widths

The above methods for measuring Γ are fine if the decay is slow enough. Nuclear decays are

seen with an enormous range of half-lives — running from lifetimes in the billions of years

down to lifetimes measured in small fractions of a second — so for many of these the above

methods suffice. But many other decays are much faster: examples discussed in later sections

can have Γ ' 1 GeV, and so τ = 1/Γ ' 1 GeV−1 ' 6 × 10−25 s, and even moving at the

speed of light a particle decaying this fast could only traverse about 0.2 fm – i.e. much less

than the size of a nucleus. Decays this fast happen so quickly that the parent particle is not

directly seen. How is Γ measured when this is so?
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For decays this rapid we must zoom out a bit and consider the reaction that produced

the decaying particle in the first place. For concreteness, suppose the decaying particle, P , is

produced as an intermediate state in a 2-body reaction, A+B → C+D, in which particles A

and B are collided and are converted into particles C and D that are long-lived and so can be

observed leaving the scene. We imagine that for at least some of these reactions this process

occurs in two steps: A+B → P after which P decays through the process P → C+D. (Such

a two-step process is called a resonant channel.) We also allow that there may be several

other reaction channels leading from A+ B to C +D that do not require the creation of an

intermediate P particle, which we call ‘prompt’ since they are usually faster (not needing to

wait for P to decay). We imagine preparing the initial particles with specific energies, EA

and EB, and measuring the final energies, EC and ED, (and sometimes also the directions)

of the outgoing particles, and the goal is to identify whether the two-step decay reaction

A + B → P → C + D can be distinguished from any prompt reactions even if the decay is

much too fast for the lifetime to be directly measured. And if they can be distinguished we

wish to see how to infer the value of Γ for the decay.

Although the details are not important for what follows, there are a variety of specific

reactions of this form that are of practical interest. One such is the reaction e+e− → e+e−

or the reaction e+e− → µ+µ−, which proceed both through the electromagnetic and the

weak interactions. These reactions (and others) were studied in detail using electron-positron

colliders, culminating with the Large Electron-Positron Collider (LEP, at CERN in Geneva)

and the Stanford Linear Collider (SLC, in California) in the late 1980s and early 1990s. These

experiments were the first to have sufficient energy to produce a Z boson (whose mass is 90

GeV) and for energies around 90 GeV the ‘decay’ version of the reaction takes place by first

having e+e− → Z, with the produced Z then decaying to the final state, Z → e+e− or

Z → µ+µ−. A plot of measurements for a similar reaction (e+e− → qq, where q means any

species of quark – a particle from which strongly-interacting particles turn out to be built) is

given in Figure 11. The ‘prompt’ version of these reactions are understood as arising due to

the exchange of photons and W bosons, but never through their direct production and decay.

The resonant-decay channel only occurs14 (for this choice of initial particles) for the Z.

Since the prompt and decay mechanisms are independent of one another but share the

same initial and final state their amplitudes must be summed:

Atot(AB → CD) =

∫ ∞
−∞

dt0

[
Apr(t0) +Adc(t0)

]
, (2.15)

where subscripts ‘pr’ and ‘dc’ denote the prompt and decay contributions, and there is an in-

tegration over the unknown time, t0, when the reaction takes place. The reaction probabilities

are then the squares of the amplitude, P = |A|2 (as usual in quantum mechanics).

14It turns out there are other states besides the Z that can be produced and then decay, but these consist

of quark-antiquark bound states and do not contribute much at these energies, for reasons that will become

clear shortly.
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Figure 11. The Z boson resonance in the cross section for e+e− → hadrons (strongly interacting

particles). The black line is the theoretical prediction of the Standard Model while the coloured points

are measurements made at various accelerators. The large resonance peak occurs at the Z-boson

mass, MZ ' 90 GeV and its width characterizes the Z boson lifetime as described in the main text.

Cross section is here measured in picobarns (pb), with a barn defined in eq. (1.36). (Figure source:

http://tlep.web.cern.ch/content/what-are-line-shape-parameters-resonance).

For the decay contribution the amplitude comes with an additional sum over the time

between production of P and its decay, since we do not know precisely when the decay occurs:

Adc(t0) =

∫ ∞
t0

dtA(AB → P ; t0)A(P ; t− t0)A(P → CD; t) , (2.16)

where A(AB → P ; t0) is the amplitude for producing the intermediate state, P , at time t0,

A(P ; t− t0) is the amplitude for the P state to survive from t0 until t ≥ t0 and A(P → CD; t)

is the amplitude for the decay P → C +D at time t. It is the delay t− t0 caused by waiting

for P to decay that allows us to distinguish the prompt from the decay reaction.

The important point is that the t- and t0-dependence of these amplitudes is fairly simple

to track. It arises in two ways: one is the contribution from the wave-function for each of the

particles involved, ψa ∝ e−iEat, and since the amplitude is an inner product, A ∼ ψ∗f ψi, this

becomes ψ∗a ∝ e+iEat for any particle in the final state:

Apr(t0) = AAB|CD e−i(EA+EB−EC−ED)t0

A(AB → P ; t0) = AAB|P e−i(EA+EB−EP )t0 (2.17)

and A(P → CD; t) = AP |CD e−i(EP−EC−ED)t .

The other source of t dependence is the exponential decay survival probability for P as it

awaits its decay. That is,

A(P ; t− t0) = iAP e−Γ(t−t0)/2 , (2.18)
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where AP is independent of time, and the factor of i is purely conventional. This last equation

is required to allow the modulus of ψP (t) to shrink exponentially, as it must since the survival

probability is the square of the amplitude, P(P ; t − t0) ∝ |A(P ; t − t0)|2 ∝ e−Γ(t−t0), as

required by the exponential decay law described above.

Consequently, the t- and t0-dependence of the decay contribution to the integrand in

(2.16) is

AAB|PAP |CDAP e−i(EA+EB−EC−ED)t0 e−i[(EP−iΓ/2)−EC−ED](t−t0) , (2.19)

and this must be added to Apr, whose t0-dependence is given in (2.17). The t-integration is

then elementary, and once this is done both prompt and decay terms share the common factor

e−i(EA+EB−EC−ED)t0 , whose integration with respect to t0 gives the usual energy-conserving

delta-function: 2π δ(EA+EB−EC−ED). The total amplitude found by summing the prompt

and decay processes then becomes

Atot(AB → CD) = 2π

[
AAB|CD +

AAB|PAP |CDAP
(EP − Etot)− iΓ/2

]
δ(EA + EB − EC − ED) , (2.20)

where Etot = EA + EB is the total energy available in the initial state.

Now comes the main point. The coefficients AAB|CD and AAB|P etc can depend on Etot,

but this dependence is usually not particularly strong in the immediate vicinity of Etot = EP .

Consequently, if Γ � EP (a condition called the narrow-resonance condition), then it is the

denominator in the second term of the square bracket that dominates the Etot-dependence of

the rate very near Etot = EP . Since its square has the form∣∣∣∣ 1

(EP − Etot)− iΓ/2

∣∣∣∣2 =
1

(Etot − EP )2 + (Γ/2)2
, (2.21)

this gives a large enhancement or resonance to the reaction rate, regarded as a function of

Etot, occurring precisely at EP . The Etot-dependence predicted in (2.21) is universal and is

called the Breit-Wigner (or, in the relativistic context, Lorentzian) line-shape.

Whenever this characteristic line-shape is observed, the width Γ is easily determined

from the width of the resonant peak, given for example by its full width at the place where

the resonance has fallen off to half of its maximum value (i.e. the peak’s ‘full-width half-

max’). For example, Fig. 11 plots the predicted and measured reaction rate for the reaction

e+e− → hadrons (essentially quarks), which shows precisely this shape near the Z boson

mass. Sometimes new particles are discovered by performing a ‘bump hunt’ that search for

resonances whose presence could indicate the existence of something hitherto undiscovered.

The most recent example of such a discovery is the Higgs boson, whose decay into two photons

was discovered through the presence of an unexpected bump in the photon production rate

at the Large Hadron Collider (LHC) at CERN. Figure 12 shows the Higgs bump due to the

decay H → γγ.
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Figure 12. The Higgs boson resonance in the cross section for producing two photons in the CMS

detector at the Large Hadron Collider. The top curve shows both prompt events and Higgs de-

cays while the bottom panel is after the prompt events have been subtracted out. (Figure source:

http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-14-016/index.html).

2.2.4 Differential decay rates

Decays into multiple daughters can sometimes give additional information, through the angu-

lar distribution of the decay products. This information is contained within the differential de-

cay rate, which can be informative about the spin of the decaying particle and about the nature

of the underlying interactions that are in play. The differential decay rate, dΓ/d3p1 · · · d3pN ,

regarded as a function of p1 through pN , is the joint probability per unit time for a decay

process with particle D1 emitted within a small volume d3p1 of p1, particle D2 emitted within

a volume d3p2 about p2 and so on up to particle DN having momentum within the volume

d3pN of pN . In terms of this the total decay rate discussed above is given by

Γ =

∫
d3p1 · · · d3pN

(
dΓ

d3p1 · · · d3pN

)
. (2.22)

It is useful to define the differential decay rate in a way that is Lorentz invariant, since

then it can be computed once and for all with the result useful for decays of particles in any

reference frame. For the decay P → D1(p1)+D2(p2)+ · · ·+DN(pN) the invariant differential

decay distribution, M(pP ; p1, · · · pN), is related to the above differential decay rate by

dΓ

d3p1 · · · d3pN
=

1

2EP

[
M(pP ; p1, · · · ,pN)

[(2π)32E1] · · · [(2π)32EN ]

]
(2π)4δ4(pP − p1 − p2 · · · − pN) , (2.23)
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where the delta-function sets the sum of final 4-momenta, pµ1 + · · ·+ pµN , equal to the initial

4-momentum, pµP , so (in the centre-of-mass frame)

δ4(pP − p1 − · · · pN) := δ(EP − E1 − E2 · · · − EN) δ3(p1 + · · ·+ pN) . (2.24)

The Lorentz-invariance of M relies on the observation that Γ transforms as does m/EP

and so the rest must be invariant. Furthermore, the 4-dimensional delta-function is invariant

since it imposes a relation amongst 4-momenta that all transform in the same way, and the

measure d3p/E for each particle is also Lorentz-invariant, as can be seen by directly following

through the transformations that take p and E to p′ and E′.

Exercise 2.3: Derive the transformation law for E and p (as a function of coshβ

and sinhβ) for a boost along the z axis from the transformation law of the energy-

momentum 4-vector, (p′)µ = Λµν p
ν . By directly using these prove that dpx, dpy

and dpz/E are invariant (from which we learn d3p/2E is also invariant, as claimed

in the text).

Alternatively, the invariance of d3p/E can be seen by starting from the manifestly in-

variant starting point∫
d4p δ(pµp

µ +m2)ϑ(p0)(· · · ) =

∫
d3p dp0 δ

[
−(p0)2 + E2

]
ϑ(p0)(· · · ) =

∫
d3p

2E
(· · · )|p0=E ,

(2.25)

where pµp
µ := ηµν p

µpν so the delta-function imposes the condition (p0)2 = E2 where E :=√
p2 +m2 and the step-function, ϑ(x) = {0 if x < 0 and 1 if x > 0}, tells us to take the

positive root when doing so. This condition on the sign of p0 is also Lorentz-invariant because

the delta-function tells us that pµ is time-like (and so all observers agree on the sign of p0).

Finally, the factor of 2E in the denominator of (2.25) arises from the change-of-variable

formula for the Dirac delta-function, about which we pause to amplify because it is also useful

later. Recall that δ(x − y) is defined to vanish for x 6= y (and diverge for x = y) in such a

way that ∫
dy δ(x− y)f(y) = f(x) (2.26)

for any integration region including y = x and any sufficiently smooth function f . But the

delta function in (2.25) instead comes in the form15
∫

dy δ[g(x, y)] f(y) and so its evaluation

requires a few extra steps:∫
dy δ[g(x, y)] f(y) =

∫
dg

|∂g/∂y|
δ(g) f(y) =

(
f(y)

|∂g/∂y|

)
y=y(x)

, (2.27)

15Explicitly, in the example of interest y = p0, x = E and g(x, y) = x2 − y2 so g = 0 implies y = ±x and

|∂g/∂y| = 2y.
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where the first equality changes the integration variable to agree with the argument of the

δ-function (so as to use (2.26)), and y = y(x) is the (assumed unique within the integration

region) solution to g(x, y) = 0.

It is the invariant quantityM that we later relate to the square of a scattering amplitude

once we try to compute the decay rate starting from an underlying theory of the interactions.

Once this is done we will find

M =
〈
|A|2

〉
, (2.28)

where A is an invariant amplitude (often the matrix element of some interaction Hamiltonian,

A = 〈f |Hint|i〉, between an initial state, |i〉, and a final state, |f〉) and 〈· · · 〉 denotes a sum

over unmeasured quantum numbers (such as spin) in the final state, and an average over

unmeasured quantum numbers in the initial state.

With these definitions, once the invariant quantityM is known, the total rate is computed

using

dΓ(P → F ) =
1

2EP

M (2π)4δ4(pP − pF ) dβF , (2.29)

where F = D1 + · · ·+DN here collectively denotes all of the final daughter particles, and so

pF is short-hand for the sum over final-state 4-momenta: pµF = pµ1 + · · ·+ pµN . Finally, the last

factor denotes the combination

dβF :=
d3p1

(2π)32E1
· · · d3pN

(2π)32EN

. (2.30)

The total rate is obtained by integrating over all possible final-state momenta, and because

this volume of integration is called the reaction’s phase space, the product in (2.30) is called

the Lorentz-invariant phase-space (or LIPS) measure.

Exercise 2.4: Evaluate the integrals over Lorentz-invariant phase space and

show that for two-body decay the differential decay rate for emission of one of

the daughters into an element of solid angle, dΩ, is given in the rest frame of the

decaying particle by

dΓ

dΩ
(A→ B + C) =

M p

32π2m2
A

(decay rest frame) , (2.31)

where p =
√
E2
C −m2

C =
√
E2
D −m2

D is the magnitude of the momentum of either

of the daughter particles. Given the daughter energies are EB = (m2
A + m2

B −
m2
C)/2mA and EC = (m2

A +m2
C −m2

B)/2mA show that this means

p =

√
[m2

A − (mB +mC)2][m2
A − (mB −mC)2]

2mA

. (2.32)
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Exercise 2.5: The charged pion, π+, decays almost always into µ+νµ. It turns

out the invariant matrix element for this decay is

M
(
π+ → µ+νµ

)
= 2mπp

(
2GF |Vud|mµFπ

)2
, (2.33)

where p is the magnitude of the neutrino momentum in the decay rest frame,

mπ = 140 MeV is the charged pion mass, mµ = 105 MeV is the muon mass and

GF = 1.166379 × 10−5 GeV−2 is Fermi’s constant and |Vud| = 0.974 is called a

Kobayashi-Maskawa matrix element. The quantity Fπ is the pion decay constant,

whose value is determined by the comparing this decay rate with the measured

lifetime (once GF is determined from µ+ decay and |Vud| from nuclear β decay).

Compute the total decay lifetime of the pion and show that it is given by

Γ(π+ → µ+νµ) =
G2
F |Vud|2m2

µmπF
2
π

4π

(
1−

m2
µ

m2
π

)2

. (2.34)

Compare this to the measured mean life (2.6033± 0.0005× 10−8 sec), to see what

the experimental value is for Fπ. π+ → e+νe can also occur, and does so with a

rate obtained from the above by substituting mµ → me (where me = 0.511 MeV).

What is the ratio Rπ = Γ(π+ → e+νe)/Γ(π+ → µ+νµ) numerically? Compare

your answer with the experimental value for this ratio, which can be found at

the Particle Data Group website (with information specifically about π± decays

found here). Naively this ratio is something of a puzzle since electrons and muons

participate in interactions with the same strength and the electron provides more

phase space into which to decay, so one might have expected Rπ � 1. The fact

that this is not true tells us about the spin-dependence of the underlying weak

interactions.

Exercise 2.6: The neutral pion, π0, decays almost always into two photons. It

turns out the invariant matrix element for this decay is

M
(
π0 → γγ

)
= 2

[
αm2

π

2πFπ

(
Nc

3

)]2

, (2.35)

where mπ = 135 MeV is the neutral pion mass and α = 1/137 is the fine-structure

constant. The quantity Fπ = 92 MeV is called the pion decay constant, and can

be measured in the decay process π+ → µ+νµ. Finally, Nc is the number of

colours carried by each quark inside the pion (more about which later). Compute

the total decay rate of the pion and show it is

Γ
(
π0 → γγ

)
=

α2m3
π

(4π)3F 2
π

(
Nc

3

)2

. (2.36)
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(Careful: the two photons are completely indistinguishable. What is the proper

solid angle through which one should integrate dΓ/dΩ if we are not to double-

count?) Evaluate this and compare the result to the measured mean life (8.52±
0.18× 10−17 sec), to see what the experimental value is for the number of quark

colours.

2.3 Scattering: general properties

The other major source of information about subatomic particles comes from studying col-

lisions wherein the bringing together of several (in subatomic physics usually two) particles

initiates a reaction of some sort, such as

A+B → F1 + F2 + · · ·FN , (2.37)

which is a 2 → N collision corresponding to having two particles collide with N particles

leaving the reaction. Elastic collisions form the important special case of a 2 → 2 collision

for which the final two particles are identical to the initial two: A + B → A + B. All other

collisions are called inelastic, because some of the initial kinetic energy has been converted

into changing particle types. We next review the convenient ways to characterize the reaction

rates for such collisions.

2.3.1 Cross sections and luminosity

Very rarely do experiments in subatomic physics prepare particles only one at a time for

collisions, since normally a collection of particles are first accelerated to some energy in

a high-energy beam before being brought to collide, either with another beam or with a

stationary fixed target. Usually the more particles in the beam and target the more collisions

there will be.

When particles collide there are two kinds of things that determine the reaction rate.

Some of these are fairly mundane, like the number of particles involved (more particles means

more potential reactions) and their speeds and other adjustable properties as they collide.

Others are more fundamental, such as the interactions the particles experience. The goal

of this section is to express the reaction rate for a collision in terms of an initial luminosity

(which captures the mundane features specific to the particular way the particles were brought

together) and an interaction cross section that contains the information about the interactions

involved.

For these purposes consider a beam of particles containing nB particles per unit area and

moving with speed v relative to a target, and suppose the target is a large spherical object

of radius R, with which an interaction occurs with probability p if the particles impinge on

the target’s surface (see Figure 13). The number of reactions occurring, dNR, in a small time

window dt is then given by p times the number of particles arriving at this surface in time
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Figure 13. Schematic collision process for which a beam of small particles impinges onto a large

spherical target of radius R. (Figure source: http://www.jupiterscientific.org/sciinfo/crosssection.html).

interval dt, and so is dNR = nB(v dt)(πR2)p. This makes the reaction rate

dNR

dt
= nBv (πR2)p = Lσ , (2.38)

where L = nBv gives the beam’s luminosity — i.e. the number of particles per unit area per

unit time delivered to the target — and σ = p πR2 is called the interaction cross section, and

has dimensions of area. Notice that in the simple scattering model used here σ simply is the

area the target presents to the beam if the interaction probability per collision is p = 1, but is

smaller otherwise. More generally (such as if target and beam interact at a distance through

long-range forces, or once diffractive quantum wave behaviour is considered) it is possible

also to have σ be larger than the target’s cross-sectional area.

Instantaneous luminosity is a property of the accelerator that produces the beam, and a

typical example from a modern accelerator might be of order L = 1034 cm−2 s−1. Integrated

luminosity, L, is another useful statistic that gives the total number of particles per unit area

delivered on target over some time window (such as the lifetime of an experiment, say),

L(T ) =

∫ t0+T

t0

dt L(t) , (2.39)

which has units of inverse area. For instance, delivering the above luminosity for T = 1 year

' 3×107 s gives an integrated luminosity L ' 3×1041 per square cm. Multiplying integrated

luminosity times cross section, N = σL, directly gives the total number of scattering events

that occur over the given time window, T .

Of course we would be nuts to continue using CGS (or SI) units here, and for subatomic

physics something closer to the dimensions of a nucleus makes a better reference unit. The

conventional choice is the barn (or b), defined in (1.36) (and repeated here) as

1 b = 10−24 cm2 = 10−28 m2 = (10 fm)2 , (2.40)

together with the usual metric prefixes: mb, µb, nb, fb, pb and so on. These units are also

useful for describing integrated luminosity, with L = 1 pb−1 corresponding to 1036/cm2. In
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these units L ' 3×1041 cm−2 becomes L ' 100 inverse femtobarns, and so even cross sections

as small as σ ' 1 fb would generate 100 events given this much integrated luminosity.

2.3.2 Invariant and differential cross section

One drawback of the previous section is that it is entirely phrased within the rest-frame of

the target, and so the separation of the rate into a luminosity piece and a cross-section piece

is not yet Lorentz invariant. This is a drawback because not all experiments are done with

motionless targets (an example is a colliding beam experiment — like the LHC or LEP —

which collide two beams into one another head on). This section aims in part to correct this

drawback.

Furthermore, we are usually interested not just in the total cross section but also in the

differential cross section, for which specific values of final-state momenta are specified for the

outgoing particles. It is also useful to define this in a Lorentz-invariant way, making it easier

to convert predictions to any particular frame of interest for a specific experiment.

The starting point for defining things covariantly is the reaction rate, Γ, and its differential

counterpart

Γ(AB → F1 · · ·FN) =

∫
d3p1 · · · d3pN

(
dΓ

d3p1 · · · d3pN

)
. (2.41)

For a two-particle initial state Γ transforms under Lorentz transformations like 1/(EAEB) —

one way to see this is because the process AB → F1 · · ·FN could have been the independent

decay of the initial particles A and B rather than a collision, and we have seen above that

each decay rate separately transforms like 1/E for the particle decaying. Keeping in mind, as

before, that the measure d3p/E is Lorentz-invariant suggests defining the invariant scattering

rate, M(pA,pB; p1, · · · ,pN), by

dΓ

d3p1 · · · d3pN
=

nB
2EA2EB

[
M(pA,pB; p1, · · · ,pN)

[(2π)32E1] · · · [(2π)32EN ]

]
(2π)4δ4(pA + pB − p1 − p2 · · · − pN) ,

(2.42)

where, as before, nB denotes the density of beam particles and the delta-function sets the

sum of final 4-momenta, pµ1 + · · ·+ pµN , equal to the initial 4-momentum, pµA + pµB. It is again

M = 〈|A2|〉 that is related to squares of scattering amplitudes computed using an underlying

theory.

We can now use M to perform the split into luminosity and cross section in a way that

makes the cross section also a Lorentz-invariant quantity. We do so by writing

dσ =
dΓ

F
(2.43)

as before, but now where F is chosen to: (i) agree with L = nBvrel when the target (particle

A, say) is at rest; and (ii) transform as does Γ to ensure dσ is Lorentz-invariant. Here vrel —

defined as the relative speed of the incident beam particles relative to the target — is itself a
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Lorentz-invariant quantity, given in terms of the invariant dot product, pA ·pB = ηµνp
µ
Ap

ν
B ≤ 0,

of initial 4-momenta by

vrel =

√
1− m2

Am
2
B

(pA · pB)2
. (2.44)

Exercise 2.7: Prove the above relation for vrel by evaluating the quantity pA · pB
in terms of vrel in the rest-frame of one of the particles, and then solving for vrel.

The solution to condition (ii) is F = nBf/(2EA2EB) where f is any Lorentz-invariant

quantity (and the factors of 2 are conventional). Condition (i) then tells us

f = −4vrel(pA · pB) = 4
√

(pA · pB)2 −m2
Am

2
B , (2.45)

because then F → nBvrel when pA → 0.

There are two particularly useful frames of reference in 2→ N scattering processes. One,

usually called the lab frame, is the frame16 in which one of the initial particles at rest. This

is the frame within which our original discussion of luminosity and cross section was done.

In the lab frame (rest-frame of B) and the c.o.m. frame f becomes

f = 4mBEAvrel = 4mBpA lab (lab frame)

and f = 4
√

(EAEB + p2
A)2 −m2

Am
2
B = 4(EA + EB)cm pA cm (c.o.m. frame) . (2.46)

The final expression for the invariant differential cross section then is

dσ(I → F ) =
M
f

(2π)4δ4(pI − pF ) dβF , (2.47)

where I = A+ B denotes the initial 2-body state and pµI = pµA + pµB denotes the total initial

4-momentum, while (as before) F = F1 + · · ·FN denotes all of the final-state particles and so

pµF = pµ1 + · · ·+ pµN . The Lorentz-invariant phase space measure, dβF , is given by (2.30).

2.3.3 2→ 2 cross section

To make this more concrete let’s work out dσ(AB → CD) more explicitly for the special case

of 2→ 2 scattering. In this case there are two particles in the final state, and so

dσ(AB → CD) =
M
f

(2π)4δ4(pA + pB − pC − pD) dβF (2.48)

=
M
f

(2π)4δ(EA + EB − EC − ED) δ3(pA + pB − pC − pD)
d3pC

(2π)32EC

d3pD
(2π)32ED

.

16The lab frame is indeed the reference frame of the laboratory in ‘fixed-target’ experiments in which a

beam is collided with a stationary target. The lab frame need not be the rest frame of the physical laboratory,

however, in collider experiments for which collisions occur between a pair of incident beams.
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As stated earlier, the four conditions given by energy-momentum conservation have removed

four of the six independent components of final momenta, and so for a 2-body final state we

can take the two quantities undetermined by conservation laws to be the angles specifying

the direction of the momentum of one of the outgoing particles: particle C, say.

Figure 14. Definition of the angles θ and φ for the outgoing momentum pC . (Figure source:

https://commons.wikimedia.org/wiki/Spherical polar coordinates.png).

We now perform the integral over the delta functions explicitly. We start with the integral

over one of the two final momenta, say pD, whose integration with the momentum-conserving

delta function amounts to everywhere replacing pD with pA + pB − pC . Next write out the

d3pC integral in polar coordinates using d3p = dpxdpydpz = p2dpdΩ where p = |p| and the

differential element of solid angle is dΩ = sin θ dθdφ with (θ, φ) giving the direction of p, as in

Figure 14. The energy-conserving delta function then allows us also to perform the integral

over |pC | as well, leaving only the angular integrals undone. When doing the |pC | integral

care must be used to properly use (2.27) for changing variables with the δ-function, leading

to the result

(2π)4 δ4(pI − pF ) dβF = (2π)4 δ4(pA + pB − pC − pD)
d3pC

(2π)32EC

d3pD
(2π)32ED

= 2π δ(EA + EB − EC − ED)
d3pC

(2π)34ECED

∣∣∣∣
pD=pA+pB−pC

(2.49)

=
p2
C dΩC

(2π)24ECED|d(EC + ED)/dpC |

∣∣∣∣
pD=pA+pB−pC , EC=EA+EB−ED

=
p3
C dΩC

(4π)2|(EDpC − EC(pA + pB)) · pC |

∣∣∣∣
pD=pA+pB−pC , EC=EA+EB−ED

.

and so the differential cross section for 2→ 2 scattering is

dσ

dΩ
(AB → CD) =

[
M p3

C

(4π)2f |(EDpC − EC(pA + pB)) · pC |

]
pD=pA+pB−pC , EC=EA+EB−ED

,

(2.50)
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where the right-hand side is to be regarded as a function of the direction, (θ, φ), of the outgoing

momentum pC . The total cross section, σ, is then obtained by integrating this result over all

possible such directions.

2.3.4 Lab and centre-of-mass frames

In the lab frame we can take pB = 0 and EB = mB, and so

dσ

dΩ
(AB → CD) =

[
M p3

C

(4π)2f |(EDpC − ECpA) · pC |

]
pD=pA−pC , EC=EA+mB−ED

(lab frame)

=

[
M p2

C

(8π)2mBpA|EDpC − ECpA cos θ|

]
pD=pA−pC , EC=EA+mB−ED

, (2.51)

which uses f = 4vrelmBEA = 4mBpA in the lab frame. In the special case where the incident

particle (and its scattered partner) is massless, EA = pA and EC = pC this becomes

dσ

dΩ
(AB → CD) =

[
MEC

(8π)2mBEA|ED − EA cos θ|

]
pD=pA−pC , EC=EA+mB−ED

, (2.52)

For most purposes a much more convenient frame is the centre-of-mass frame (or c.o.m.

frame), defined by the condition that pI := pA + pB = 0. This frame is particularly simple

both because it implies |pA| = |pB| (and so also E2
A−m2

A = E2
B−m2

B), and also because with

momentum conservation it also implies pC + pD = 0 (and so E2
C −m2

C = E2
D −m2

D).

As an example of how things often simplify in the c.o.m. frame, consider expression (2.50).

In this frame we have (EDpC − ECpD) · pC = (ED + EC)pC · pC = EI p
2
C , where the initial

total energy is EI = EA + EB = EC + ED. As a result (2.50) simplifies to become

dσ

dΩ
(AB → CD) =

[
M pC

(4π)2f(EA + EB)

]
pD=−pC , EC=EA+EB−ED

(2.53)

=

[
M pC

(8π)2pA(EA + EB)2

]
pD=−pC , EC=EA+EB−ED

(c.o.m. frame) ,

Because pA = −pB in the c.o.m. frame the initial momenta are parallel to one another,

and so we can choose the direction they define to be the z-axis. In this case the angles (θ, φ)

describe the direction of the line defined by the parallel final-state momenta relative to this

initial direction. With this choice shifting φ corresponds to rotating the collision about the

axis defined by the initial beam. It is often true that the physics is invariant under such a

rotation, and when this is so the cross section is independent of φ and so depends nontrivially

only on θ. In this case the angular integral over φ amounts to multiplication of the result by

2π, leaving

dσ

sin θCdθC
(AB → CD) = 2π

(
dσ

dΩ

)
(AB → CD) (axially symmetric) (2.54)

=

[
M pC

32π pA(EA + EB)2

]
pD=−pC , EC=EA+EB−ED

(c.o.m. frame) .

– 60 –



When this is true then there is only one independent final-state variable, θ, on which cross

sections can nontrivially depend (in addition to their dependence on the choice of total initial

energy, Ecm = EA + EB).

2.3.5 2→ 2 relativistic variables

Although formulae like (2.50) and (2.53) have the virtue of explicitness, they obscure Lorentz

invariance and so make it more cumbersome to relate observables in different reference frames.

For this purpose an alternative set of explicitly Lorentz-invariant variables, called Mandelstam

variables, are often used instead of θ and φ to describe 2→ 2 scattering.

The Mandelstam variables are built directly in terms of the 4-momenta: pµA, pµB, pµC and

pµD, and start with the observation that any Lorentz-invariant function of momenta (such as

M, for instance) can always be written as a function of the invariant inner products of these

four 4-vectors: e.g. pA · pB = ηµν p
µ
Ap

ν
B. Because the inner product of a 4-momentum with

itself is always the corresponding particle mass, pA · pA = −m2
A and so on, they are constants

and the only possible independent kinematic variables must be

pA · pB , pA · pC , pA · pD , pB · pC , pB · pD and pC · pD . (2.55)

Even these are not all independent because, for example, 4-momentum conservation

implies we can always eliminate pµD using pµA+pµB = pµC+pµD, leaving three possible independent

combinations like pA · pB, pA · pC and pB · pC . The conventional way to group these three

quantities is into the Mandelstam variables s, t and u defined by

s := −(pA + pB) · (pA + pB) = −2pA · pB +m2
A +m2

B ,

t := −(pA − pC) · (pA − pC) = +2pA · pC +m2
A +m2

C , (2.56)

and u := −(pA − pD) · (pA − pD) = +2pA · pD +m2
A +m2

D .

But we know that energy-momentum conservation and axial symmetry should only allow

us two independent variables, the total initial energy and scattering angle in the c.o.m.,

for example. So we expect that even these three quantities, s, t and u, cannot really be

independent. This expectation is right, and the relationship between them can be seen by

summing the definitions to find s+ t+ u = 2pA · (−pB + pC + pD) + 3m2
A +m2

B +m2
C +m2

D,

and then using 4-momentum conservation and 2pA · pA = −2m2
A to find

s+ t+ u = m2
A +m2

B +m2
C +m2

D , (2.57)

which allows us to eliminate u, say, in terms of s and t.

Evaluating the definitions in the c.o.m. frame shows how s and t are related to the two

basic kinematic variables, Ecm and θ. Because pA+pB = 0 in this frame, the 4-vector pµA+pµB

points purely in the time direction, and so

s = (EA + EB)2 = E2
cm (c.o.m. frame) . (2.58)
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The energy of each particle separately is then detemined by the conditions that pA = pB and

pC = pD while EA + EB = EC + ED = Ecm. Because these conditions are essentially those

that led to (2.6) they have the same solutions:

EA =
E2

cm +m2
A −m2

B

2Ecm
and EB =

E2
cm +m2

B −m2
A

2Ecm
(c.o.m. frame) , (2.59)

and the identical equations with (A,B)→ (C,D). Alternatively, evaluating s = −2pA · pB +

m2
A +m2

B in the lab frame (for which pA = 0) instead gives

s = 2mAEB +m2
A +m2

B (lab frame) . (2.60)

Clearly EB ≥ mB implies s ≥ (mA +mB)2.

On the other hand evaluating t = 2pA · pC + m2
A + m2

C in any frame relates it to the

scattering angle, θC , between the direction of the outgoing particle C relative to the direction

of the incoming particle A:

t = −2EAEC + 2pA · pC +m2
A +m2

C = −2EAEC + 2pApC cos θC +m2
A +m2

C , (2.61)

and this is particularly simple to use in the c.o.m. frame due to the explicit expressions

like (2.59) for the energies (together with p =
√
E2 −m2 for each particle). Notice that

the relation between t and θ is particularly simple in the ultra-relativistic limit, for which

E ' p� m for all particles. Then (2.61) degenerates to

t ' −2EAEC(1− cos θC) = −4EAEC sin2 θC
2

(ultra-relativistic)

and t ' −E
2
cm

2
(1− cos θC) = −E2

cm sin2 θC
2

(ultra-relativistic c.o.m.) . (2.62)

These last formulae show that −s ≤ t ≤ 0, and so is strictly non-positive, at least in the ultra-

relativistic limit. They also show that for generic scattering angles t ∼ E2
cm is generically

similar in size (but opposite in sign) to s, but also that this is not true for small enough

scattering angles (i.e. −t ' EAECθ
2
C � E2

cm for θC � 1).

We shall find that because M is Lorentz invariant it can be compactly written as a

function of the Mandelstam variables, M =M(s, t). The same is true of f , since (2.45) can

be re-expressed as

f(s) = 4pA cm

√
s = 2

√
[s− (mA +mB)2] [s− (mA −mB)2] . (2.63)

For this reason it is useful also to trade sin θC dθC for dt and compactly express the differential

cross section entirely in a manifestly Lorentz invariant way.

Exercise 2.8: Use the definitions of s, t and u in the c.o.m. frame to derive

the following useful expression for the differential Lorentz-invariant phase space
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volume appearing in the cross section:

dχ := (2π)4 δ4(pA + pB − pC − pD)
d3pC

(2π)32EC

d3pD
(2π)32ED

= −δ(s+ t+ u−m2
A −m2

B −m2
C −m2

D)
dtdu

8πξ(s)
, (2.64)

where

ξ(s) = 2 pA cm

√
s =

√
(s−m2

A −m2
B)2 − 4m2

Am
2
B =

1

2
f(s) , (2.65)

and so ξ(s)→ s in the ultra-relativistic limit, where s� m2
A, m

2
B.

The results of the exercise allow the following manifestly invariant form for the differential

cross section

dσ

dt du
(AB → CD) = − M

8πξ(s)f(s)
δ
(
s+ t+ u−m2

A −m2
B −m2

C −m2
D

)
, (2.66)

or, using the δ-function to integrate over u and using the expressions for ξ and f ,

−dσ

dt
(AB → CD) =

M
64πs p2

A cm

=
M

16π [s− (mA +mB)2] [s− (mA −mB)2]
. (2.67)

Exercise 2.9: In Quantum Electrodynamics (QED) the process e+e− → µ+µ−

takes place with an invariant amplitude M given by

M(e+e− → µ+µ−) =
32π2α2

s2

(
u2 + t2

)
, (2.68)

in the ultra-relativistic regime where s, t, and u are much larger than the electron

and muon masses. (This regime is a very good approximation for most applications

to modern accelerators.) Here α = e2/4π~c ' 1/137 is the dimensionless fine-

structure constant. Compute dσ/dudt as a function of s, t and u. Use your

result to compute dσ/dΩ in the c.o.m. frame. Is the result you find isotropic?

Integrate the differential cross section and show that the total cross section is

σtot = 4πα2/(3s). What is σtot in nanobarns for Ecm = 10 GeV?

Exercise 2.10: The process e−µ− → e−µ− in QED is characterized by the

following invariant amplitude

M(e−µ− → e−µ−) =
32π2α2

t2

(
u2 + s2

)
, (2.69)

– 63 –



in the ultra-relativistic regime where s, t, and u are much larger than the electron

and muon masses. As in the previous problem α = e2/4π~c the dimensionless fine-

structure constant. (Notice thatM for this problem differs from the corresponding

quantity in the previous problem only by the interchange t↔ s, a special case of a

general result known as ‘crossing symmetry’.) Compute dσ/dudt as a function of

s, t and u. Use your result to compute dσ/dΩ in the c.o.m. frame. Compare your

result with the Rutherford scattering cross section — see for instance eq. (3.22).

Does your result agree on the size and angular dependence? If not is there a limit

for which it does agree?

Exercise 2.11: In the Standard Model the invariant rate for the process e+e− →
µ+µ− is given near the Z resonance (i.e. Ecm around 90 GeV) by

M(e+e− → µ+µ−) =
(4παz)

2

|s−M2 − iMΓ|2
[(
g4
L + g4

R

)
u2 + 2g2

Lg
2
Rt

2
]
, (2.70)

where we are in the ultra-relativistic regime where we drop electron and muon

masses compared with s, t, and u. In this expression αz = α/s2
wc

2
w with sw =

sin θW and cw = cos θW a parameter of the theory. M and Γ denote the mass and

total decay rate of the Z boson. Finally, the couplings gL and gR are the left- and

right-handed couplings of the electron and muon to the Z, given by gL = −1
2 + s2

w

and gR = s2
w.

Compute dσ/dudt as a function of s, t and u. Use your result to compute dσ/dΩ

in the c.o.m. frame. Does your result have the Breit-Wigner factor — see for

instance eq. (2.21). Use M ' 90 GeV, Γ ' 2.4 GeV and s2
w = 0.23 to compute

the total cross section, σtot, and evaluate the result in nanobarns.

Exercise 2.12: The process e+e− → µ+µ− proceeds both through both the

‘prompt’ process described in Exercise 2.9 and the ‘resonant’ process in Exercise

2.11. Evaluate the total cross section for each of these processes separately at the

energy E = M = 90 GeV. If an accelerator delivers a luminosity L = 1032 cm−2

sec−1 what is the event rate expected at this energy for each of these two processes?

Assuming the rate for each of these processes can be calculated separately from one

another,17 calculate how long the experiment must run in order to distinguish the

resonant process from a 3-standard-deviation (or 3-σ) fluctuation in the prompt

process. (The result of Exercise 1.9 is useful when doing so.) What integrated

luminosity is required to distinguish the resonant process from a 5-σ fluctuation

of the prompt process?
17In reality the total rate is given by summing amplitudes rather than their rates, but this difference turns

out not to matter for this question because these processes do not interfere right at resonance.
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3 Calculational tools II

We now turn to calculating a few cross sections from known interactions in order to see what

measurements of cross sections can tell us about the underlying interactions at play.

3.1 Classical two-body scattering

We start in this section with several examples calculated using classical Newtonian physics.

Besides being instructive in their own right and providing a baseline against which to compare

later quantum calculations, they also include examples of practical historical interest such as

the Coulomb scattering cross section used by Rutherford.

3.1.1 Reduction to a one-body problem

Consider two particles that move on classical trajectories, rA(t) and rB(t), and mutually

interact through a conservative force described by a central potential V = V (r), where r =

|rA−rB| is the distance between the two particles. We know each satisfies Newton’s 2nd Law,

and so denoting time derivatives by over-dots, v = ṙ and a = v̇ = r̈, we have

mA r̈A = FAB and mB r̈B = FBA , (3.1)

where Newton’s 3rd Law implies FAB = −FBA.

The sum of these equations tells us the centre-of-mass moves in a straight line, R̈ = 0,

where (mA+mB)R = mArA+mBrB, so we can simplify the description of the relative motion

of the two particles by referring it to the c.o.m. frame, writing

rA = R +
mB r

mA +mB

and rB = R− mA r

mA +mB

, (3.2)

where r := rA − rB. Eq. (3.1) then implies that the equation of motion for r(t) makes no

reference to R and corresponds to motion of a single particle within a central potential, U(r):

m r̈ = FAB = −∇U(r) = −
(

dU

dr

)
er , (3.3)

with er = r/r the unit vector pointing in the radial direction, and the reduced mass, m,

defined by m−1 = m−1
A +m−1

B .

Exercise 3.1: Consider elastic 2→ 2 for which the particle type does not change,

such as µ+ + e− → µ+ + e− or µ+ + N → µ+ + N for a nucleus N . (Both of

these are special cases of the process A + B → C + D with mC = mA and

mD = mB). Define the lab frame as the frame in which particle B (the electron or

the nucleus) is initially not moving, pB = 0, and choose the initial momentum for

the (anti)muon to be along the positive z-axis: pA = p ez, with initial lab-frame

energy Elab
µ := Elab

A =
√
p2 +m2

µ (where mµ ' 105 MeV is the muon mass).
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Use the invariance of the Mandelstam variable s to derive a formula for the total

centre-of-mass energy (i.e. Ecm = Ecm
A +Ecm

B in the c.o.m. frame) as a function of

Elab
µ . Derive eqs. (2.59) and thereby compute the final energies Ecm

µ
′ = Ecm

C and

Ecm
N,e
′ = Ecm

D in the centre-of-mass frame as a function of Elab
µ . U

Prove that the Mandelstam variable u defined in (2.56) satisfies u = −(pB − pC)2.

Use the Lorentz-invariance of u to compute the lab-frame energy Elab
C as a function

of Ecm and the c.o.m.-frame scattering angle θ (defined by pA · pC = pApC cos θ),

and thereby compute the final lab-frame antimuon energy, Elab
µ
′
, as a function of

its initial energy, Elab
µ , and the c.o.m. scattering angle.

Exercise 3.2: Consider again the elastic 2 → 2 scattering (µ+ + e− → µ+ + e−

or µ+ + N → µ+ + N for a nucleus N) considered in the previous exercise.

(Both of these are special cases of the process A + B → C + D with mC = mA

and mD = mB). Suppose the scattering is isotropic in the centre-of-mass frame,

with differential cross section (dσ/dΩ)cm = `2 for some length scale `. What is

the lab-frame differential cross section for the antimuon as a function of its final

energy: (dσ/dE′µ)lab? Compare your result for antimuon-electron scattering (for

which mC = mD = me � mµ) and for antimuon-nucleus scattering (for which

mC = mD = mN � mµ). What is the total cross section for having the antimuon

lose energy (i.e. for which E′µ < Eµ in the lab frame)? If `2 were the same for

scattering with electrons and with nuclei, which type of scattering is more efficient

at draining energy from an initial antimuon?

3.1.2 Particle trajectories and cross sections

We next integrate the equations of motion to determine the precise trajectory r(t). To this end

we notice two quick integrals of the equations of motion, associated with the two conservation

laws. First, because the force is conservative, taking the dot product of (3.3) with ṙ implies

conservation of energy, Ė = 0, where

E =
m

2
ṙ2 + U(r) . (3.4)

Similarly, taking the cross product of (3.3) with r implies conservation of angular momentum,

L̇ = 0, where L = m r× ṙ.

For scattering we choose coordinates with the origin at r = 0 and choose axes so that the

relative motion is initially parallel to the y direction with speed vi, so vi = ṙ(ti) = vi ey. We

choose this initial trajectory to correspond to initial motion along a line displaced relative to

the y axis in the x direction by an amount b, called the impact parameter. Writing the initial

position as r(ti) = rier = b ex + yiey, the angular momentum is L = m ri × vi = mbvi ez and

so points purely in the z direction, with magnitude L = mbvi that is independent of yi. If we
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Figure 15. The geometry for scattering of a particle by a central potential. (Figure source: Itay Yavin).

choose the initial position to be infinitely far away, yi → ∞, then the total energy becomes

E = 1
2 mv2

i provided we assume U(r)→ 0 as r →∞.

Because L points parallel to the z axis (and L is conserved) the subsequent motion can

be taken to lie completely within the x − y plane. The goal in a scattering problem is to

compute final velocity asymptotically into the future, when v→ vf = vf (ey cos θ + ex sin θ)

and θ is the scattering angle in the c.o.m. frame relative to the initial direction.

To do so we first solve for the trajectories that solve the equations of motion. Using

polar coordinates in the x− y plane to describe r(t) = x(t) ex + y(t) ey, with x = r cosϕ and

y = r sinϕ, the velocity is v = ṙ = vx ex + vy ey with

vx = ẋ = ṙ cosϕ− rϕ̇ sinϕ and vy = ẏ = ṙ sinϕ+ rϕ̇ cosϕ , (3.5)

and so the magnitude of angular momentum is

L = m(xẏ − yẋ) = mr2ϕ̇ , (3.6)

while the instantaneous kinetic energy is

m

2
v2 =

m

2

(
ẋ2 + ẏ2

)
=
m

2

(
ṙ2 + r2ϕ̇2

)
=
m

2
ṙ2 +

L2

2mr2
. (3.7)

The trajectories, r(t) and ϕ(t), are found in principle as follows. First we regard the

energy equation as a first-order differential equation to be solved for r(t), and the result is

then used in the angular-momentum equation which is integrated to solve for ϕ(t). That is,

our two differential equations are

mṙ2

2
+

L2

2mr2
+ U(r) = E =

mv2
i

2
and mr2ϕ̇ = L = mbvi , (3.8)

and so

dr

dt
= ±

√
v2
i

(
1− b2

r2

)
− 2U(r)

m
and

dϕ

dt
=
bvi
r2

. (3.9)
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For scattering we are more interested in the trajectory, r(ϕ), than precisely when we arrive

at any one point on this trajectory as a function of time, and so can take the ratio of the

above two equations to get

dr

dϕ
=
ṙ

ϕ̇
= ±

√
r2

b2
(r2 − b2)− 2r4U(r)

mb2v2
i

. (3.10)

These formulae show what Fig. 15 also indicates: the radial distance, r, initially decreases

(so ṙ < 0) until the trajectory reaches its point of closest approach, where ṙ = 0 instanta-

neously. After this point ṙ > 0 indicating that the radial distance grows with time. As also

shown in the figure, the point of closest approach occurs at the angular position ϕ0 and this

is precisely half of the total change in ϕ as t sweeps from −∞ to ∞. The scattering angle, θ,

is therefore related to ϕ0 by the relation

2ϕ0 + θ = π . (3.11)

The strategy is first to compute ϕ0 and then use (3.11) to obtain θ.

Since the point of closest approach satisfies ṙ = 0 it must occur at a radius, r0, that

satisfies
b2

r2
0

= 1− 2U(r0)

mv2
i

, (3.12)

and so r0 = b in the absence of interactions (as would be expected for a straight-line trajec-

tory). The radius r0 determines ϕ0 through the formula of the orbit, r0 = r(ϕ0), where r(ϕ)

satisfies (3.10), so

ϕ0 =

∫ ∞
r0

dr

dr/dϕ
= b

∫ ∞
r0

dr

r

√
r2 − b2 − 2r2U(r)

mv2i

. (3.13)

This can be obtained in principle by integrating once U(r) is known, after which the scattering

angle is θ = π− 2ϕ0, and for fixed potential and vi dictates θ = θ(b). In principle this can be

inverted to learn b = b(θ) for these trajectories.

The utility of having b(θ) is that this is what governs the differential scattering rate if

an ensemble of particles all sharing the same speed approaches the target with a range of

impact parameters, b. That is, suppose we are given a uniform luminosity, L = nBvi, of

incident particles evenly distributed in impact parameter. Then a number dN = (2πbdb)L
of these lie in an infinitesimal range db about any particular impact parameter b. All of these

particles emerge at late time within a range dθ around the scattering angle θ(b) dictated by

the particle trajectories found above, and so

dN = 2πbL
∣∣∣∣dbdθ

∣∣∣∣ dθ , (3.14)
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and so the differential cross section is dσ = dN/L and is given by

dσ

dθ
= 2πb(θ)

∣∣∣∣dbdθ

∣∣∣∣ or
dσ

dΩ
=
b(θ)

sin θ

∣∣∣∣dbdθ

∣∣∣∣ . (3.15)

Clearly knowledge of the potential U(r) allows b(θ) — and hence dσ/dθ — to be calculated.

3.1.3 Scattering from a hard sphere

The simplest case is the case of a hard sphere, for which U(r) = 0 for r > R and U =

∞ for r < R. In this case an incoming particle experiences a purely normal force at the

sphere’s surface that requires the sign of the radial component of velocity to instantaneously

change sign without affecting the tangential component. Energy conservation then requires

the reflected radial component to have precisely the same magnitude as it did before reflection.

Together these imply the trajectory reflects off the sphere’s surface, departing with an angle

to the surface normal that is the same size as the angle it had to the normal when it came in

(see Figure 16).

Figure 16. The geometry for scattering from a hard sphere. (Figure source: Itay Yavin).

We first seek the angular position, ϕ0, of closest approach and in this case it is simply the

position where the trajectory meets the sphere. When b > R the trajectory misses the sphere

and so remains a straight line, and consequently ϕ0 = π
2 (which means θ = π − 2ϕ0 = 0, so

no scattering). But if b ≤ R then the geometry of Figure 16 shows that ϕ0 is related to b and

R by

b = R sinϕ0 = R cos
θ

2
, (3.16)

and the second equality again trades ϕ0 for θ using (3.11). From this we see |db/dθ| =
1
2 R sin θ

2 and so

dσ

dΩ
=
R cos(θ/2)

sin θ

[
R sin(θ/2)

2

]
=
R2

4
, (3.17)
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which uses the multiple-angle formula sin θ = 2 sin θ
2 cos θ2 .

We find the scattering is isotropic: because the right-hand-side is independent of θ there

is equal differential likelihood to scatter into any particular angular direction. The total cross

section is found by integrating dσ/dΩ over the 4π solid angle, and so gives

σtot =

∫
dσ

dΩ
dΩ = πR2 , (3.18)

and so agrees with the sphere’s geometric cross section (as one might have guessed).

3.1.4 Rutherford scattering

The classical scattering of two point charges due to their Coulomb interaction is called Ruther-

ford scattering, and is the result to which Rutherford compared his scattering measurements

when discovering the nucleus.

To obtain the cross section in this case we specialize the above discussion to U(r) = κc/r

where κc = qAqB is the product of charges in Gaussian units (or κc = qAqB/4πε0 in SI units).

In this case the condition (3.12) that fixes the radius, r0, of closest approach becomes

b2

r2
0

= 1− 2κc
mr0v2

i

which inverts to
1

r0
=

1

b

(√
1 + x2 − x

)
for x :=

κc
mv2

i b
. (3.19)

The dimensionless quantity x is the ratio of Coulomb energy at distance b to the initial kinetic

energy, and so is a measure of the importance of the Coulomb interaction for the scattering

event (with r0 → b, as appropriate for a straight trajectory, as x→ 0).

To obtain the angular position, ϕ0, of closest approach we perform the integration in

(3.13), which for this potential can be done in closed form

ϕ0 = b

∫ ∞
r0

dr

r
√
r2 − b2 − 2κcr

mv2i

=

∫ b/r0

0

du√
1− 2xu− u2

= arccos

(
x√

1 + x2

)
, (3.20)

which uses the change of integration variables u = b/r. Notice ϕ0 → π
2 when x → 0, as it

should, although ϕ0 6= π
2 for any finite b, no matter how large. This is a reflection of the

extremely long range of the Coulomb interaction.

Inverting gives x = cotϕ0 and so

b =
κc
mv2

i

tanϕ0 =
κc
mv2

i

cot
θ

2
, (3.21)

using (3.11) to trade ϕ0 for θ. Using this expression for b(θ) in the differential cross section

then gives the standard result

dσ

dΩ
=

(
κc

2mv2
i

)2

csc4 θ

2
. (3.22)

– 70 –



Exercise 3.3: Repeat the arguments used for Rutherford scattering to calculate

the classical centre-of-mass scattering angle as a function of impact parameter,

θ(b), for two particles with initial relative speed vi interacting through the poten-

tial U(r) = κ/r2, with κ > 0. Invert this to obtain b(θ) and use the answer to

compute the differential cross section, dσ/dΩ. Is the small-angle scattering you

find stronger or weaker than for Rutherford scattering? Why might this be so?

Suppose the attraction were attractive (κ < 0) with |κ| > 1
2mv

2
i . Do you see any

problem computing θ(b) in this case?

Several things are noteworthy about the Rutherford expression (3.22).

• First off, because it depends on κ2
c the result for dσ/dΩ does not depend on the relative

sign of qA and qB. This is because the scattering trajectories are hyperbolae for either

sign, and it does not matter for the cross section whether the particle trajectories are

deflected towards or away from one another so long as the deflection angle for a given

b is the same.

• Second, the incidence of very large scattering angles can be high, as Rutherford noticed.

Integrating (3.22) through a range of angles θmin ≤ θ ≤ π, we find

σ(θ > θmin) = 2π

∫ π

θmin

(
dσ

dΩ

)
sin θdθ = π

(
κc
mv2

i

)2

cot2 θmin

2
, (3.23)

which becomes π(κc/mv
2
i )

2 when θmin = π
2 , as appropriate for the hemisphere where

the incident particle back-scatters in the c.o.m. frame. This is like the area of a sphere

whose radius is κc/mv
2
i , and this length scale can be much larger than the physical size

of the individual charges because the Coulomb force has such a long range. A natural

choice for the lower limit is set by the width of the incident beam of particles, since

this imposes a maximum impact parameter. For Rutherford scattering (3.21) implies

cot(θmin/2) = mv2bmax/κc, and so

σ(b < bmax) = πb2max . (3.24)

• Third, although not realistic in practice (since beams are not infinitely large), notice that

in principle the integrated cross section diverges if it is integrated right down to θmin →
0. This arises because small-angle scattering corresponds to large impact parameter,

b, and its divergence reflects the fact that there is small but nonzero scattering even

for arbitrarily large b. Again this is the Coulomb interaction’s long range at work,

though in practical settings one of our approximations will really fail before we get

out to arbitrarily large distances. Sometimes this is because of the finite beam size,

but it also can happen that the charge is screened at large distances by competition
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with other particles with opposite charges that are attracted to the Coulomb source.

This is what happens for low-energy α particles scattering from atomic nuclei, since

for impact parameters larger than the atomic size the atomic electrons can screen the

nuclear charge.

3.1.5 Light deflection by the Sun

Calculations of scattering with a 1/r potential also apply when the interaction at play is

Newton’s law of gravity rather than the Coulomb law, although for gravity systems are so big

that one does not normally have beams of particles comparable to the size of the scatterer.

The above expression for θ(b) does apply to the motion of individual particles in a central

gravitational field, however, once we make the replacement κc → κg = GmAmB. Keeping in

mind that m = mAmB/(mA+mB) is the reduced mass, we see that for gravitational scattering

tan
θ

2
=
GmAmB

mv2
i b

=
G(mA +mB)

v2
i b

. (3.25)

In the special case of light moving past the Sun we can take v = c as well as mA +mB 'M�
to be the solar mass, in which case we find tan θ

2 '
θ
2 ' GM�/bc

2, where the small-angle

expansion of tan θ
2 is justified by the small size of GM�/bc

2. For instance, taking b ∼ R� '
700, 000 km and using 2GM�/c

2 ' 3.0 km gives θ ' 2GM�/bc
2 ' 4.3× 10−6 radians, or 0.9

seconds of arc.

Of course it is suspicious to apply Newtonian formulae to relativistic systems, for which

Einstein provided the first proper calculation of light deflection and obtained a result twice as

large: θ ' 4GM�/bc
2. Observations of the deflection of starlight near the Sun (which become

visible during a solar eclipse, for instance) agree with Einstein’s value, and this agreement was

partly what led to the acceptance of his theory of gravity: the General Theory of Relativity.

3.1.6 Impulse approximation

In principle the above calculations provide a definitive answer to the question of how particles

scatter classically when they interact through a central conservative force. Although we got

lucky with the Rutherford problem which could be solved in closed form, in general the

determination of r0 and ϕ0 must only be approximate. One way to do so is to evaluate them

numerically, in which case the approximation can be very good. But it is also useful to have

analytic approximations, both to check numerics but also to be able to explore dependence

on parameters when new kinds of interactions are considered.

One such an approximation is the impulse approximation, which applies when the inter-

actions are weak and so the scattering angles are small. Besides being useful in its own right,

discussing it here also sets up a similar technique that is useful when we consider quantum

scattering.
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Figure 17. The geometry for the impulse approximation. (Figure source: Itay Yavin).

When the interaction is weak the real trajectory taken by a particle is not much different

from a straight line. The impulse approximation starts from the observation that the net

momentum transfer to a particle is given by ∆p =
∫

dt ṗ =
∫

dtF, and it is the component

of ∆p that is transverse to the initial momentum, pi, that governs the deflection angle (while

forces parallel to the trajectory speed the particle up and slow it down, rather than deflecting

its trajectory).

Of course doing this integral is hard, partly because it requires knowing the detailed

trajectory in order to compute the applied force. The impulse approximation side-steps this

complication by taking the trajectory at leading order to simply be the straight line that

would have been taken without the application of the force (see Figure 17):

∆p⊥ =

∫ ∞
−∞

dt F⊥ =

∫ ∞
−∞

dx

vi
F⊥ =

∫ ∞
−∞

dx

vi
F sinϕ =

b

vi

∫ ∞
−∞

dx
F√

x2 + b2
, (3.26)

with the scattering angle then computed using

θ ' tan θ ' ∆p⊥
pi

=
b

mv2
i

∫ ∞
−∞

dx
F√

x2 + b2
. (3.27)

For example, as applied to the Coulomb force we have F = κc/(x
2 + b2) and so

θ ' κc
mv2

i b

∫ ∞
−∞

du

(u2 + 1)3/2
=

2κc
mv2

i b
. (3.28)

This indeed agrees with the small-angle expansion of the full Coulomb result, (3.21), which

says tan(θ/2) = κc/(mv
2
i b). This result also better quantifies precisely when the impulse

approximation works, because it says that the scattering is through small angles (the regime

for which the impulse approximation is justified) only if κc/b � mv2
i ; i.e. if the impact

parameter is large enough that the Coulomb energy at closest approach is much smaller than

the initial kinetic energy.
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Less trivially, suppose one of the two particles discussed to this point actually consists

of two particles that are a distance a � b from one another and carry equal and opposite

charges. Suppose in particular these two sub-charges are displaced from one another by a

distance a along the y axis, with charge qB situated at y = +a/2 and charge −qB located at

y = −a/2. Then, for a� b, the impulse approximation predicts

F⊥,± = ± κc
x2 + (b∓ a/2)2

b√
x2 + b2

' ± κcb

(x2 + b2)3/2

[
1± ab

x2 + b2
− a2(x2 − 3b2)

4(x2 + b2)2
+ · · ·

]
,

(3.29)

and so these sum to give

F⊥ =
κcab

2

(x2 + b2)5/2
+ · · · . (3.30)

The leading contribution to the scattering angle then becomes

θ ' κca

mv2
i b

2

∫ ∞
−∞

du

(u2 + 1)5/2
=

4κca

3mv2
i b

2
. (3.31)

This predicts a small-angle cross section that as θ → 0 is

dσ

dΩ
' 2κca

3mv2
i θ

3
. (3.32)

This varies less strongly than the 1/θ4 of the Rutherford result, and does so because

the net force falls off more quickly than does the Coulomb interaction due to the two source

particles having opposite charges (so their far-field Coulomb forces cancel). What survives

dominantly at large distances is the dipole interaction, for which the potential falls off like

1/r2 rather than 1/r, and because small-angle scattering occurs at large b this faster falloff

translates into reduced small-angle scattering.

Exercise 3.4: For a conservative, central force, where F = −∇U for U = U(r)

and r = |r|, show that the impulse approximation predicts

θ ' −
∫ ∞
−∞

dx

r

dU

dr
= −

∫ ∞
−∞

dx

x

dU

dx
, (3.33)

where r =
√
x2 + b2. It is tempting to integrate this by parts and use U → 0

as r → ∞ to derive θ ' −
∫∞
−∞ dx(U/x2). Does this last result give the correct

answer when U = κ/r? (Does its sign agree with (3.33) in this case?) If not, what

went wrong in the integration-by-parts argument?

Exercise 3.5: Use the impulse approximation to compute the scattering angle

θ(b) and differential cross section dσ/dΩ for scattering from a conservative, central

potential of the form U(r) = κU/r
n where r = |r| and n ≥ 1.
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3.2 Quantum potential scattering

We next turn to the calculation of scattering processes using non-relativistic quantum me-

chanics. The arguments parallel the developments given above for classical scattering. In this

section the connection is made between the cross section and the general properties of the

quantum wave-function. The next section then addresses how to compute this wave-function

given the properties of an interaction potential.

The starting point for quantum systems is the time-dependent Schrödinger equation,

since this governs how systems evolve in time. Our interest is in particular in the evolution of

the two-particle wave-function, Ψ(rA, rB, t), describing two scattering particles that interact

with one another through a central potential, U(r), with r = |rA − rB|. To start with we

ignore any possible internal quantum numbers (such as electronic energy levels for an atom)

from which energy can be extracted (or deposited) and so concentrate for the time being on

elastic scattering.

The system of interest is therefore

i
∂Ψ

∂t
= − 1

2mA

∇2
AΨ− 1

2mB

∇2
BΨ + U Ψ , (3.34)

from which we seek to predict the state at late times, Ψ(t → ∞), given initial conditions

Ψ(t→ −∞). Here ∇A is the usual gradient with respect to rA, and ∇B is its counterpart for

rB.

3.2.1 The equivalent one-body problem

We start by converting the two-body scattering problem into a one-body problem, by isolating

the centre of mass. To this end define as before R = (mArA + mBrB)/(mA + mB) and

r = rA− rB, and change variables from Ψ(rA, rB, t) to Ψ(R, r, t) in the Schrödinger equation,

to get

i
∂Ψ

∂t
= − 1

2M
∇2
RΨ− 1

2m
∇2Ψ + U(r) Ψ , (3.35)

where M := mA + mB is the total mass and m = mAmB/M is the reduced mass. Here ∇R

denotes the gradient with respect to R and ∇ represents the same for r.

This now has terms involving only R and those involving only r, and this reflects in the

quantum theory how these evolve independently, just as was true for the classical theory.

We can therefore choose our state to be a product state: Ψ(R, r, t) = χ(R, t)ψ(r, t), so that

their probabilities are initially uncorrelated. Once this is true for an initial time the same

remains true for later times since the Schrödinger equation becomes equivalent to the pair of

equations

i
∂χ

∂t
+

1

2M
∇2
Rχ = λχ

i
∂ψ

∂t
+

1

2m
∇2ψ − U(r)ψ = −λψ , (3.36)
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for λ an arbitrary constant. The first of these describes the free-particle motion of the

overall c.o.m. while the second describes single-particle Schrödinger equation for motion in

the presence of the potential U . The constant λ amounts to the freedom to choose our zero

of energy for either the R system or the r system but not both, and we use this freedom to

set λ = 0 for the ψ equation. We arrive in this way to the equation governing the relative

motion of the two particles, whose solutions we wish to study in more detail:

i
∂ψ

∂t
= − 1

2m
∇2ψ + U(r)ψ . (3.37)

Also of interest is its time-independent analog, satisfied by energy eigenstates whose time-

dependence is particularly simple: ψ(r, t) = ψ(r) e−iEt:

− 1

2m
∇2ψ + U(r)ψ = Eψ . (3.38)

Finally, we assume U(r)→ 0 for large r so that the interactions turns off when particles

are well-separated. This means that for very large r we have approximate solutions to (3.38)

of the plane-wave form

ψE(r, t) ∝ e−i(Et−k·r) (for large r) , (3.39)

where k2 := k ·k = 2mE but the direction of k is arbitrary. Of course any linear combination

of these solutions is also an allowed energy eigenstate (for sufficiently large r).

3.2.2 Time-dependent vs time-independent

Since scattering involves nontrivial time evolution one might think that really only the time-

dependent Schrödinger equation should be of interest. After all, energy eigenstates do not

evolve nontrivially in time at all (and momentum eigenstates have the same probability to be

everywhere), so how can they describe something as temporal as scattering? This section ar-

gues that this reasoning need not preclude using the time-independent equation for scattering

problems. (Those needing no convincing on this point should skip directly to the scattering

boundary condition, given in eq. (3.44).)

It can do so because of the specific nature of a scattering problem. For this we start

with particles that do not much interact initially, usually because they are too far apart.

Scattering happens because we bring these particles much closer together, but only briefly.

They do something interesting because some interaction is temporarily important, but then

turns off again as the final-state particles again separate. It is true that one way to approach

this is to take our initial states as wave packets (and so chosen not to be exact momentum

or energy eigenstates, though not so narrowly that the uncertainty relations preclude our

assigning the packet both position and momentum to within the experimental accuracy). We

would then let these packets evolve using the time-dependent equation, (3.37), and solve for

the subsequent evolution into separating wave-packets. But this is not the only way.
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Instead we adopt what is an equivalent description, but one that allows us to use en-

ergy eigenstates and so instead use (3.38). This approach is based on the observation that

eigenstates with E > U(∞) are usually degenerate (since E doesn’t care about the direction

of the momentum) and so boundary conditions are not usually completely specified just by

normalization conditions (in the same way they are for bound states, say). Consequently

these boundary conditions can be used to formulate the scattering problem using energy

eigenstates.

To see what this means, recall how things work for scattering of a particle by a square

well in first exposures to single-variable quantum mechanics. In regions where the potential

is constant, U = U0, the energy eigenstates are degenerate because both eikx and e−ikx have

the same energy: E = U0 + k2/2m. For bound states within the square well the same is not

true because these have energy E < U0 at large x, and so the eigenstates are instead ekx

and e−kx. The degeneracy is then broken (and the energy fixed to a quantized value) by the

requirement that the states do not grow exponentially as x→ ±∞. But the same conditions

are not available for states with E > U at infinity, since in this case neither of eikx and e−ikx

have better normalization properties than the other. Instead, for particles approaching the

potential from the left (say) the boundary conditions are normally chosen to include both

incoming and outgoing (reflected) waves — i.e. ψ ∝ e−i(Et−kx) +Re−i(Et+kx) — to the left of

the potential, but with only outgoing waves (with no ingoing wave) — i.e. ψ ∝ Te−i(Et−kx)

— to the right. Determining the unknown coefficients R and T is the core of a scattering

problem formulated this way, since these respectively give the amplitudes for reflection from

and transmission through the potential. Energy eigenstates chosen in this way are called

scattering eigenstates.

Figure 18. The geometry for scattering in the Schrödinger equation. (Figure source: Itay Yavin).

For scattering in three dimensions we do a similar thing. In this case — see Figure (18)
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— we imagine the incoming particles to arrive from the negative z axis (say) before impinging

on the scattering potential. This corresponds to a solution to (3.38) with U = 0 of the form:

ψi = C e−i(Et−kz) , (3.40)

where k2 = 2mE and C is a normalization constant whose value doesn’t matter in what

follows.

We expect the outgoing wave, after scattering, in this case should head out radially in

all directions (possibly with an amplitude modulated with direction) as shown in Figure 18.

More precisely, for r →∞ the asymptotic solution should have a component looking like an

outgoing spherical wave. In the absence of a potential the Schrödinger equation in spherical

coordinates is

−∇2ψ = −
[
∂2ψ

∂r2
+

2

r

∂ψ

∂r
+

1

r2
∆ψ

]
= 2mE ψ , (3.41)

where ∆ is the following differential operator that depends only on the angular variables:

∆ψ =
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2
. (3.42)

Spherical waves are approximate solutions to this equation of the form

ψout(r, t) ∝
e−i(Et−kr)

r
(out-going) or ψin(r, t) ∝ e−i(Et+kr)

r
(in-going) (3.43)

where (again) k2 = 2mE. These solutions are approximate inasmuch as they fail18 to solve

(3.41) only by terms that are subdominant in powers of 1/r. We can also allow an angle-

dependent normalization factor, w(θ, φ), and still solve the equation for large enough r because

the angular piece of (3.41) is subdominant at large r (more about this below).

Combining both the incoming and outgoing waves, the scattering boundary condition we

seek for large r is a linear combination of the incoming plane wave and an outgoing spherical

wave. Consequently we ask ψ at large distances to have the form

ψ(r, θ, φ, t)→ C

[
e−i(Et−kz) + w(θ, φ)

ei(kr−Et)

r

]
(for very large r) . (3.44)

The explicit form for w(θ, φ) depends on the precise form of U(r) that is responsible for the

scattering. It is w(θ, φ) that directly carries the information about the interaction out to

spatial infinity and so determines the cross section, as is now shown explicitly.

18As we see below the exact solutions to (3.41) involve spherical Bessel functions, which look like linear

combinations of incoming and outgoing spherical waves asymptotically as r →∞.
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3.2.3 Cross section and scattering amplitude

To make the connection between w and dσ recall that the probability density (probability per

unit volume) carried by a wave-function is ρ(r, t) = ψ∗ψ while the probability flux (probability

flow per unit area per unit time) is

j(r, t) =
i

2m
(ψ∇ψ∗ − ψ∗∇ψ) . (3.45)

This latter is called the probability flux because the Schrödinger equation implies the proba-

bility density is conserved inasmuch as they are related by ∂ρ/∂t+∇ · j = 0. This expresses

conservation of probability because the only way the probability, P (R) =
∫
R d3x ρ, of a

particle being within a region, R, can change is by physically moving probability out through

the surface, ∂R, that marks it boundary, via the probability flux, j. That is:

dP (R)

dt
=

∫
R

d3x
∂ρ

∂t
= −

∫
R

d3x ∇ · j = −
∮
∂R

d2x n · j , (3.46)

where d2x denotes a differential surface area on the boundary, ∂R, and n is its outward-

pointing normal. The last equality uses Stokes’ theorem to relate the volume integral over

∇ · j to the surface flux: i.e. the surface integral of n · j.

Exercise 3.6: Prove that the time-dependent Schrödinger equation for ψ implies

that ρ = ψ∗ψ and j = (i/2m)(ψ∇ψ∗ − ψ∗∇ψ) are related by ∂ρ/∂t +∇ · j = 0.

This equation can also be written as ∂µj
µ = 0 where jµ = {ρ, j} is a 4-vector.

Use the Lorentz-transformation rule for a 4-vector to calculate how ρ and j are

related for observers in two frames that move relative to one another with speed

v. Prove also that ∂µj
µ is a Lorentz invariant quantity.

Applied to the incoming wave, ψi = C e−i(Et−kz), the probability density and flux become

ρ = |C|2 and

j = − i

2m
(2ikez)ψ

∗
i ψi =

ρk

m
ez = ρ vi ez = |C|2vi ez . (3.47)

From this we see that for N such particles the average density of particles is nB = Nρ and

the average particle flux of initial particles — or luminosity — is

L = N j · ez = Nρvi = nBvi = N |C|2vi . (3.48)

Similarly, applied to the out-going spherical wave at large r we have

j = − i

2m
(2ik er)

|C|2|w(θ, φ)|2

r2
+ (terms falling faster than 1/r2)

=
|C|2|w(θ, φ)|2vi

r2
er + (terms falling faster than 1/r2) , (3.49)
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and so points radially, up to terms falling faster than 1/r2. The final equality uses the

elasticity of the scattering to conclude that k is the same as for the initial state and so we

can again use k/m = vi.

For N particles the rate with which particles pass through a surface element subtending

solid angle dΩ at a large distance r whose normal, n = er, points in the radial direction

labelled by (θ, φ) is

dN = lim
r→∞

N j · n(r2dΩ) = N |C|2vi|w(θ, φ)|2dΩ , (3.50)

where r2dΩ is the area of the surface element. Dividing this by the luminosity gives the

differential cross section, dσ, and so we arrive at the desired result

dσ

dΩ
=

1

L
dN

dΩ
= |w(θ, φ)|2 . (3.51)

w(θ, φ) is the scattering amplitude, whose square determines the scattering cross section.

For the purposes of scattering everything comes down to computing w(θ, φ). In principle

this is done by explicitly solving (3.38) and fixing the integration constants by requiring

agreement with the asymptotic form (3.44) at large r. In practice this must often be done

numerically, though it is possible to solve explicitly in closed form for some special cases like

the scattering from a hard sphere or for the Coulomb potential, as we describe in the next

section. More generally we require an approximation scheme, several of which are described

in the following sections.

3.2.4 Partial waves

To solve for w(θ, φ) we start by partially solving (3.38) in spherical polar coordinates, to

more precisely pin down its angular dependence. For a central potential, U = U(r), angular

momentum conservation plays an important role in describing the angular dependence for

classical scattering and the same is also true for quantum scattering from a central potential.

The general scattering solution, ψ, to the time-independent Schrödinger equation can

be written as a linear combination, ψ =
∑

``z
C``z ψ``z , of a basis19 of solutions that have a

separated form: ψ``z(k; r, θ, φ) = R`(kr)Y``z(θ, φ), where the functions R` and Y``z satisfy

the radial equation

d2R`
dr2

+
2

r

dR`
dr

+

[
2mE − `(`+ 1)

r2
− 2mU(r)

]
R` = 0 , (3.52)

and angular equations

−∆Y``z = `(`+ 1)Y``z and
∂Y``z
∂φ

= i`zY``z . (3.53)

19And if this all sounds like expanding a vector in a complete set of basis vectors in linear algebra, it should!
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Here ` = 0, 1, 2, · · · is the total angular-momentum quantum number, with L2ψ``z = −∆ψ``z =

`(`+1)ψ``z , while `z ∈ {−`,−`+1, · · · , `−1, `} is the ‘magnetic’ quantum number that gives

the eigenvalue of the z-component of L: Lzψ``z = −i∂ψ``z/∂φ = `zψ``z .

In practice we are interested in solutions with `z = 0, because both L and Lz are conserved

(for central potentials, U(r)) and acting with Lz on the initial state gives

Lzψi = Lz

[
C e−i(Et−kz)

]
= Lz

[
C e−i(Et−kr cos θ)

]
= 0 . (3.54)

For `z = 0 the angular wave-function, Y``z(θ, φ), simplifies to a Legendre polynomial (an

order-` polynomial in cos θ):

Y` 0 ∝ P`(cos θ) . (3.55)

(a) j`(x) (b) y`(x)

Figure 19. Plots of the first few spherical Bessel functions. (Figure source: Wikipedia

"https://en.wikipedia.org/wiki/Bessel function).

Let’s now focus on regions where U → 0, which we assume includes the regime at very

large r, and so consider solutions to the Schrödinger equation when U vanishes. General

solutions to the radial equation, (3.52), are given for U = 0 by20

R` = A` j`(kr) +B` y`(kr) , (3.56)

where k =
√

2mE, A` and B` are integration constants and j`(x) and y`(x) are spherical

Bessel functions (with j`(x) the ones that are finite as x → 0), the first few of which are

plotted in Figure 19. They can be written as order-` polynomials in (trig functions)/x, but

of most importance later on is their asymptotic forms for large and small arguments:

j`(x)→ x` and y`(x)→ −x−`−1 as x→ 0 , (3.57)

20These are solutions provided U(r) falls for large r sufficiently quickly, though U(r) ∝ 1/r turns out not

to be quick enough. This need not matter in practice for scattering problems since most quantities of interest

depend only on the large-r asymptotic form of j`(kr) and y`(kr), which remain valid even when U(r) ∝ 1/r.
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while

j`(x)→ sin(x− π`/2)

x
and y`(x)→ −cos(x− π`/2)

x
as x→∞ . (3.58)

It is the large-x version that is of interest when enforcing the boundary condition at large

r, and using (3.58) in (3.56) shows that

R` →
A` sin(kr − π`/2)−B` cos(kr − π`/2)

kr

= C`
sin(kr − π`/2 + δ`)

kr
, (3.59)

where the second equality makes a conventional change of notation for the integration con-

stants: A` = C` cos δ` and B` = −C` sin δ`.

The above considerations make the angular dependence of ψ at large r more explicit,

since

ψ(r, θ)→
∞∑
`=0

C`

[
sin(kr − π`/2 + δ`)

kr

]
P`(cos θ) (large r) . (3.60)

To determine w(θ, φ) we determine C` using the boundary condition that this last form must

agree with (3.44), and to do this we must also expand21 the in-coming wave ψi = Ce−i(Et−kz)

in terms of the ψ``z ’s. The required expansion is

eikz = eikr cos θ =
∞∑
`=0

i`(2`+ 1) j`(kr)P`(cos θ) (3.61)

→
∞∑
`=0

i`(2`+ 1)

[
sin(kr − π`/2)

kr

]
P`(cos θ) (large r) .

To fix the C`’s we demand that (3.60) approach the sum of (3.61) and the out-going

wave, w(θ, φ) eikr/r. For this to be possible it must be that all of the in-coming waves in

(3.60) are equal to those in (3.61) (for each `) once we expand the sine and cosine in terms of

e±ikr. Once this is done we collect the terms in front of the out-going wave in the difference

between (3.60) and (3.61) to read off w. Equating the coefficients of in-coming waves gives

C` = i`(2`+ 1) eiδ` , (3.62)

and using these for the out-going waves then gives our desired expression for w:

w(θ, φ) = w(θ) =

∞∑
`=0

(2`+ 1)w`(k)P`(cos θ) with w`(k) =
1

k
eiδ` sin δ` . (3.63)

21This must be possible because plane waves are a solution to the free Schrödinger equation, and the series

in ψ``z gives the most general solution.
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This expansion of w(θ) as a sum over angular-momentum quantum number is called the

partial-wave expansion, and δ` is called the `-th phase-shift. In principle everything is deter-

mined once the phase-shift is known, and this is found by solving the Schrödinger equation

in the presence of U(r) and using this to determine the ratio of integration constants, B`/A`,

appearing in (3.56). Then we fix δ` using its definition

tan δ` = −B`/A` . (3.64)

When tracking the k-dependence it is worth keeping in mind that δ` is itself a function of k.

Inserting (3.63) into the cross-section formula, (3.51), then gives a partial-wave decom-

position of σ:

σ =

∫
dΩ

(
dσ

dΩ

)
= 2π

∫ π

0
|w(θ)|2 sin θ dθ

= 4π

∞∑
`=0

(2`+ 1)|w`(k)|2 =
4π

k2

∞∑
`=0

(2`+ 1) sin2 δ` , (3.65)

which performs the θ integral using the orthogonality of the Legendre polynomials:∫ π

0
Pr(cos θ)Ps(cos θ) sin θ dθ =

2

2r + 1
δrs . (3.66)

In principle we now have all the information needed to explicitly compute the scattering

properties given an interaction potential, U(r).

Notice that using (3.63) to evaluate w in the forward direction — i.e. at θ = 0, using

P`(1) = 1 — gives a result very similar to (3.65):

w(θ = 0) =
1

k

∞∑
`=0

(2`+ 1)eiδ` sin δ` , (3.67)

and so we see — for any scattering potential U(r) — that

σ =
4π

k
Im w(θ = 0) . (3.68)

This very general result is called the optical theorem and reflects the unitarity of quantum

mechanics. That is, the sum of all of the scattering probabilities must correspond to the

depletion of the probability of not scattering, and so continuing on into the forward direction.

3.2.5 Hard-sphere scattering

As our first example consider again scattering from a hard sphere: U = 0 for r > R and

U → ∞ for r < R. In this case the radial solution exterior to the sphere is given by (3.56)

and we must impose the boundary condition that ψ(r = R, θ, φ) = 0 for all values of θ and

φ. This implies that R`(r = R) = 0 for each ` and so we read off

tan δ` = −B`
A`

=
j`(kR)

y`(kR)
. (3.69)
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In principle this is the answer and we can go home.

Notice that the trigonometric functions in j` and y` imply this expression predicts an

oscillatory structure (superimposed on an overall 1/k2 envelope) for scattering cross sections

when they are regarded as a function of k =
√

2mE. Physically these oscillations are due to

wave-like diffraction of the probability amplitude as it passes the hard sphere.

This diffraction is particularly strong in the low-energy limit, kR � 1, for which the

wavelength of the incident particles is larger than the size of the target. In this limit we use

the small-x asymptotic forms for the spherical Bessel functions, (3.57), to find

tan δ` ' δ` ' −(kR)2`+1 � 1 , (3.70)

which shows that only the first few terms of the partial-wave expansion are important at low

energies. (This makes the low-energy limit one for which expanding in partial waves is most

useful.)

Keeping only the leading power of kR we can drop all but ` = 0 (what is called S-wave

scattering), and read off

w(θ) ' w0(k) = −kR
k

= −R and so
dσ

dΩ
' |w0|2 = R2 . (3.71)

This shows that the scattering at low energies is isotropic — as must be ` = 0 scattering,

since P0(cos θ) = 1 — and that the total cross section goes to the finite low-energy value

σ ' 4πR2 . (3.72)

This is larger than the classical result (the geometrical target area) by a factor of 4. It is

larger because the diffraction of the incident wave around the target allows the target to

influence evolution at distances beyond its geometrical size.

Exercise 3.7: Calculate the differential cross section dσ/dΩ for s-wave (i.e.

` = 0) quantum scattering from a repulsive delta-function potential U(r) = κ δ3(r)

(with κ > 0) using the Schrödinger equation. [Hint: you can trade the delta-

function potential for the boundary condition 4πr2∂rψ = 2mκψ for infinitesimal

(but nonzero) r = ε.]

3.2.6 Coulomb scattering

The Schrödinger equation for a Coulomb potential, U = κc/r, can be exactly solved in closed

form in spherical coordinates, much as described above. In this case the radial wave-functions

are given in terms of confluent hypergeometric functions and the partial-wave phase shifts

work out to be (see any undergraduate Quantum text)

e2iδ` =
Γ(`+ 1− iµ)

Γ(`+ 1 + iµ)
, (3.73)
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where µ := mκc/k = κc/vi and Γ(z) is Euler’s gamma function. w(θ) is found by performing

the sum over ` (or by solving directly for it in the Schrödinger equation using parabolic

coordinates rather than spherical polar coordinates) and gives

w(θ) =
µ eiη

2k sin2(θ/2)
, (3.74)

where the phase is η := −µ ln[sin2(θ/2)] + π + 2 arg Γ(1 + iµ), where ‘arg’ means ‘the phase

of’ a complex number.

The corresponding differential cross section becomes

dσ

dΩ
= |w(θ)|2 =

(
κc

2mv2
i

)2

csc4 θ

2
, (3.75)

in perfect agreement with the classical result, (3.22). (It was apparently a great source of

pride for Rutherford that his formula was one of the few that survived the advent of quantum

mechanics.)

Exercise 3.8: Solve the 3-dimensional time-independent Schrödinger equation

for a particle of mass m interacting with the repulsive inverse-square potential,

U(r) = κ/r2, with κ > 0. Separate variables in spherical polar coordinates,

ψ(r, θ, φ) = R(r)Y``z(θ, φ) and derive the radial ordinary differential equation

satisfied by R(r). In what ways does the result resemble the radial equation in

the absence of a potential? Based on this, what are the general solutions to the

radial equation for the inverse-square potential? For ` = 0 what is the solution

that ensures ψ(r, θ, φ) is nonsingular at r = 0 and goes over to the expected answer

when κ→ 0? What is the s-wave differential scattering cross section, dσ/dΩ, for

` = 0 and small mκ?

3.2.7 An attractive square well

Consider next a finite square well, with U = 0 for r > R and U = −U0 for r < R. Besides

being solvable, as we shall see this is a poor man’s model of nuclear forces: attractive but

with finite range. When solving the Schrödinger equation for this potential the heavy lifting

comes when we solve the radial equation, (3.52), which simplifies a bit if we define u`(r) by

R`(r) = u`(r)/r to become

d2u`
dr2

+

[
2mE − `(`+ 1)

r2
− 2mU(r)

]
u` = 0 . (3.76)

The case ` = 0 (which we’ve seen should dominate in any case at low energies or for short

ranges — i.e. when kR � 1) is particularly simple, with general solution for u(r) := u0(r)

given by

u(r) := A cos(kr) +B sin(kr) with k =
√

2m(E − U) (3.77)
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and A and B integration constants.

There are several cases to consider. First, since U differs inside and outside the well

we take solutions of this form separately in these two regions, after which we must demand

continuity of both u(r) and u′(r) across r = R. The kind of solutions obtained outside the

well depend on whether or not E is positive or not (and so on whether k is real or imaginary).

Although our main focus is scattering (E > 0) we consider both cases in turn in order to

connect with an earlier result.

Bound states: −U0 < E < 0

In this case we write E = −EB with U0 > EB > 0 and k = iκ for r > R so that the exterior

solution becomes

uout(r) = Aout e
+κr +Bout e

−κr where κ =
√

2mEB . (3.78)

and so normalizability requires we take Aout = 0. For r < R we instead have (3.77) with

k =
√

2m(E − U) =
√

2m(U0 − EB) real. In order for R = u/r to remain finite at r = 0 we

take Ain = 0, and so uin = Bin sin(kr). Continuity of u and u′ at r = R then implies

Boute
−κR = Bin sin(kR) and −Boutκe

−κR = Bink cos(kR) , (3.79)

which we can solve for Bin/Bout, but not Bin and Bout separately (which we instead determine

from the normalization condition). They cannot both be determined because the ratio of these

equations does not depend on them,

κR = −(kR) cot(kR) , (3.80)

and this equation instead imposes a quantization condition on κ (and so also on E). This is a

quantization condition and not just a relationship between k and κ because their definitions

— κ2 = 2mEB and k2 = 2m(U0 − EB) — imply that they are both already determined by

the one quantity EB. Equivalently, kR and κR must satisfy both (3.80) and

(kR)2 + (κR)2 = 2mU0R
2 . (3.81)

Although (3.80) is a transcendental equation for EB, its implications can be seen graph-

ically by plotting both it and (3.81) and asking when the resulting curves intersect, as in

Figure 20. This shows that the number of intersections (and so the number of bound states)

depends on the value of 2mU0R
2/~2 (where the factors of ~ are put back as required by

dimensional analysis). The prediction is
√

2mU0R2

~
<
π

2
(no bound state)

π

2
<

√
2mU0R2

~
<

3π

2
(one bound state) (3.82)

3π

2
<

√
2mU0R2

~
<

5π

2
(two bound states) ,
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Figure 20. A graphical determination of the bound-state energy quantization condition. Allowed

energies correspond to when the circles and tangents intersect. (Figure source: Itay Yavin.)

and so on. That is, if the depth, U0, of the well is too shallow then it cannot compensate for the

zero-point energy associated with localizing the particle within a radius R: 2mEkin ∼ (~/R)2,

imposed by the uncertainty principle. And the deeper the well is the more wavelengths can

be fit into it without costing so much kinetic energy that the particle escapes.

For future use notice also that kR =
(
n+ 1

2

)
π satisfies cot(kR) = 0 for any integer n

and so corresponds to a solution for which κ = EB = 0.

Scattering states: E > 0

Now we turn to the scattering states, so have inside and outside solutions of the following

form

uin(r) = Bin sin(kinr) for r < R and uout(r) = Cout sin(kr + δ0) for r > R ,

(3.83)

where kin =
√

2m(E + U0) and k =
√

2mE. We use the finiteness of R(r) at r = 0 to

eliminate the integration constant Ain, as above, and trade the constants Aout and Bout of

the external solution for Cout and δ0, since this is the form of the outgoing wave we seek at

large r.
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Continuity of u and u′ across r = R then gives

Cout sin(kR+ δ0) = Bin sin(kinR)

and kCout cos(kR+ δ0) = kinBin cos(kinR) . (3.84)

One combination of these gives Cout/Bin, while their ratio imposes a condition independent

of these that can be used to fix δ0 as a function of E:

tan(kR+ δ0) =
k

kin
tan(kinR) . (3.85)

It is at low energies that we expect this ` = 0 analysis to dominate, and if E � U0 then

k/kin '
√
E/U0 � 1 and so (assuming tan(kinR) is not too large — a choice we later relax)

then kR+ δ0 is small. Then the solution for δ0 is

kR+ δ0 '
k

kin
tan(kinR) and so δ0 ' kR

[
tan(kinR)

kinR
− 1

]
. (3.86)

Because ` = 0 the scattering is isotropic, and the total cross section is

σ ' σ0 =
4π

k2
sin2 δ0 '

4πδ2
0

k2
' 4πR2

[
tan(kinR)

kinR
− 1

]2

, (3.87)

where kin =
√

2m(E + U0) '
√

2mU0. At low energies the cross section goes to a constant,

whose value is roughly set by the range, R, of the potential, up to order-unity diffraction

effects. (Recall we assumed tan(kinR) not to be large in its derivation.)

3.2.8 Resonance

The exception to the constancy of σ in the low-energy limit is when the tan(kinR) factor is

not order unity in the above argument. This happens whenever E = E? is such that kinR

is very close to
(
n+ 1

2

)
π, which we saw above is also the criterion for there to be a bound

state very close to E = 0. In this case we know that tan(kinR) can become very large despite

the smallness of k/kin in the low-energy limit. Consequently the left side of (3.85) must also

become large, and because we are in the low-energy limit where kR� 1, it follows that δ0(E)

must go to π
2 at this energy in order for the tangent function to blow up.

This implies the cross section acquires an energy dependence near these points, rather

than being approximately constant as it is otherwise. More generally, Taylor expanding cot δ`

near E = E? we then find:

cot δ`(E) ' − 2

Γ
(E − E?) + · · · , (3.88)

where−2/Γ proves to be a convenient way to write the Taylor coefficient. Using this expansion

in the scattering amplitude then gives

w` =
1

k
eiδ` sin δ` =

1

k
(cos δ` + i sin δ`) sin δ` =

1

k

[
sin δ`

cos δ` − i sin δ`

]
=

1

k

[
1

cot δ` − i

]
, (3.89)
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and so

w`(E) ' −1

k

[
Γ/2

E − E? + iΓ/2

]
. (3.90)

This is a form we have seen before. The total cross section near E = E? that follows

from this has the Breit-Wigner form,

σ ' 4π

k2
(2`+ 1)

[
(Γ/2)2

(E − E?)2 + (Γ/2)2

]
, (3.91)

that we saw is characteristic of a resonance. It indicates an intermediate state with a decay

rate Γ that is being produced and then decays into the observed final state. In the present

example the corresponding intermediate state is the bound state found above for the potential

near E = 0.

3.2.9 Scattering length and effective range

The low-energy expansion of the cross section is also often written in terms of an expansion

of cot δ0 in powers of k (that is, expanding about E = 0):

k cot δ0 ' −
1

a0
+
r0k

2

2
+ · · · , (3.92)

and we build in that the cross section approaches a finite limit as k → 0.

The parameter a0 is called the scattering length and r0 is called the effective range, and

the two of them parameterize the low-energy limit of the cross section. The definition of the

scattering length in particular is chosen so that the low-energy cross section becomes

σ ' σ0 =

(
4π

k2

)
1

1 + cot2 δ0
→ 4πa2

0 as k → 0 , (3.93)

and so a0 appears as does the radius of a hard sphere.

For nuclear interactions a typical value for a0 is the nuclear length scale, a0 ' 1 fm. Such

a value leads to the expectation that nuclear scattering cross sections (for e.g. neutrons, which

do not experience long-range Coulomb forces) should asymptote to constants for k � 1/a0 (in

the absence of very low-energy resonances). Furthermore, the size expected for this constant

cross section is of order

σ ' 4πa2
0 ∼ 12 fm2 = 1.2× 10−25 cm2 = 0.12 b , (3.94)

showing again why the barn is a useful unit in subatomic physics. Scattering cross sections

for neutron scattering from nuclei of several elements are plotted as solid lines in Fig. 21,

and indeed become energy independent22 with values close to 1 b for a wide range of energies

below 1 MeV.
22Close inspection of Fig. 21 shows that elastic cross sections start to become proportional to 1/k at neutron

energies below 0.01 eV. This marks a transition to an energy range for which the electromagnetic interaction

between the neutron magnetic moment and the nucleus’ charge starts to become larger than scattering due to

nuclear interactions.

– 89 –



Figure 21. A plot of neutron scattering and absorption cross sections vs neutron energy for a vari-

ety of elements found in reactor materials. Solid (dotted) lines correspond to scattering (absorption)

cross sections, while colours distinguish results for different elements. Note the comparatively high

absorption cross sections for 3He and 10B. Scattering cross sections remain roughly constant – in

agreement with eq. (3.93) – for the low-energy range 10−2 eV < E < 106 eV. For the same en-

ergy range absorption cross sections instead vary like σ ∝ E−1/2 ∝ 1/k. (Figure source: Wikipedia

https://en.wikipedia.org/wiki/Neutron cross section).

3.2.10 Low-energy absorption cross sections

The above discussion seems to make it inevitable that (in the absence of resonances) low-

energy nuclear cross sections become energy-independent, but Fig. 21 also shows that this is

not true for neutron absorption cross sections – which describe reactions where the incoming

neutron is absorbed by the nucleus as it transitions to a new nuclear state. For instance, an

example of an absorptive reaction for neutrons might be the reaction

n+ 3He→ 4He + γ , (3.95)

which is often written in the short form 3He (n, γ) 4He. Fig. 21 reveals these types of reactions

to vary with initial neutron energy like σabs ∝ E−1/2 ∝ k−1 for small k – even in the range

for which scattering cross sections remain roughly constant. Why does the above argument

fail for absorption?

There are two main assumptions in the arguments leading to (3.93). One is the absence

of resonances; or more generally access at low energies to intermediate states that can allow

nontrivial momentum dependence. It is this loophole that Coulomb scattering threads, for
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example, with its low-energy dependence dσ/dΩ ∝ 1/k2 as found in eq. (3.75). In this case

it is virtual-photon exchange that provides the intermediate channel that precludes having

constant cross section at low energy.

The second key assumption used in (3.93) is that the scattering is elastic. The role of

elasticity can be seen from kinematic expressions like (2.53) or (2.54) for scattering, which give

results proportional to k′/k where k′ is a final-state momentum, while k is the momentum of

the initial state. As the derivation of these equations makes clear these factors do not depend

on the details of any matrix elements; the factor of k′ comes from the final-state phase space

integration while the 1/k comes from the division by vrel contained when dividing out the flux

to obtain the cross section from the reaction rate. What is important about elastic scattering

is that k′ = k and so these factors cancel. This need not be so for inelastic processes, for which

k → 0 need not also imply that k′ vanishes. Absorptive scattering exploits this loophole to

give σ ∝ 1/k, as we now show.

A complete description of absorptive scattering requires tracking the new degrees of

freedom whose production carries off the energy and momentum deposited by the absorbed

particle. The discussion is a bit simpler, though, if one asks only what are called ‘inclusive’

questions, that measure only the depletion of probability from the absorbed particle’s initial

state, without also asking what the rest of the system does. When restricted only to the

initial absorbed-particle sector, the evolution is not unitary in that conservation of probability

breaks down: the sum over the probabilities to scatter into all possible final momenta plus the

probability of not scattering at all for this particle gives a result smaller than unity (because

this does not count the final-state channels produced by absorption).

In particular, unitarity is assumed when deriving the scattering amplitude for each partial

wave, leading to the expression (3.63):

w` =
1

k
eiδ` sin δ` and so 0 ≤ |w`| ≤

1

k
, (3.96)

where the inequalities follow because the phase angle δ` is real. It is perhaps not a surprise,

then, that a way to parameterize absorptive cross sections is to entertain situations where the

scattering phase acquires a nonzero (and positive) imaginary part. It is conventional then to

use the symbol γ` for the complete complex scattering ‘phase’ and reserve δ` only for its real

part, so γ` = δ` + iη` with η` ≥ 0 and

eiγ` = e−η` eiδ` . (3.97)

Whereas eq. (3.96) implies w` satisfies 0 ≤ |w`| ≤ 1/k holds for elastic scattering, for absorp-

tive scattering instead one has

w` =
1

k
eiγ` sin γ` =

i

2k

(
1− e2iγ`

)
=

i

2k

(
1− e−2η` e2iδ`

)
, (3.98)
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which now satisfies the stricter inequality

0 ≤ |w`| ≤
1

2k

(
1 + e−2η`

)
<

1

k
, (3.99)

reflecting (for η` > 0) a loss of probability compared to pure elastic scattering.

So far so good, but how does this change the low-energy limit? As usual at low energies

it is the ` = 0 mode that dominates, and (as before) for small k the scattering amplitude for

this is suppressed linearly in k:

γ0 ' (a0 + ib0) k +O(k2) and so eiγ0 ' 1 + i(a0 + ib0) k +O(k2) . (3.100)

The elastic-scattering cross section therefore asymptotes as before to a constant:

σel ' 4π|w0|2 =
π

k2

∣∣∣1− e2iγ0
∣∣∣2 ' 4π|a0 + ib0|2 . (3.101)

But the absorption cross section, by contrast, is

σab =
π

k2

∞∑
`=0

(2`+ 1)
(

1− e−4η`
)
, (3.102)

and so at low energies

σab '
π

k2

(
1− e−4η0

)
' 4π b0

k
, (3.103)

which varies as 1/k for small k, as seen in Fig. 21. So although both elastic and absorptive

parts of the scattering amplitude start off like γ0 ∝ k for small k, the difference between

the low-energy dependence of the elastic and absorptive cross sections schematically arises

because the elastic cross section is proportional to (1/k)2|eiγ0 − 1|2 ∼ |γ0|2/k2 while the

absorptive cross section is proportional to (1/k2)[|eiγ0 |2 − 1] ∼ Im γ0/k
2.

This growth for small k was discovered in the 1930s by Hans Bethe, who before this

discovery had been worried that quantum mechanics might not be able to produce low-energy

neutron absorption cross sections that were large enough to agree with observations.

3.3 Perturbation theory and the Born approximation

We have seen so far that given an interaction potential, U(r), we can compute a differential

scattering cross section, dσ/dΩ, and so measurements of the dependence of the scattering

rate on energy and angle provide information about the form of the interaction responsible

for the scattering. However the story so far has the drawback that the connection between

the cross section and interaction is fairly indirect and not explicit; and potentially challenging

to compute for real examples. This section develops a perturbative solution for scattering

applicable to weak interactions, along the lines of the impulse approximation described ear-

lier. When it applies it provides a very direct connection between scattering amplitudes and

interaction potentials.
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3.3.1 Green’s functions

We seek solutions to

− 1

2m
∇2ψ + U(r)ψ = Eψ , (3.104)

perturbatively in powers of U . That is, formally we write U = εU and take ψ = ψ0 + εψ1 +

ε2ψ2 + · · · and substitute this into (3.104). Demanding the solution to hold for all ε allows us

to separately set to zero the coefficient of each power, leading to the sequence of equations

∇2ψ0 + 2mE ψ0 = 0

∇2ψ1 + 2mE ψ1 = 2mU(r)ψ0 (3.105)

∇2ψ2 + 2mE ψ2 = 2mU(r)ψ1 ,

and so on. For scattering problems we imagine solving the first of these with the incoming

plane wave, ψ0 = eikz, with k =
√

2mE as usual (for positive E). Then we regard the next

equation as to be solved for ψ1 given ψ0; the third to be solved for ψ2 given ψ1 and so on.

We focus here on the 2nd equation for ψ1. This has the structure of Ô ψ1 = J where Ô is

the differential operator and J is the right-hand side. If this had been a matrix equation, with

Ô a matrix and ψ1 and J vectors, then the solution would immediately have been ψ1 = Ô−1J .

We seek the ‘inverse matrix’ (or Green’s function) for the differential operator Ô.

To construct this we start with the equation in the form

(∇2 + µ2)ψ1 = J , (3.106)

where µ =
√

2mE and J = 2mUψ0. It is useful to Fourier transform the equation and write

ψi(r) =

∫
d3k

(2π)3
ψ̃i(k) eik·r with inverse ψ̃i(k) =

∫
d3rψi(r) e−ik·r , (3.107)

and similarly for J(r) in terms of J̃(k). Proving these are inverse transformations of one

another (and an explanation of the factors of 2π) uses the orthogonality of plane waves,∫
d3r ei(k−k

′)·r = (2π)3 δ3(k− k′) . (3.108)

The utility of this transform is that (3.106) becomes an algebraic equation,

(−k2 + µ2)ψ̃ = J̃ , (3.109)

that is easy to solve:

ψ̃(k) =
J̃(k)

−k2 + µ2
. (3.110)

As is easy to check, transforming back to ψ(r) and J(r) this last equation is equivalent to

the convolution

ψ(r) =

∫
d3x G(r− x) J(x) , (3.111)
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where the Green’s function, G, is given by

G(r− x) = −
∫

d3k

(2π)3

eik·(r−x)

k2 − µ2 + iε
. (3.112)

Here ε is a small positive quantity that is taken to zero at the end of the calculation, whose

role is to clearly specify the integration range of a later integral (that is otherwise ill-defined

because of the singularity of the integrand when k2 = µ2).

The function G(r− x) is the ‘inverse matrix’ for the differential operator, Ô = ∇2 + µ2,

as sought, in the following sense:

Ô G(r− x) = (∇2 + µ2)G(r− x) =

∫
d3k

(2π)3
eik·(r−x) = δ3(r− x) , (3.113)

and using this in (3.111) shows that (3.111) indeed solves the differential equation (3.106).

G(r− x) can be written as a closed-form function of position by doing the integrals over

k explicitly using polar coordinates for k = {k, ϑ, ϕ} with the z-axis defined in the direction

defined by r − x. This then gives (r − x) · k = k|r − x| cosϑ and d3k = dkxdkydkz =

k2 sinϑ dkdϑdϕ, and since the integrand does not depend on ϕ its integral corresponds to

multiplying by 2π, leaving:

G(r− x) = − 1

4π2

∫ ∞
0

dk
k2

k2 − µ2 + iε

∫ 1

−1
d cosϑ eik|r−x| cosϑ

= − 1

2π2|r− x|

∫ ∞
0

dk
k

k2 − µ2 + iε
sin(k|r− x|) . (3.114)

It is this last integral that the ε is designed to make well-defined by shifting the pole in the

integrand slightly off the real axis. The result can be evaluated by contour integration to give

G(r− x) = − eiµ|r−x|

4π|r− x|
. (3.115)

3.3.2 The perturbative expansion

We are now in a position to express the solution, ψ(r), of our original equation, (3.104), as

a series in powers of U . This amounts to solving the tower of equations, (3.105), for the

corrections ψ1, ψ2 and so on, which can be done using the substitutions µ→ k =
√

2mE and

J(x) = 2mU(x)ψ0(x) in (3.106), whose solutions, (3.111), we have just constructed. This

leads to the explicit form

ψ1(r) = −m
2π

∫
d3x

eik|r−x|

|r− x|
U(x)ψ0(x) , (3.116)

and

ψ2(r) = −m
2π

∫
d3x

eik|r−x|

|r− x|
U(x)ψ1(x) , (3.117)
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and so on.

Assembling these gives the final series form for the scattering state ψ:

ψ(r) = ψ0(r) + ψ1(r) + ψ2(r) + · · ·

= ψ0(r)− m

2π

∫
d3x

eik|r−x|

|r− x|
U(x)ψ0(x) (3.118)

+
(m

2π

)2
∫

d3x
eik|r−x|

|r− x|
U(x)

∫
d3y

eik|x−y|

|x− y|
U(y)ψ0(y) + · · · .

The series is often written graphically as in Figure 22. Here each node is labelled by a position,

say xi, and represents a factor of −(m/2π)U(xi) and each internal line connects two nodes,

say xi and xj , and represents a factor of G(xi − xj). The graph is evaluated by assembling

all of these factors and integrating over the positions of each node, and when this is done

builds up the expression (3.118). As we will see, a similar kind of graphical expansion of a

series solution to scattering problems arises within quantum field theory, in which case the

diagrams are called Feynman diagrams.

Figure 22. A graphical representation of the perturbative expansion.

3.3.3 The Born approximation

We now apply the above series solution to the scattering problem, and in so doing generate

a perturbative Born expansion for the scattering state. To this end we start with the zeroth-

order (free) solution describing the incoming wave: ψ0(x) = eikz = eiki·x where ki is the

initial momentum. The leading correction to this wave (at linear order in U) then is given

by (3.116), and so

ψ1(r) = −m
2π

∫
d3x

eik|r−x|

|r− x|
U(x) eiki·x . (3.119)

For scattering our interest is specifically in the form of this solution at asymptotically

large distances, where r = |r| � |x|, where we drop all terms in ψ1 that fall off faster than

1/r. Using

|r− x| =
√
r2 − 2r · x + |x|2 ' r

(
1− r · x

r2
+ · · ·

)
= r

(
1− er · x

r
+ · · ·

)
, (3.120)
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where er := r/r is the unit vector in the radial direction. The r-dependence of the integrand

can be approximated by

eik|r−x|

|r− x|
'
(
eikr

r

)
e−ik er·x =

(
eikr

r

)
e−ikf ·x (3.121)

We find the following expression for the 1/r term in the far-field part of ψ1(r):

ψ1(r) = −m
2π

∫
d3x

eik|r−x|

|r− x|
U(x) eiki·x

' −m
2π

(
eikr

r

)∫
d3x U(x) ei(ki−kf )·x . (3.122)

Comparing this with w(θ) eikr/r gives the leading Born approximation for the scattering

amplitude

w(θ) ' −m
2π

∫
d3xU(x) e−iq·x = −m

2π
Ũ(q) , (3.123)

where the momentum transfer, q := kf − ki, has magnitude

q = |kf − ki| =
√

2k2(1− cos θ) = 2k sin
θ

2
, (3.124)

when expressed in terms of k and the scattering angle: kf · ki = k2 cos θ. In the special case

where U(x) depends only on |x| rather than the direction of x the angular integrals can be

done explicitly to give

w(θ) = −2m

q

∫ ∞
0

dr rU(r) sin(qr) . (3.125)

We see that the leading contribution to w(θ) is simply the Fourier transform of the poten-

tial evaluated at the momentum transfer of the collision. The leading part of the differential

scattering cross section therefore is

dσ

dΩ
' m2

4π2

∣∣∣Ũ(q)
∣∣∣2 . (3.126)

Exercise 3.9: Calculate the differential cross section dσ/dΩ for quantum scat-

tering from a repulsive delta-function potential U(r) = κ δ3(r) (with κ > 0) using

the Born approximation. If you have evaluated the exact result for this type of

scattering – calculated in Exercise 3.7 – how does your result compare?

3.3.4 The Yukawa (or screened) potential

An important example to which the above story can be applied is the case of a Yukawa

potential,

U(r) =
κc e

−r/a

r
, (3.127)

– 96 –



where a is called the range of the potential. This potential turns out to describe part of the

nuclear force, where the range, a, is of the order of a fm. It also arises when a nuclear charge

is screened by electrons, in which case a is more of order the Bohr radius (and so of the order

of Angstroms). In the limit a→∞ the Yukawa potential reduces to the Coulomb potential.

Inserting this into (3.125) allows the integral to be performed, giving

w(θ) = −2mκc
q

∫ ∞
0

dr e−r/a sin(qr) = − 2mκc a
2

1 + (qa)2
. (3.128)

In the limit a → ∞ this becomes w → −2mκc/q
2 = −(mκc/2k

2) csc2(θ/2) in eerie agree-

ment23 with the Coulomb result.

Conversely, in the limit where the force is very short ranged compared with the momen-

tum transfer — i.e. when qa→ 0 — the amplitude instead goes to a q-independent constant

w → −2mκca
2 whose size depends directly on the range of the interaction. In this limit the

differential cross section is isotropic, dσ/dΩ = 4m2κ2
ca

4, indicating that it is only the S-wave

(or ` = 0) partial wave that participates. Physically this dominance of the S wave occurs for

short-range interactions because a state with angular momentum ` behaves like r` near r = 0,

so it is only the ` = 0 mode that has a nonzero wave-function as r → 0 and so can ‘see’ the

short-range force. We expect from this that particles that are attracted through a short-range

interaction — like nucleons in a nucleus — will like to pair up into ` = 0 combinations if left

to themselves.

3.3.5 Domain of validity of the Born approximation

We can (and should) ask when it is a good approximation to keep only the first terms in the

Born series. For this we ask |ψ1| to be much smaller than |ψ0| and so on for higher corrections.

Evaluating ψ1 at r = 0 (where it should be biggest) and considering a short-range potential

for which the integration range is only over |x| ∼ a, we expect ψ1 ∼ ma2Uψ0, and so (putting

back the ~ s on dimensional grounds) expect the approximation to work if |〈U〉| � ~2/ma2,

with the expectation taken in the initial state ψ0. This says that the energy cost (imposed

by the uncertainty principle) to be localized in the area of size a should be larger than the

energy available in the potential there. (This seems reasonable given our experience with the

square well, which shows that in this regime we do not expect bound states to exist — as

might be expected in a perturbative regime.)

At high energies we get a weaker condition because we can profit from the explicit factor

of 1/q ∼ 1/k appearing in formulae like (3.125), that works to make it small. In this case

the estimate |〈U〉| � 1/ma2 weakens to |〈U〉| � k/ma ∼ v/a. This says the frequency shift

wrought by U should be much smaller than the inverse of the time taken to move across

distances of order the range of the force.

23The agreement is eerie because we get the exact Coulomb result using only the leading Born approximation.
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Exercise 3.10: The Yukawa potential, U(r) = κe−r/a/r, is a reasonable approx-

imation to the force between nucleons (in which case κ ' O(1) and a ' 1 fm).

What is the maximum nucleon kinetic energy that is consistent with the low-

energy limit ka � 1? Should the Born approximation to work well for the force

between nucleons at these energies? Are there any higher energies for which the

Born approximation works while still trusting a non-relativistic treatment (take

the nucleon mass to be 940 MeV)? Yukawa potentials are also a reasonable de-

scription of charged-particle scattering from a point charge that is screened by

mobile opposite-sign charges (in which case κ ' α ' 1/137 and a depends on

the distances over which the mobile charges can move). Should we expect the

Born approximation to work well for low-energy electron scattering from charges

screened on atomic scales (for which a ∼ 0.1 nm)? Should we expect it to work

for low-energy muon scattering from a screened charge with the same value of a?

3.3.6 Scattering from charge distributions

Another useful application of the Born approximation is to the scattering from a continuous

charge distribution, ρ(x), rather than a point charge. In this case electrostatics tells us that

the interaction potential with an incident point particle with charge Q becomes

U(r) =

∫
d3x

ρ(x)

|r− x|
. (3.129)

What is relevant for scattering is the Fourier transform of this potential, which is

Ũ(q) =

∫
d3r U(r) e−iq·r =

4π

q2
ρ̃(q) , (3.130)

where

ρ(x) =

∫
d3l

(2π)3
ρ̃(l) e−il·x , (3.131)

is the Fourier transform of the charge distribution. The differential cross section therefore

becomes
dσ

dΩ
=

(
dσ

dΩ

)
C

|F (q)|2 , (3.132)

where (dσ/dΩ)C denotes the Rutherford (point-particle) cross section from a point-particle

carrying the same total charge,

Qtot =

∫
d3x ρ(x) = ρ̃(q = 0) , (3.133)

carried by the distribution.

The form factor, F (q), is given by

F (q) :=
ρ̃(q)

Qtot
, (3.134)
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and clearly satisfies F (0) = 1. Because of this the extreme small-angle scattering (for which

q → 0) is not changed relative to the Rutherford result, which is reasonable since this occurs

at such great impact parameters that it is sensitive only to the overall charge of the scatterer.

What F (q) can change significantly, however, is the likelihood of large-angle scattering,

for which q is not small. This allows us to quantify what would be expected for α scattering for

a ‘plum pudding’ atom as Thompson envisioned it before Rutherford’s experiment indicated

the existence of a nucleus. Smoothly smearing the nuclear charge over the volume of an atom

of radius a ∼ 1 Angstrom (or 10−10 m) means that ρ is of order Ze/a3, while Qtot = Ze

and F (q) falls to zero quickly for q >∼ 1/a. Then the largest-angle scattering occurs when

q = 2k sin(θ/2) ∼ 1/a, so taking k ∼ 1/λ where λ ∼ 1 fm (or 10−15 m) is a nuclear radius

implies θ/2 ∼ sin(θ/2) <∼ λ/a ∼ 10−5. No wonder Rutherford found his large-angle scattering

result so surprising!

3.3.7 Multipole moments

Often experiments cannot probe the details of a charge distribution, such as if scattering

happens not to probe sufficiently close to the charge distribution. In such cases it can happen

that experiments are only sensitive to the lowest multipole moments of the distribution.

Expanding

1

|r− x|
=

1

r

[
1− 2r · x

r2
+

x2

r2

]−1/2

' 1

r

[
1 +

r · x
r2
− x2

2r2
+

3

2

(x · r
r2

)2
+ · · ·

]
, (3.135)

for r � |x|, the long-distance form of the potential becomes

U(r) =

∫
d3x

ρ(x)

|r− x|
' 1

r

∫
d3x ρ(x)

{
1 +

r · x
r2

+
1

2r2

[
3
(x · r

r

)2
− x2

]
+ · · ·

}
=

[
Qtot

r
+

D · r̂
r2

+
r̂ ·Q · r̂

2r3
+ · · ·

]
, (3.136)

where r̂ = r/r is the usual radially pointing unit vector. This expression defines the total

charge, Qtot, the dipole moment vector, D, and quadrupole moment tensor, Qij , as higher

and higher moments of the charge distribution,

Qtot =

∫
d3x ρ(x) , D =

∫
d3x ρ(x) x , Qij =

∫
d3x ρ(x)

[
3xi xj − x2 δij

]
, (3.137)

and so on. Only the first few are measurable if the size of the distribution is small enough

that only a few powers of the ratio |x|/r are detectable. Notice that higher multipoles vanish,

Di = Qij = 0, if ρ is a spherically symmetric distribution. A similar multipole expansion

can also be defined for the magneto-static properties of a source, in analogy to the above

discussion for electrostatics.
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The multipole expansion is related to the small-q expansion of the form factor, as may

be seen by Taylor expanding the Fourier transform of the charge distribution,

ρ̃(q) =

∫
d3x ρ(x) eiq·x =

∫
d3x ρ(x)

[
1 + iq · x− 1

2
(q · x)2 + · · ·

]
= Qtot + iD · q− q2

6

[
q̂ ·Q · q̂ + 〈x2〉

]
+ · · · , (3.138)

where q = |q| and 〈x2〉 =
∫

d3x ρ(x) x2. As we shall see, the fact that nuclei (and nu-

cleons) have nontrivial multipole moments is part of the evidence that they are built from

conglomerations of smaller charges.

4 Nucleon substructure

Historically, the first application of the tools just developed would be to winkle out the

properties of nuclei and how this depends on the interactions between neutrons and protons.

This turns out to be complicated, partly because the protons and neutrons themselves have

substructure and so are complicated objects. Interactions amongst nucleons are complicated,

much as are electromagnetic interactions among molecules, despite the simplicity of their

main underlying root cause (for molecules, the Coulomb interaction).

This section therefore pauses the historical development and first develops the evidence

for the compositeness of protons and neutrons, returning to nuclei in the next section.

What is an ‘elementary’ particle?

Before diving into the particulars about the substructure of protons, neutrons and nuclei it

is first worth understanding what it means for a particle not to have substructure.

Colloquially, what is meant is intuitive: a particle is elementary when there is no evidence

for it being built from constituents (as we shall see is the case at present for the electron). In

practice what this means is that (so far as we can tell) the state of the particle is completely

specified using only the values it holds for the small list of conserved quantum numbers: en-

ergy, momentum, angular momentum (or spin), electric charge and (perhaps) baryon number

and the lepton numbers (if these really turn out to be conserved at a fundamental level). All

other properties can be related to these basic ones, such as particle position which arises from

taking linear superpositions of momentum eigenstates, as in |x〉 ∝
∫

d3p eip·x |p〉, and so on.

Of course, what passes for elementary by this definition is usually a function of time, since

as we learn more about a particle it can happen that evidence begins to emerge that more

than these quantities are needed to specify its state completely. In the event, this is what

happened with the atom, nucleus, proton and neutron, all of which initially were thought to

be elementary until this was abandoned in the face of mounting evidence to the contrary.

– 100 –



4.1 Electrons, nucleons and quarks

The first step towards understanding nuclei is to understand the nature of the nuclear con-

stituents: protons and neutrons (or nucleons, as they are both called collectively). Protons

and neutrons, together with electrons, are the workhorses of atomic and nuclear structure,

and their basic properties are summarized in Table 3. This reveals all three to be fermions

and to have spin 1
2 (not unrelated facts, as it turns out, because relativity and quantum

mechanics together imply the spin-statistics theorem which forces spin-half particles to be

fermions). The proton and electron have precisely opposite charge and all three have mag-

netic moments, as may be measured by observing their spins precess in an applied uniform

magnetic field or by observing their motion in a spatially varying magnetic field.

Table 3. Properties of the electron, proton and neutron

Particle statistics rest mass spin charge magnetic momenta,b,c quark content

e− fermion 0.511 MeV 1
2 −e −1.00115965218073(28) µB elementary

p fermion 938 MeV 1
2 +e 2.792847356(23) µN uud

n fermion 940 MeV 1
2 0 −1.91304272(45) µN udd

a The magnetic moment is proportional to spin, so what is given here is its value for a state with Sz = + 1
2
.

b The Bohr magneton is µB = e/2me and so µB = 5.7883818012(26)×10−5 eV/Tesla = 9.27400968(20)×10−24

Joule/Tesla. In microscopic units µB = 193.0806 e-fm.

c The nuclear magneton is µN = e/2mp and so µN = 3.1524512550(15)× 10−8 eV/Tesla = 5.05078353(11)×

10−27 Joule/Tesla. Equivalently µN = 0.105155 e-fm.

4.1.1 Magnetic moments and quarks

The value of a particle’s magnetic moment provides a clue about whether it has substructure.

Although it is natural for a charged particle with spin to have a magnetic moment, the precise

value of this moment turns out to be determined by its charge and mass, so comparison with

this expectation provides a measure of whether or not the particle can be elementary.

To get an idea of the relationship between a particle’s magnetic moment and spin consider

a classical rigid body of total mass m and electric charge q that spins about an axis passing

through its c.o.m. with angular velocity ω. Any infinitesimal volume element, d3x, of the

body carries a small part, dm = ρ(x) d3x, of its mass and a small element dq = σ(x) d3x,

of its charge. It is the motion of this element of charge that is responsible for the particle’s

magnetic moment, since its motion in a circle of radius r makes it into a small loop of area πr2

about which an element dq of charge rotates once per period τ = 2πr/v. This corresponds to

an electrical current, dI = dq/τ = v dq/2πr.
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Since the magnitude of the magnetic moment of a small current loop is the product of the

current times the loop’s area, we know that rotation of the volume element, d3x, generates a

magnetic moment of magnitude

dµ = (πr2) dI = (πr2)(v dq/2πr) =
1

2
rv σ(x) d3x . (4.1)

By contrast, the contribution of this same volume element to the magnitude of the body’s

angular momentum is

dL = rv dm = rv ρ(x) d3x , (4.2)

and so

dµ =
1

2

(
dq

dm

)
dL =

q

2m
dL , (4.3)

where the last equality assumes dq/dm = σ(x)/ρ(x) = q/m is x-independent (i.e. that the

charge and mass distribution are proportional to one another). Of course both µ and L are

vectors and particles are not classical rigid bodies. So the relation between magnetic moment

and angular momentum is instead usually written24

µ =
gq

2m
s = γ s , (4.4)

where s is the particle spin, the parameter g is called the Landé g-factor and γ = gq/2m is

its gyromagnetic ratio.

It turns out in the absence of interactions a spin-1
2 particle with no substructure should

have magnetic moment component, µz = ±q/2m where q is its charge and m is its mass,

and so (because sz = ±1
2) for non-interacting spin-1

2 particles we expect g = 2 (or very close

to this once interactions are included). (This value for the spin and magnetic moment is

predicted by the Dirac equation, which we now understand describes fundamental spin-half

particles once relativity is combined with quantum mechanics into quantum field theory.)

For the electron we have sz = ±1
2 and q = −e and so µz = ∓gµB/2 ' ∓µB where

µB = e/2me is called the Bohr magneton and we use g ' 2. It turns out that µ is very

well-measured for electrons and so we know g is not precisely 2. The small deviations of g

from 2 for the electron are well-understood as being due to small corrections from Quantum

Electrodynamics (QED),25 with g − 2 calculable (and calculated) perturbatively in a series

24This is the historical convention for g. More recently the definition of g has been defined using µ =

(ge/2m)L, using the proton charge even for the electron. In this convention g is negative for the electron

rather than positive, as it is here.
25The corrections arise because the magnetic moment is defined by the energy shift of different spin states

when a magnetic field is applied. But a magnetic field is itself really a quantum operator, B̂, which in QED

does not commute with energy and so fluctuates in an energy eigenstate (in the same way that position or

momentum fluctuate in the ground state of a harmonic oscillator). The extra ‘anomalous’ contribution to the

magnetic moment is due to the electron’s interacting with these fluctuations in the applied magnetic field.
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in α/π ' 0.002, where α = e2/4π~c is the fine-structure constant. The value for g obtained

in this way is

g = 2

[
1 +

∞∑
n=1

ci

(α
π

)n]
, , (4.5)

where c1 = 1
2 and many higher-order terms have also been computed (and are required

when comparing to measurements due to the fantastic accuracy of the experiments). Writing

g = 2(1 + a) one finds for electrons:

aexp
e = 11596521807.3(2.8)× 10−13

ath
e = 11596521817.8(0.6)(0.4)(0.2)(7.6)× 10−13 . (4.6)

The numbers in brackets represent the best present assessment of the error. For the theoretical

calculation the first error arises from the uncertainty in our knowledge of the coefficient c4 in

the series expansion; the second error comes from the uncertainty in c5; the third error is an

uncertainty coming from difficulty with calculating with the strong interactions (which play

a role at higher orders in α) and the fourth error comes from the uncertainty in the value

of α itself. Clearly measurements agree with predictions and this agreement is one of the

most precise agreements between theory and experiment known to physics. Such spectacular

agreement is part of the evidence that electrons really do behave as if they were elementary.

The proton and neutron magnetic moments, on the other hand, provide evidence that

(unlike electrons) these are not elementary and so likely do have substructure. We now know

them each to be built from three constituents, called quarks. Two types of quarks, called ‘up’

and ‘down’ quarks (or u and d) appear in protons and neutrons, with the proton being built

from the combination uud and the neutron from udd. The quarks also are fermions and carry

spin 1
2 , and have electric charges qu = 2e/3 and qd = −e/3 (so that qp = 2qu + qd = e and

qn = qu+2qd = 0). The quarks are themselves believed to be elementary, and their properties

describe well the features of nucleons (and the rest of the zoo of strongly interacting particles

— collectively called hadrons — besides nucleons).

Table 4. Some properties of u and d quarks.

Particle statistics ‘current’ mass (m) ‘constituent’ mass (M) spin charge

u fermion 2.3± 0.5 MeV ' 336 MeV 1
2

2
3 e

d fermion 4.8± 0.5 MeV ' 340 MeV 1
2 −1

3 e

Some of the properties inferred for u and d quarks are given in Table 4, including two

different notions of mass for these particles. (There can be more than one notion because

quark masses are always inferred indirectly, since no isolated quark has ever been seen outside
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a hadron.) What is listed as the ‘current’ mass, m, is most similar to what we normally mean

by a rest mass: free quarks would satisfy E2 = p2 +m2, for each quark species, in the absence

of interactions. By contrast, ‘constituent’ masses only arise because inside hadrons quarks

are confined to live within a very small distance (` ∼ 1 fm, set by the strong interactions

that bind them there) whose value determines the physical size of particles like protons and

neutrons. Because of this their momenta are bounded below by the uncertainty principle:

|p| ≥ |pmin| ' π/`, and because 1/`� m we have E ≥M :=
√

p2
min +m2 ' |pmin| ' π

` . For

this reason it is M that often plays the role of mass, in the sense of being the smallest energy

available to the quark as a function of its available momentum.

What binds quarks together so tightly that they can form nucleons? And why do nucleons

contain three of them rather than just two? We shall see that this is a consequence of the

underlying strong interactions which the quarks experience. Although more detail is given

later, each quark turns out to come in three ‘colours’ (say, red, green and blue), so

u =

 ured

ugreen

ublue

 , (4.7)

and ditto for d. We are familiar with how electromagnetic interactions try to build bound

states (like atoms) that are electrically neutral. They do so because if they do not, electrical

forces remain in play that continue to attract things together. It is only once they are neutral

that the electrical forces are neutralized (hence the name) and so no longer cause lower-energy

configurations to be sought. In the same way, strong interactions turn out to try to build

bound states that are colour-neutral in the sense that they are invariant under 3× 3 unitary

rotations of the quark colours

u→ Uu or ui = Ui
j uj (4.8)

where U is an arbitrary unitary matrix, called a colour ‘rotation’. The second way of writing

this makes explicit the three colour components, ui, i = 1, 2, 3, of the quark, and Ui
j is one

of the elements of the matrix U , with i labelling the row and j the column of the entry. Also

used is the Einstein summation convention which states that any repeated index must be

summed over all of its allowed values. For instance, Ui
j uj denotes

∑
j=r,b,g Ui

j uj as required

for matrix multiplication.

It turns out there are two ways of combining quarks into invariant, colour-neutral, combi-

nations. One is to take the completely antisymmetric combination of the three quark colours.

The other is to combine a quark and an antiquark. Each of these combinations corresponds

to a known type of hadron: the 3-quark combinations are the baryons (which include the

proton and neutron) and the quark-antiquark combinations are the mesons (which include

π+ = ud, for example). Schematically these are written

B = εijkqiqjqk and M = qiqi , (4.9)
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Table 5. Ground-state mesons built from u and d quarks

Particle spin charge isospin mass decay width quark content

π+ 0 +e 1 140 MeV (2.6× 10−8 s)−1 ud

π− 0 −e 1 140 MeV (2.6× 10−8 s)−1 ud

π0 0 0 1 135 MeV (8.5× 10−17 s)−1 (uu , dd)

η 0 0 0 548 MeV 1.3 keV (uu , dd)a

ρ+ 1 +e 1 770 MeV 149 MeV ud

ρ− 1 −e 1 770 MeV 149 MeV ud

ρ0 1 0 1 770 MeV 149 MeV (uu , dd)

ω 1 0 0 782 MeV 8.5 MeV (uu , dd)a

a Can also involve significant admixtures of ss (though less so for ω than η).

where the index i runs over the three values red, green and blue, and εijk is the completely

antisymmetric tensor that vanishes if any of its indices are equal, and otherwise takes values

εijk = +1 (or −1) according to whether ijk is an even (or odd) permutation of 123 =

red, green,blue. Also q here denotes any quark species (e.g. either u or d for the present

purposes).

These rules capture precisely the known hadrons. The situation is illustrated by Tables

(5) and (6), which specialize to combinations involving only u and d quarks (in reality there

are also four other known quark flavours: s, c, b and t). There should be four possible ways to

combine quark flavours in a qq combination, and four possible ways to combine their spins.26

As shown in Table (5) all such combinations are indeed observed (keeping in mind that each

spin-1 particle has 3 spin-states). (The η meson also involves admixtures of other quarks,

such as ss etc., though this does not change the counting argument being made here.)

The baryons are captured equally well. For these Fermi statistics and the requirement of

colour neutrality (which makes the colour part of the state already completely antisymmetric)

say that a baryon must be completely symmetric under the simultaneous interchange of the

spin and flavour of any pair of the 3 quarks. This can be done by symmetrizing separately for

spin and for flavour — leading to the spin-3
2 combination corresponding to the ‘∆ resonances’

— or by combining states of mixed spin and flavour symmetry that are only symmetric once

both are interchanged, corresponding to the spin-1
2 and isospin-1

2 nucleon.

Returning to magnetic moments, for some purposes it is useful to think of quarks with

constituent masses as being non-relativistic within a proton and this gives a simple under-

standing of nucleon (and more generally, hadron) magnetic moments. In particular, since (as

is often the case) the ground state dominantly has no orbital angular momentum, the nucleon

26We assume ground-state configurations to have zero orbital angular momentum, as is the case.
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Table 6. Ground-state baryons built from u and d quarks

Particle spin charge isospin mass decay width quark content

p 1/2 +e 1/2 938 MeV 0 uud

n 1/2 0 1/2 940 MeV (880 s)−1 udd

Λ0 1/2 0 0 1116 MeV (0.26 ns)−1 uds

Σ− 1/2 −e 1 1197 MeV (0.1 ns)−1 dds

Σ0 1/2 0 1 1193 MeV (7× 10−20 s)−1 uds

Σ+ 1/2 +e 1 1189 MeV (0.08 ns)−1 uus

∆− 3/2 −e 3/2 1232 MeV 117 MeV ddd

∆0 3/2 0 3/2 1232 MeV 117 MeV udd

∆+ 3/2 +e 3/2 1232 MeV 117 MeV uud

∆++ 3/2 +2e 3/2 1232 MeV 117 MeV uuu

Ξ0 1/2 0 1/2 1315 MeV (0.3 ns)−1 dss

Ξ− 1/2 −e 1/2 1322 MeV (0.16 ns)−1 uss

Ω− 3/2 −e 0 1672 MeV (0.08 ns)−1 sss

magnetic moment becomes the sum of those of the underlying quarks, so a straightforward

calculation reveals nucleon moments are given by

µp =
4

3
µu −

1

3
µd and µn =

4

3
µd −

1

3
µu , (4.10)

and these turn out to agree very well with the measured values when the quark moments are

taken to have the fundamental form: µa = qa/2Ma. In particular, because the constituent

masses of the u and d are very similar we expect µu/µd ' qu/qd = −2, and so

µn
µp

=
4− (µu/µd)

4(µu/µd)− 1
= −2

3
' −0.667 (4.11)

which compares well with the experimental value −1.913/2.793 ' −0.685 given the accuracy

of the relation Mu ' Md. Given this, the absolute value of µp or µn essentially determines

the average value of the constituent masses, M , as listed in the table.

But the power of the idea of compositeness is that it is predictive rather than just being

descriptive. In particular the same calculation should not be limited only to protons and

neutrons, but should also give the magnetic moment of all baryons in terms of quark moments.

This leads to the (successful) predictions given in Table 7.

4.2 Elastic scattering

Much of what we know about proton and neutron substructure comes from scattering ex-

periments, particularly those where the nucleon is probed using particles that seem to have
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Table 7. Baryon magnetic moments predicted by the quark model

Particle spin charge quark content µth

p 1/2 +e uud 1
3(4µu − µd)

n 1/2 0 udd 1
3(4µd − µu)

Λ0 1/2 0 uds µs

Σ− 1/2 −e dds 1
3(4µd − µs)

Σ0 1/2 0 uds 1
3(2µu + 2µd − µs)

Σ+ 1/2 +e uus 1
3(4µu − µs)

Ξ0 1/2 0 uss 1
3(4µs − µu)

Ξ− 1/2 −e dss 1
3(4µs − µd)

Ω− 3/2 −e sss 3µs

no substructure themselves, like electrons. For this reason it is useful first to summarize

how things look when electrons scatter from another point-like particle, since this provides

the point-particle benchmark against which to compare. For technical reasons we compare

electron-proton elastic scattering to electron-muon scattering, rather than to electron-electron

scattering. Electron-muon scattering is simpler than electron-electron scattering for these pur-

poses for two reasons: (i) some of the weak interactions contribute differently for ee vs eµ (or

ep) scattering; and (ii) even the purely electromagnetic part of ee scattering is complicated

by the identical nature of the initial and final particles.

Exercise 4.1: The magnetic moment of the Ω− baryon is measured to be µΩ =

−2.02 ± 0.05 µN . Use this and the values given in Table 3 together with the

predictions of Table 7 to infer the values of the magnetic moments for the u,

d and s quarks. Assuming each of these quarks, {qi} = {u, d, s}, has a dipole

moment of size Qi/(2Mi) where Qi and Mi are the quark charge and constituent

mass, what do these values for magnetic moments imply about the constituent

mass for each of the u, d and s quarks? Compute the predictions for the numerical

values of the rest of the hadronic magnetic moments given in Table 7.

4.2.1 Elastic eµ scattering

When electrons elastically collide with muons their collisions are well-described by point-

particle scattering, and this is a large part of why we believe both the electron and the

muon to be elementary. So far as their electromagnetic interactions are concerned, muons

are pretty much identical to electrons except for the fact that they have different masses:

m = m(e) = 0.511 MeV and M = m(µ) = 106 MeV. The electromagnetic scattering of

two point-like, unpolarized spin-1
2 particles of masses m and M has the invariant squared
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amplitude

Mem(eµ→ eµ) =
32π2α2

t2

[
(m2 +M2 − u)2 + (s−m2 −M2)2 + 2t(m2 +M2)

]
=

32π2α2

(k − k′)4

[
(2k · p′)2 + (2k · p)2 − 2(m2 +M2)(k − k′)2

]
, (4.12)

where, as before, α = e2/4π~c is the electromagnetic fine-structure constant, and the Man-

delstam variables are given by the usual expressions in terms of the energy-momentum 4-

vectors:27 e(k) + µ(p)→ e(k′) + µ(p′).

Exercise 4.2: Working at energies much larger than the electron mass, m, (but

not necessarily larger than M � m) neglect m ' 0 and use (4.12) to derive the

differential cross section for eµ electromagnetic elastic scattering:

dσ

dudt
= − 4πα2

ξ(s)f(s)

[
(M2 − u)2 + (s−M2)2 + 2tM2

t2

]
δ(s+ t+u−2M2) , (4.13)

where (2.45) and (2.65) tell us

f = −4vrel(p · k) = 4
√

(p · k)2 −m2M2 ' −4p · k and ξ(s) ' s−M2 .

(4.14)

In the lab frame take the initial muon to be at rest, the direction of the initial

electron to be along the z axis and the plane of the scattering to be the x − z
plane. Show that an appropriate choice for the x, y and z axes (and 3-momentum

conservation) implies the four 4-momenta in the reaction can be written

pµ =


M

0

0

0

 , kµ =


ω

0

0

ω

 , p′
µ

=


E

−ω′ sin θ
0

ω − ω′ cos θ

 , k′
µ

=


ω′

ω′ sin θ

0

ω′ cos θ

 , (4.15)

where E and ω′ are determined by E2 = (ω′ sin θ)2 + (ω − ω′ cos θ)2 + M2 =

ω2 + (ω′)2 − 2ωω′ cos θ +M2 and ω +M = ω′ +E. Use these to prove the useful

formulae

ω′ =
ω

1 + 2(ω/M) sin2(θ/2)

t = −4ωω′ sin2 θ

2
and dt = −2(ω′)2 sin θdθ (4.16)

k · p = −ωM and k · p′ = k′ · p = −ω′M ,

27Here the notation e(k) means the 4-momentum of e is denoted kµ, and so on. Consequently energy-

momentum conservation for the reaction indicated is the 4-vector condition: k + p = k′ + p′.
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and so that

dσ

dΩ
' α2

8ω2

[
1 +

(
ω′

ω

)2

− 2

(
ω′

ω

)
sin2 θ

2

]
csc4 θ

2
(lab frame, me = 0) . (4.17)

Use (4.16) to show that this can be rewritten in an equivalent, often-used, form

dσ

dΩ
' α2

4ω2

cos2(θ/2)

sin4(θ/2)

(
ω′

ω

)[
1 +

(
2ωω′

M2

)
sin2 θ

2
tan2 θ

2

]
(lab frame, me = 0) .

(4.18)

The limit where ω/M → 0 corresponds to the case where the target particle is so

heavy it does not recoil and so the lab frame and the c.o.m. frame coincide. In

this case ω′ → ω, so the electron energy does not change, and the cross section

reduces to the result for a spinning electron scattering from a Coulomb potential,

called the Mott scattering cross section:(
dσ

dΩ

)
Mott

=

(
α2

4ω2

)
cos2(θ/2)

sin4(θ/2)
. (4.19)

The factor of cos2(θ/2) arises due to the interaction between the moving electron

magnetic moment and the Coulomb potential (which in the electron rest frame

has a magnetic component). The prefactor is precisely the Rutherford result (with

U = ±α/r) for the scattering of a spinless particle from a Coulomb potential.

4.2.2 Elastic ep scattering

What about ep scattering? We first look at elastic scattering, in which the incoming particle

scatters collectively from the entire proton without transferring energy in the c.o.m. frame. In

this case the outcomes of the experiments turn out not to be well-described by point-particle

scattering and instead are better described if point-particle scattering is modified by form

factors (along the lines described for a charge distribution in the previous section).

For the scattering of a spinless charged particle where the initial projectile energy is

much less than the target mass (in the target rest frame), ω � M , the scattering should be

equivalent to Coulomb scattering from some sort of charge distribution. In this case we would

write
dσ

dΩ
'
(

dσ

dΩ

)
Mott

|F (q)|2 (me � ω �M , lab frame) , (4.20)

where we’ve seen that the form factor, F (q), is (up to normalization) the Fourier transform of

the proton’s internal charge distribution, and the goal is to extract its shape given scattering

measurements, normalized so that F (0) = 1.

Unfortunately the electron spin prevents this last expression from being directly used for

relativistic electron scattering. Instead there is a separate form factor for the electron’s electric
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and magnetic couplings, respectively called GE(q2) and GM(q2), where both are Lorentz-

invariant functions of the electron’s 4-momentum transfer: qµ = kµ − (k′)µ. Because they

are Lorentz-invariant the functions GE and GM can only depend on qµ through its invariant

length: q2 = ηµνq
µqν . But this is a variable we have seen before: it is one of the familiar

Mandelstam invariants: q2 = −t, which the above calculation of eµ scattering shows is given

in the target rest-frame by q2 = −t = 4ωω′ sin2 θ
2 , where ω and ω′ are the initial and final

electron energies.

In the same way as for potential scattering, the values of GE and GM at q2 = 0 are

related to the proton’s static electric charge and magnetic moment. In particular, eGE(0)

is the proton’s electric charge and so we know GE(0) = 1. Similarly, the proton’s magnetic

moment turns out to be given by µp = µNGM(0), and soGM(0)−1 describes the deviation from

the noninteracting point-particle result, µp = µN , where µN = e/2M = e/2mp is called the

nuclear magneton. The point-particle limit corresponds to the choice GE(q2) = GM(q2) = 1.

Once written in terms of GE and GM , the cross section for elastic ep scattering turns out

to be given by the Rosenbluth formula,

dσ

dΩ
=

(
dσ

dΩ

)
Mott

ω′

ω

[
G2
E + τ G2

M

1 + τ
+ 2τ G2

M tan2 θ

2

]
, (4.21)

where M now denotes the proton mass and

τ =
q2

4M2
= − t

4M2
=
ωω′

M2
sin2 θ

2
. (4.22)

Notice that this agrees with (4.18) when GE = GM = 1.

Figure 23. Measured values for the electric and magnetic proton form factors for elastic ep scattering.

(Figure source: http://www.mit.edu/~schmidta/olympus/guide.html).

Figure 23 shows the form factors obtained by fits to elastic scattering experiments, which

for ep scattering are performed by scattering electron beams from Hydrogen targets. (en
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scattering is done using Deuterium targets, after subtracting out the ep contribution.) The

results are clearly inconsistent (in both cases) with the point-proton limit GE = GM = 1.

For protons the resulting functional form for small q2 is not too far from the ‘dipole’ shape,

wherein both form factors have the same dependence on q2,

GE(q2) ' 1

(1 + q2/q2
0)2

, (4.23)

where fits to experiments imply q2
0 ' 0.71 (GeV/c)2, and similarly for µNGM/µp. As we have

seen, this corresponds in position space to an exponential (or screened) charge distribution,

σ ∝ e−r/a/r, with a = 1/q0 ' 0.23 fm. Measurements of form-factors like these for small

momentum transfer also determine the (electric and magnetic) mean effective radius of the

nucleon, through expressions like

F (q) =

∫
d3x ρ(x) e−iq·x = 1− q2

6

〈
r2
〉

+ · · · . (4.24)

Elastic scattering experiments such as these led to a picture of the proton as a mushy

charge distribution, but did not directly point towards the nature of their substructure. It was

the study of inelastic scattering, in which the collision is hard enough to disrupt the proton’s

internal structure, that provided much of the evidence that laid bare the role of quarks and

gluons.

4.3 Inelastic ep scattering

Inelastic scattering occurs when some of the incoming electron energy is used to excite some

internal degree of freedom of the target. For low energies this might start with the collisional

excitation of the target to one of its excited energy levels, indicated by the appearance of a

resonance in the cross section at the energy where ω−ω′ = Eres−M . At higher energies one

might see internal constituents knocked out, such as occurs in electron-nuclear collisions when

nucleons are kicked out of the initial nucleus. Still higher energies can see particle-anti-particle

pair production and other interactions, possibly leading to very complicated many-particle

final states.

In this section we examine a specific very informative process called deep-inelastic scat-

tering in which electrons collide with nucleons at high enough energies to produce a wide

variety of particles. Our interest, however, is not in the precise types of new particles that

are produced, so we consider inclusive cross sections in which one only measures the energy

and direction of the initial and final electron. The reaction is denoted ep → eX where X

consists of any kind of hadronic final states caused by the disruption of the target nucleon,

whose detailed properties are not measured so we sum over all possible final options for X.

Because we follow only the electron properties, the kinematic variables are very similar to

what they were for elastic electron scattering. The main difference is that we no longer know
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Figure 24. Sample ep double-differential scattering cross section, including the elastic peak (scaled

down by a factor of 8.5 to be visible), several resonances and the beginnings of the continuum. (Figure

source: Annual Review of Nuclear and Particle Science, Volume 22 (1972) page 210.)

the final rest mass of the total 4-momentum associated with X. That is, in e(k) + p(p) →
e(k′) + X(p′) there is no longer a constraint that says W 2 := −(p′)2 = (E′)2 − (p′)2 = m2

where m is the mass of some specific particle. Instead we must regard W 2 as a kinematic

variable whose final value in the cross section should be integrated over. Related to this is

the fact that the final electron energy, ω′, is no longer dictated by energy conservation purely

as a function of ω and θ. So rather than following the dependence of the differential cross

section, dσ/dθ, as a function of two independent variables (θ and the initial energy ω), we

instead imagine tracking the double-differential cross section, dσ/dω′dθ as a function of the

three independent variables θ, ω′ and ω.

As usual it is useful to express the cross section in terms of manifestly relativistic variables,

and for this we introduce the new energy-loss variable

ν := −p · q
M

, (4.25)

in addition to the familiar Mandelstam variable, q2 = (k − k′)2 = −t = 4ωω′ sin2 θ
2 (in which

the final expression neglects the electron mass). The definition of ν reduces to ν = ω − ω′ in

the rest-frame of the target (whose mass we take, as before, to be M).

Similar to what happens for elastic scattering, the differential cross section for deep-

inelastic scattering can also be written in terms of two form factors that parameterize our

ignorance of the target nucleon’s structure. The new feature in this case is that these form

factors now can depend on both of the Lorentz-invariant variables q2 and ν:

dσ

dq2dν
=

4πα2

Mq4

(
ω′

ω

){
W2(q2, ν) +

[
2W1(q2, ν)−W2(q2, ν)

]
sin2 θ

2

}
, (4.26)

rather than just depending on q2. In the special case of elastic scattering (for which X is the

same as the target) ν is no longer independent of q2, since then M2 = −(p′)2 = −(p+k−k′)2 =
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M2 − q2 − 2p · q and so ν = −p · q/M = q2/2M , and in this limit W1 and W2 are related to

the form factors GE(q2) and GM(q2).

In principle measurements of the cross section determine the Wi(q
2, ν), and thereby tell

us about the substructure of the nucleon. To see how, imagine that at very high energies deep-

inelastic scattering can be regarded as the incoherent hard scattering of the incident electron

from one of the constituent quarks within the nucleon. If the quarks are themselves spin-1
2

point particles (as seems to be the case) then the electron-quark scatterings are themselves

elastic, and so described by the eµ scattering cross section given earlier, (4.13):

dσ̂a
dq2

= −dσ̂

dt
=

2πα2

q4

(
ê2
a

e2

)[
(ŝ− q2)2 + ŝ2

ŝ2

]
, (4.27)

where êa is the electric charge of quark type ‘a’ and we neglect both electron and quark masses

at the energies of interest. We use ‘hats’ to denote 4-momenta and cross sections involving

the quarks — sometimes also collectively called partons, together with the gluons inside the

nucleon — to distinguish them from the corresponding quantities for the entire nucleon. So

σ̂a is the cross section for elastic electron scattering from quark type ‘a’ while ŝ ' −2p̂ · k is

the Mandelstam variable computed using the initial quark 4-momentum, p̂µ, rather than the

4-momentum of the entire target nucleon.

How is ŝ related to s? For ultra-relativistic scattering (ω �M) we can neglect both the

nucleon mass and any zero-point energy of the quarks due to their being bound within the

nucleon. We can therefore regard the quark 4-momentum as being parallel to the 4-momentum

of the initial nucleon, p̂µ = x pµ, with 0 ≤ x ≤ 1 measuring the fraction of the initial nucleon’s

momentum carried by the quark in question. Consequently ŝ ' −2p̂ ·k ' −2x p ·k ' xs. But

x is also related to ν because at the parton level the scattering is elastic, so

0 ' m2
a = −(p̂′)2 = −(p̂+ k − k′)2 = −(x p+ q)2 ' −2x p · q − q2 = 2x νM − q2 , (4.28)

and so

x =
q2

2Mν
. (4.29)

The quantity x defined in this way is often called the Bjorken scaling variable, or Bjorken x.

To relate dσ̂a/dq
2 to the total electron-nucleon cross section we imagine there being

a probability density, Pa(x), of finding quark type ‘a’ carrying a fraction x of the initial

nucleon’s momentum. For incoherent scattering the total interaction cross section therefore
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becomes the sum over the cross section for scattering from each constituent quark, and so

dσ

dq2dν
=
∑
a

∫ 1

0
dx Pa(x)

dσ̂a
dq2

(x, q2, s) δ

(
ν − q2

2Mx

)

=
2πα2

q4
P(x)

{[
1−

(
q2

xs

)]2

+ 1

}
2Mx2

q2

∣∣∣∣∣
x=q2/2Mν

=
2πα2

q4
P(q2/2Mν)

[
1 +

(
ω′

ω

)2
]

2ωω′ sin2(θ/2)

M(ω − ω′)2
(4.30)

=
4πα2

Mq4

(
ω′

ω

)
P(q2/2Mν)

(
1 +

2ωω′

ν2

)
sin2 θ

2

=
4πα2

Mq4

(
ω′

ω

)
P(x)

(
sin2 θ

2
+
xM

ν

)∣∣∣∣
x=q2/2Mν

,

where we repeatedly use x = q2/2Mν and q2 = 4ωω′ sin2 θ
2 . Furthermore, we define

P(x) :=
∑

a=u,d,s,ū,d̄,s̄

ê2
a

e2
Pa(x) (4.31)

=
4

9

[
Pu(x) + Pū(x)

]
+

1

9

[
Pd(x) + Pd̄(x) + Ps(x) + Ps̄(x)

]
,

and recognize when performing the sum that the initial nucleon can contain a sea of qq pairs

(or ‘sea’ quarks) in addition to the ‘valence’ uud or udd quarks and so include antiquarks

in the sum on a. The quark sum is easy to do since the antiquark-electron scattering cross

section is also given by (4.27) in the ultra-relativistic limit. It is a bit more complicated also

to include the heaviest quarks, like b and t, since for these the quark masses need no longer be

negligible, but the contributions of such heavy sea quarks to nucleon properties are usually

negligible in practice.

Exercise 4.3: Starting from eq. (4.27) and assuming that electron proton scatter-

ing is well-described by incoherent scattering from the proton’s constituent quarks

(whose masses can be neglected), derive the first line of eq. (4.30). Then use the

result ν = ω − ω′ in the proton rest frame, as well as relations (4.16), to derive

the last line of eq. (4.30) with P(x) as given in (4.31).

When performing the sums we normalize the probabilities so that the integral over all x

counts the number of valence quarks. For example, for protons (i.e. uud states) we have∫ 1

0
dx
[
Pu(x)− Pū(x)

]
= 2 ,

∫ 1

0
dx
[
Pd(x)− Pd̄(x)

]
= 1 ,

∫ 1

0
dx
[
Ps(x)− Ps̄(x)

]
= 0

and so on, while for neutrons (i.e. udd states) we instead have∫ 1

0
dx
[
Pu(x)− Pū(x)

]
= 1 ,

∫ 1

0
dx
[
Pd(x)− Pd̄(x)

]
= 2 ,

∫ 1

0
dx
[
Ps(x)− Ps̄(x)

]
= 0 .
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Notice that the sum in (4.31) could also have included a sum over gluons (the quanta for

the strong-interaction force) but does not because these are electrically neutral and so do not

take part in electromagnetic scattering. They do however carry some of the initial nucleon’s

momentum and because of this one typically finds that∑
a=q,q̄

∫ 1

0
dx xPa(x) ' 0.5 , (4.32)

so that on average quarks carry only about half of a nucleon’s initial momentum while the

gluons carry the rest.

Because the form-factor expression, (4.26), is completely general (for electromagnetic

scattering), it must include the parton-level calculation (4.30) as a special case. Comparing

the two expressions allows the determination of W1 and W2, leading (in the limit ν = ω−ω′ �
M) to the predictions W1(q2, ν) = F1(x) and νW2(q2, ν)/M = F2(x) with

2F1(x) ' P(x) +O(M/ν) and F2(x) = xP(x) . (4.33)

These predictions for Wi agree well with experiments in the limit ν,
√
q2 � M , and are

in practice how the quark distribution functions, Pa(x), are determined. For example, an

experimental test that F2 depends only on x and not also on q2 is shown in Figure 25. Also

shown is a test of the prediction 2xF1(x) = F2(x) — called the Callan-Gross relation —

that tests the spin-half nature of quarks since (for example) F1 = 0 for spinless quarks. Both

predictions are seen to be verified experimentally.

(a) q2-independence of F2 (b) Test of the Callan-Gross relation

Figure 25. Experimental tests of the parton picture of deep-inelastic electron-nucleon scattering. Left

panel: demonstration that the structure function F2 does not depend on q2, which provides evidence

that quarks themselves have no structure. Right panel: test of the Callan-Gross relationship that plots

the measured ratio 2xF1/F2 against Bjorken-x. This relation probes the spin-half nature of quarks.

(Figure source: D.H. Perkins, ‘‘Introduction to High Energy Physics,’’ Addison Wesley, 1987.)

We see that the hypothesis that nucleons are made of point-like partons (quarks and

gluons) agrees well with observations, and in many ways the experiments that showed this
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are modern analogs of Rutherford’s scattering experiment. We saw how ignorance of nucleon

structure can be parameterized by structure functions, and elastic scattering from charge

distributions gives these functions a strong dependence on q2, whereas point particles would

predict them to be q2-independent. Although this strong q2 dependence is indeed seen for low-

energy scattering, in which the incident electron coherently scatters from the entire nucleon, it

disappears again for very hard inelastic scattering. This reveals how very energetic electrons

instead scatter dominantly from point-like quark constituents rather than from the proton

as a whole, because the proton does not have time to respond to the delivered momentum

transfer.

Figure 26. Plots of the parton distribution functions, xPa(x), for several parton species as ob-

tained by fits to multiple scattering processes. Valence quarks are seen to dominate for large

x while sea quarks and especially gluons become more important for smaller x. (Figure source:

http://www.hep.phy.cam.ac.uk/ thomson/lectures/lectures.html.)

What is important in all this is that once the functions, Pa(x), are determined from

measurements (such as from ep scattering) they then can be used to predict any other kind

of hard nucleon scattering by point objects. This is because the distribution of quarks within

the nucleon is an intrinsic property of the nucleon, and does not care what particles are used

to scatter against it in a particular experiment. So precisely the same functions also appear

in neutrino-nucleon scattering, for example, though weighted by different coupling constants

due to the different interactions involved. This is what makes these calculations predictive,

given that we ultimately must obtain the functional form for Pa(x) from experiments. Plots

of the values of xPa(x) for different types of partons are shown in Figure 26, as obtained by
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fitting the results of many collision processes.

Exercise 4.4: Suppose the form factors F epi (x) and F eni (x) (with i = 1, 2) are

measured for inclusive deep inelastic scattering for both e− + p → e− + X and

e−+n→ e−+X collisions. Assuming that electromagnetic interactions dominate

and assuming that the antiquark distributions are equal within the proton and

neutron – i.e. that Pū ' Pd̄ ' Ps̄ is the same functions for both protons and

neutrons – derive the Gottfried sum rule, which states:∫ 1

0

dx

x

[
F ep2 (x)− F en2 (x)

]
=

1

3
.

5 Nuclear structure

We now return to much lower energies (several MeV) than in the higher energies E >∼ 200

MeV we’ve seen to be associated with the substructure of the proton and neutron in previous

section. The goal in this section is to discuss the properties of how nucleons organize them-

selves into nuclei and see what this can tell us about the nature of the strong force that acts

between nucleons.

The central principle of nuclear physics is the idea that atomic nuclei are bound systems

built from mutually interacting protons and neutrons. Much of the evidence for this comes

from experiments which collide protons and neutrons with nuclei or from radioactive decays.

Numerous reactions, like n+3He→ 4He+γ or n+14C→ 14N+p, show how individual nucleons

can both be absorbed or ejected as one type of nucleus is transformed into another.

The picture that nuclei are built from protons and neutrons ultimately means that nuclear

properties should be completely characterized by the number Z of protons and the number N

of neutrons the nucleus contains, allowing (in principle) quantities like binding energies and

the nature of any excited states to be deduced from these. It is common in practice to trade

N for the total number of nucleons in the nucleus: A := N + Z. Because Z determines the

nuclear electric charge it also determines how many electrons must bind to it to get a neutral

atom, and therefore also determines the atom’s chemical properties.

A reminder about notation: because the number Z determines chemical properties it is

often specified only implicitly by identifying the relevant chemical element: i.e. a nucleus

with Z = 2 protons and N = 1 neutrons has A = 3 and can be equivalently described as the

nucleus with (Z,A) = (2, 3) or as 3He, since atoms for the element Helium all have Z = 2.

Similarly 12C denotes a Carbon nucleus which has (Z,A) = (6, 12). The superscript A is

written to the left to allow room on the right to put in electric charge – as in 3He+ for the

singly-charged Helium ion. Nuclei that share the same value of Z but different values of A are

called nuclear isotopes for the element in question (e.g. 12C and 14C are isotopes of Carbon

that respectively have (Z,A) = (6, 12) and (Z,A) = (6, 14)).
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As we shall see, the nuclear structure to which this leads is more complicated than is

the electronic structure of an atom, for several reasons. The first reason is because the

atom is dominated by the large, massive central nucleus to which the very light electrons

respond through the long-ranged and well-understood Coulomb interaction. By contrast, all

the constituents of a nucleus have similar mass and they are bound by what turns out to be

a very strong but short-ranged force.

A second reason nuclei are more complicated than atoms is that each of these nuclear

constituents are themselves composites built from still-smaller objects — the quarks and

gluons of the previous chapter. Because of this substructure inter-nucleon forces are likely

to be fairly complicated, in the same way that residual van der Waal’s forces between atoms

and molecules can appear more complicated than the Coulomb interaction despite it being

the Coulomb interaction that is ultimately responsible for these forces. As we shall see, the

analogy with residual inter-atomic forces in molecules can be a good one, and in many ways

a nucleus is more similar to a very small drop of liquid than to an atom.

5.1 Nuclear binding energies and nucleon forces

Much of what is known about inter-nucleon forces comes from the observed properties of

the nuclei which they combine together to make. This section summarizes some of those

properties and uses them to argue that inter-nucleon forces are:

Short-ranged inasmuch as they act only over distances of order a few fm or less;

Attractive inasmuch as there are combinations of nucleons that can lower their energy by

being in close proximity to one another, and thereby give rise to nuclei;

Democratic inasmuch as they are largely indifferent to nucleon spins or to the difference

between a neutron or a proton (more precisely, they are invariant under the rotations and

under isospin symmetries to be defined in §5.3 below);

Saturated inasmuch as nucleons interact with only a fixed number of neighbors in a way that

is described in more detail in §5.1.3 below (and that makes nuclear matter incompressible).

5.1.1 Inter-nucleon interactions

Consider first what is implied by the statement that neutrons and protons experience a nuclear

interaction that is strong, attractive and short-range.

The range of nuclear forces is around 1 fm, which is to say that nucleons separated by

more than ∼ 1 fm largely do not experience any nuclear interactions. This range can be

determined in many ways, such as by studying pp and pn scattering. For pp scattering purely

Coulomb interactions stop giving the observed scattering cross section once impact parameters

are roughly 1 fm or smaller. For np scattering the neutrality of the neutron ensures there is

no Coulomb component, and the scattering cross section is very similar to a geometric cross

section for an object whose radius is around 1 fm.
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The inter-nucleon interaction must also have an attractive component because for some

combinations of nucleons it gives rise to bound states (i.e. nuclei). Yet not all possible

combinations of nucleons yield stable bound states, however, since (for example) there are

no known nuclei consisting only of two or more neutrons. More concretely, nontrivial nuclei

containing the fewest nucleons – i.e. nuclei with A = 2 – could in principle arise as pp, np

or nn bound states, but of these only np actually appears in nature as a stable nucleus: the

Deuterium nucleus or 2H isotope of Hydrogen. The combinations pp and nn appear not to

bind.

How strong is the inter-nucleon force? A good benchmark with which to compare it is

the magnitude of the Coulomb repulsion of two protons that are separated by 1 fm, which is

of order

UC(1 fm) =
α

1 fm
' 1.4 MeV , (5.1)

which uses (1 fm)−1 ∼ 200 MeV and where α ' 1/137 is the fine-structure constant. Energies

much larger than this are what we regard as ‘strong’ since they are capable of overwhelming

the weaker Coulomb repulsion between protons.

To get an idea about the strength of the inter-nucleon force it is useful to try out a simple

model for the neutron-proton attraction that gives rise to Deuterium. A simple model that

captures the attractiveness, short range and strength of the p-n interaction is the attractive

spherical square well sketched in Figure 27. This potential is characterized by two parameters:

the force’s range R and well’s depth U0.

Figure 27. Sketch of the inter-nucleon interaction modelled as a square-well potential.

Bound states for this potential have energy E = −EB, as shown in the figure. The

magnitude of this bound-state energy is computed in §3.2.7 and are given by the joint solutions

to the two equations (3.80) and (3.81), repeated here for convenience:

κR = −(kR) cot(kR) and (kR)2 + (κR)2 = 2mU0R
2 , (5.2)
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where κ2 = 2mEB and k2 = 2m(U0−EB). The behaviour of these solutions can be visualized

as the intersection of the two curves in Fig. 20, and leads to the result

EB =
κ2
n

2m
=

cn
mNR2

, (5.3)

where m ' 1
2 mN is the reduced mass of the two-nucleon system, with mN ' 940 MeV being

the nucleon mass. n is an integer and for each n the dimensionless quantity cn = cn(mU0R
2)

is a monotonically increasing function of the parameter mU0R
2.

As described in §3.2.7, the integer n arises because the number of independent bound-

state solutions depends on the value of mU0R
2. In particular, no bound states exist at all if

2mU0R
2 < 1

2 π, while there are n = 1, 2, · · · solutions whenever (n− 1
2)π < 2mU0R

2 < (n+
1
2)π. If U0 is dialled up with R fixed then new solutions arise with EB = 0 and kR = (n+ 1

2)π

whenever U0 passes through values where 2mU0R
2 = (n+ 1

2)π. Each new state then becomes

more tightly bound (i.e. EB grows) as U0R
2 increases, eventually asymptoting (for large

mU0R
2) to kR = (n+ 1)π and so

EB =
κ2
n

2m
→ U0 −

1

2m

[
(n+ 1)π

R

]2

(for mU0R
2 � 1) . (5.4)

These results show that a key scale in the problem is the zero-point kinetic energy that

is required by the uncertainty principle if a state is localized within a radius of size R. For

such a localized state typical momenta are k ∼ 1/R and so (keeping in mind 2m ' mN) the

associated zero-point kinetic energy is

Ezp =
k2

2m
' 1

mNR2
' 40 MeV

(
1 fm

R

)2

. (5.5)

This energy scale is important because no bound states exist at all if U0 is smaller than Ezp,

and new bound states arise every time U0 increases by an amount of order Ezp.

The strength of the inter-nucleon interaction can be roughly inferred by asking what

depth of the potential would reproduce the observed Deuterium binding energy given a force

of range R ' 1 fm. Since the measured Deuteron binding energy (the difference mn+mp−mD

between the Deuteron mass and the mass of a free proton and neutron) is 2.2 MeV this implies

the depth of the potential well must be

U0 =
k2

2m
+ EB ' Ezp + EB ' 42 MeV , (5.6)

where we use both (5.5) and EB ' 2 MeV. This can easily overwhelm the Coulomb interaction

of (5.1) acting over similar distances.

Since its binding energy is only 2.2 MeV the potential depth U0 must be just slightly

larger than Ezp ∼ 40 MeV, making the Deuteron a rather shallow bound state. Because it is so
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shallowly bound its wave-function extends out to relatively large distances, ψ(r) ∝ (1/r)e−r/a

for r > R, with

a =
1

κ
=

1√
2mEB

∼ 1

30 MeV
∼ 7 fm� R ∼ 1 fm , (5.7)

and so the Deuterium wave-function extends about seven times further than the assumed

range of the nuclear force. Not only does the nuclear force have a definite range, this range

can be short in comparison with the natural size of the particle wave-functions.

5.1.2 Short-range attractive forces and pairing

Short-range attractive forces have other implications, particularly when they act on identical

particles (such as two protons or two neutrons). If these identical particles are fermions (as are

nucleons) then short-ranged attraction can cause a preference for pairing: it is energetically

preferable for pairs of particles to join together into spinless units.

To see why, imagine computing the energy eigenstates appropriate for a pair of particles

that interact through a short-range attractive potential that depends only on their relative

distance: U = U(|r1 − r2|). Recalling the result from previous sections that the centre-of-

mass motion can be separated from the relative motion, we label the two-particle states by

its center-of-mass momentum, P = p1 + p2 and total spin s, plus any labels (n, `, `z) that

describe the relative motion (which we choose to include the angular momentum quantum

numbers ` = 0, 1, 2, · · · and `z = −`,−` + 1, · · · , ` − 1, ` because of the assumed rotational

invariance of U :

|P, s;n, `, `z〉 =
∑

σ1,σ2=± 1
2

∫
d3r1d3r2|r1, σ1; r2, σ2〉 〈r1, σ1; r2, σ2|P, s;n, `, `z〉 , (5.8)

where we choose a basis of position eigenstates for each of the individual particles.

Recall also that §3.2.1 shows that the two-particle wave-function factorizes if we use the

pair’s center-of-mass R = (m1r1 +m2r2)/(m1 +m2) and relative position r = r1 − r2 rather

than r1 and r2 as position labels. That is,

〈r1, σ1; r2, σ2|P, s;n, `, `z〉 =
1

(2π)3/2
exp(iP ·R) Ψn``z ,sσ1σ2(r) , (5.9)

where Ψ satisfies the single-particle Schrödinger equation

− 1

2m
∇2Ψ + U(r)Ψ = EΨ , (5.10)

where m = m1m2/(m1 +m2) is the reduced mass.

The preference for pairing into spinless combinations comes from the competition between

Fermi statistic and the assumed short-range of the attractive force. On the one hand Fermi

statistics states that the state must change sign if the two identical particles are interchanged,

and so

Ψn``z ,sσ2σ1(−r) = −Ψn``z ,sσ1σ2(r) . (5.11)
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As usual we exploit spherical symmetry to seek solutions of the form Ψ(r) = R(r)Y``z(θ, φ)

in spherical polar coordinates. But in polar coordinates the reflection r→ −r corresponds to

(r, θ, φ)→ (r, π − θ, φ+ π), and the spherical harmonics satisfy the identity

Y``z(π − θ, φ+ π) = (−)`Y``z(θ, φ) , (5.12)

so eq. (5.11) implies Ψn``z ,sσ2σ1(r) = (−)`+1Ψn``z ,sσ1σ2(r). That is, states with ` even must be

antisymmetric under the interchange σ1 ↔ σ2 (which — assuming spin-half particles, as for

nucleons — implies the pair must have total spin s = 0, since for this 2s+1 = 1 corresponding

to the unique antisymmetric spin combination ↑↓ − ↓↑. Similarly states with ` odd must be

symmetric under σ1 ↔ σ2, corresponding to total spin s = 1 because there are 2s + 1 = 3

symmetric spin combinations: ↑↑, ↓↓ and ↑↓ + ↓↑.
The short-range force comes in because it forces the lowest-energy state to have ` = 0 and

so therefore must also have its spins combine into the s = 0 singlet state. Ground states very

generally tend to be ` = 0 because this minimizes the number of zeroes in the wavefunction,

and every additional zero turns out to cost energy due to the need for larger gradients in the

wavefunction. But this is clearest for short-range forces because for these any energy gain

due to the interaction is concentrated very close to r = 0, and for small r the radial equation

(3.52) is given approximately by

d2R
dr2

+
2

r

dR
dr
− `(`+ 1)

r2
' 0 , (5.13)

which has solutions R = C1r
`+C2r

−`−1. [Notice that this is consistent with the small-r limit

of the explicit ` = 0 solutions of (3.77) once one recalls that R(r) = u(r)/r.] Demanding Ψ

not to diverge at r → 0 then forces C2 = 0 and so ensures Ψ ∝ r` for small r. This shows

that only ` = 0 has the nonzero probability |Ψ(r)|2 at r = 0 that is required to profit from

the attractiveness of a short-range potential that is localized at the origin.

The bottom line is this: because the inter-nucleon force is attractive and short-ranged

we expect pairs of identical nucleons to prefer to minimize their energy by pairing together

into spinless pairs. This should make nuclei with even numbers of protons and even numbers

of neutrons (i.e. nuclei where A is divisible by 4 and Z is even) to be more tightly bound

than are others. Although this simple pairwise argument might become suspect for nuclei

containing many nucleons, where many-body effects might change the conclusion, it should

be most reliable for nuclei with relatively few nucleons. This is the start of an explanation

for why α particles – which are 4He nuclei with two protons and two neutrons – seem to be

extremely tightly bound.

5.1.3 Complex nuclei and saturation of nuclear forces

Ideas about the nature of inter-nucleon forces (such as the arguments for pairing given above)

can be tested against the gross features of nuclei, and in particular by how their binding
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energies depend on the number of neutrons and protons that are present. To this end it is

useful to specify more precisely what is meant by nuclear binding energies.

Binding energies are defined by comparing the mass, M(A,Z), of the isotope of interest

with the sum of the masses of its constituents. Temporarily re-introducing factors of c:

− EB

c2
= M(A,Z)− ZM(1, 1)− (A− Z)M(1, 0) = M(A,Z)− Zmp −Nmn . (5.14)

As defined EB is positive when it costs energy to separate the isotope into its constituent

protons and neutrons. Although in principle the masses appearing here should be of the

nucleus only, in practice mass measurements are normally done with neutral atoms. This

need not be a problem since the error (the difference in binding energy of the electrons) is

much smaller than the nuclear binding energies.

In practice a more precise way to measure binding energies is by creating the isotope

by bombarding another isotope with an appropriate beam (perhaps neutrons) and looking

for the created nucleus to de-excite by emitting a photon. For example Deuterium (also

called a deuteron) can be made by bombarding protons with neutrons through the reaction

n+p→ d+γ. In this case the incoming neutron can have very low energy (a thermal neutron

can have kinetic energies of order kBT , which in lab settings are much smaller than an MeV.

For such slow neutrons the photon then carries off the binding energy. Because it is possible

to measure photon energies with much more precision than measuring isotope masses (which

is typically done by following their trajectories in an applied magnetic field) binding energies

can be more accurately known than are isotopic masses.

Figure 28. Binding energies, EB, and binding energy per nucleon, EB/A, of the lightest stable nuclei

in MeV. For nuclei with A = 4n for n = 2, 3, 4, 5, 6 ∆E gives the binding energy relative to n times

the binding of a 4He nucleus. (Figure source: Samuel Wong, ‘‘Introductory Nuclear Physics,’’ Wiley 2004.)
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Table 28 provides a table of the measured binding energies, EB, for the lightest elements,

as well as the binding energy per nucleon, EB/A. Figure 29 provides a related plot of EB/A

versus A for a wider range of A. This table and the figure provide several lines of evidence in

favour of the assertion that nuclei are held together because nucleons experience attractive

short-range forces. To see why, first notice that for small nuclei the binding energy per nucleon

grows as one adds more and more nucleons, as shown as the steep rise on the left of Figure 29.

This occurs as more and more nucleon-nucleon pairs can profit from their mutual interaction

to lower their energy.

Figure 29. Plot of the binding energy per nucleon of nuclei vs the nucleus’ total nucleon number A.

(Figure source: Samuel Wong, ‘‘Introductory Nuclear Physics,’’ Wiley 2004.)

Both Table 28 and Figure 29 also show that this rise is erratic — at least for nuclei roughly

out to 16O — since light nuclei with Z = N = 2n (so A = 4n for n a small natural number)

are more tightly bound than are others of similar size. This shows that the nuclear force is

the strongest amongst the members of groups consisting of two neutrons and two protons,

with additional nucleons not lowering energies in a commensurate way, and so is evidence for

the nucleon pairing as discussed above. Apparently nucleons like to form α-particle clusters

within nuclei — with Z = 2 and A = 4 — which then mutually interact and interact with

any left-over unclustered nucleons.

The behaviour of Figure 29 for large A is also informative in a different way, because

it provides evidence that the inter-nucleon force saturates. Here ‘saturation’ means that

any particular nucleon only profits from the existence of a fixed number of nearby nucleons

(rather than from all nucleons in a nucleus) when lowering its energy through its inter-

nuclear interactions. Figure 29 shows evidence for saturation because the sharp growth of

EB eventually stops for intermediate-sized nuclei, after which the binding energy per nucleon
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flattens out at around 8.5 MeV per nucleon. (The shallow downward trend in EB/A for large

A can be attributed to the repulsive nature of the Coulomb interaction between protons,

which are more numerous for larger A – more about which below.)

Having EB/A flatten for larger A implies total binding energy for large nuclei scales as

EB ∝ A. The scaling EB ∝ A shows that any one nucleon in a large nucleus is only interacting

with a fixed number of other nucleons, so the binding energy per nucleon stops growing once

there are more nucleons present than the maximum number of ‘bonds’ any one of them can

form. Contrast this with the quadratic scaling of the Coulomb interaction for Z mutually

interacting charges within a region of size R: EC ∝ Z(Z−1)α/R. This quadratic dependence

on the number of charges (Z) arises because the Coulomb interaction is long-ranged, and so

every charge interacts with all the other charges. The factor Z(Z − 1) simply counts the

number of such pairs of charges that can interact.

Other systems, like molecules in a fluid, also exhibit this kind of saturation and these also

experience short-range forces (in this case often due to residual van der Waals interactions

between atoms). But, in addition to having a short range, saturation of binding energies also

usually requires the interaction to have a hard repulsive core in addition to the longer-range

attractive component. The hard core stops the molecules from squeezing closer to one another

to bring more of them within the range of the attractive short-range force, and thereby allow

more pairs to profit from the lowered interaction energy. This suggests nucleons should also

experience a short-range hard-core repulsion in addition to the longer-range attraction, and

we find in later sections that such repulsion does exist because of the existence of ‘exchange’

interaction (described in more detail below).

As mentioned earlier, the gradual falloff of EB/A seen for large A in Figure 29 can be

attributed to the increased Coulomb repulsion due to the presence of more and more protons

at larger A. But why have more protons at all? If nuclear forces are indifferent to whether

they act on neutrons or protons why don’t nuclei prefer to have more neutrons than protons?

Indeed, why don’t nuclei arise that are all neutrons, with no protons at all? This does not

happen, as may be seen in Figure 30 which shows the stable (and relatively long-lived but

radioactive) nuclei as a function of their neutron and proton number, N and Z. This reveals

a relatively narrow valley of stability, with stable nuclei existing only for correlated values

of N and Z. For small nuclei stability requires roughly equal numbers, N = Z, although it

bends to allow N > Z for larger nuclei (largely in response to the Coulomb penalty paid by

having more protons).

The existence of this valley implies the existence of a nuclear symmetry energy that

imposes a penalty for having N differ much from Z, and whose presence competes with the

increased Coulomb energy cost of each proton. As we shall see this energy has its origin in the

nucleon’s Fermi statistics, which makes it energetically expensive to populate only neutron

or only proton states.
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Figure 30. Plot of the ‘valley of stability’ showing the stable (black) and relatively long-lived radioac-

tive (grey) isotopes vs proton (Z) and neutron (N) number. (Figure source: Samuel Wong, ‘‘Introductory

Nuclear Physics,’’ Wiley 2004.)

5.2 Nuclear models

We now turn to several approximate ways to understand how nuclear interactions account for

the observed properties of nuclei. The first of these asks how bulk properties like nuclear size

and binding energy depend on the number of protons and neutrons, N and Z. The second

studies more finely how quantum states for nucleons respond to this bulk environment.

5.2.1 Liquid-drop model

The evidence for nuclear saturation described above leads to a drop-like picture of the nucleus

in which nucleons (like water molecules) interact dominantly with their immediate neighbours

(attracting at longer distances with a repulsive hard core) and so form an incompressible fluid

with a fixed energy density, whose volume is therefore proportional to the total number, A, of

nucleons present. This picture is borne out by low-energy electron-scattering measurements

of the nuclear density which (see Figure 31) show the diffractive peaks found earlier for

hard-sphere scattering, indicating the existence of a nuclear surface.

For spherically symmetric nuclei the nuclear density that is inferred from experiments

such as these are reasonably well-described by a Fermi distribution of the form

ρ(r) =
N

1 + exp[(r −R)/a]
, (5.15)
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(a) Electron-nucleus scattering cross section (b) Inferred nuclear charge distribution

Figure 31. Experimental determination of nuclear density from electron-nucleus scattering. Left

panel: scattering cross section, showing diffractive peaks that indicate the presence of a nuclear surface.

Right panel: inferred nuclear charge density obtained from scattering measurements (Figure source:

Phys.Rev.C78 (2008) 044332 arXiv:0808.1252 [nucl-th].)

where N is a normalization factor and R is called the half-density radius. The parameter a

is related to the surface thickness, t, by t = (4 ln 3)a ' 4.39445 a, with t the distance over

which ρ drops from 90% to 10% of its central value. Fits to these parameters give them a

dependence on A that is approximately

R '
(

1.18A1/3 − 0.48
)

fm and t ' 2.4 fm . (5.16)

These values imply a central density of ρ0 = ρ(0) ' 0.17 nucleons/fm3. The scaling R ∝ A1/3

for large A confirms the expectation that the nuclear volume is proportional to A, as expected

due to the saturation of nucleon interactions. By contrast, the surface thickness does not

depend on nuclear size. Both of these are as would be expected for a droplet of fixed density.

The shape implied by (5.15) is drawn in Figure 32, and has a clear resemblance to the

measurements of Figure 31.

The liquid-drop picture also suggests a semi-empirical formula that captures the gross

features of the dependence of the binding energy on N and Z, called the Weizäcker mass

formula. This states

EB(Z,N) = cv A− csA2/3 − cC
[
Z(Z − 1)

A1/3

]
− csym

[
(N − Z)2

A

]
+

∆

A1/2
, (5.17)
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Figure 32. Plot of the Fermi nuclear charge distribution (which should be compared with the dis-

tribution inferred from measurements given in the right-hand panel of Figure 31). (Figure source:

http://202.141.40.218/wiki/index.php/Nuclear Size and Radii)

where

∆ =


δ for even-even nuclei

0 for odd-mass nuclei

−δ for odd-odd nuclei

, (5.18)

and the constants are found by fitting to the observed binding energies and are given by

cv = 16 MeV cs = 17 MeV cC = 0.6 MeV

csym = 25 MeV δ = 12 MeV . (5.19)

The terms in this expression have the following origin. The first (cv or volume) term

captures the amount by which the bulk energy density is reduced by the attraction of the

inter-nucleon bonds. It contributes proportional to A because of the saturation of nuclear

forces described above, which limits the number of such bonds for any one nucleon. As a

result the total binding energy of this term simply counts the number of nucleons present.

The second (cs or surface) term expresses how nucleons near the surface of the nucleus do

not profit from the energy reduction of a full complement of bonds. This term scales like the

surface area of the nucleus, and so varies like the square of the nuclear radius: R2. Because

the nuclear fluid has a fixed density the nuclear volume goes like R3 ∝ A, and so R2 ∝ A2/3.

The third (cC) term expresses the Coulomb repulsion of the protons, which we’ve seen

scales like Z(Z − 1) and inversely with the nuclear radius, R−1 ∝ A−1/3.

The fourth (csym or symmetry) term arises due to the Fermi statistics of the nucleons

(as we see below in more detail). The idea is that individual nucleons can in many ways

be regarded as independently moving within a potential formed by the presence of all of the

other nucleons. In this case each type of nucleon (protons and neutrons) will have a set of

single-particle energy levels available, each of which Fermi statistics implies is occupied by
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Figure 33. Sketch of the energy levels for independent protons (right) and neutrons (left) within

a potential well. Notice the proton levels are displaced upwards relative to the neutrons by their

average mutual Coulomb repulsion and their potential well also takes the Coulomb form outside the

well. (Figure source: http://web-docs.gsi.de/Lecture3.pdf)

at most one particle (see Figure 33). In the ground state these levels are filled up to the

point where all nucleons have been assigned a level, and so their total energy is dominated

by the uppermost levels filled, called the Fermi energy, EF . Since protons and neutrons

have similar masses and interactions their Fermi energies are similar, and it is energetically

punitive to just fill the nucleons with neutrons (thereby raising their Fermi energy) without

equally filling the proton well. Consequently the sum of their Fermi energies is minimized

when N = Z. Expanding the binding energy per nucleon in powers of (N − Z)/A near this

minimum therefore gives an energy δEB/A ∝ (N −Z)2/A2. It is this term whose competition

with Coulomb repulsion determines how close to N = Z are the stable nuclei.

Figure 34. Plot of the energy cost (in MeV) of removing a neutron from Lead isotopes as a function

of neutron number, N . The pattern of steps reflects the residual nucleon pairing interaction while the

line at N = 126 corresponds to a nuclear magic number as described later in the text. (Figure source:

http://www.sjsu.edu/faculty/watkins/nnPb8201.gif )

The final (∆) term describes the effects of the nuclear pairing energy. Whenever a degen-
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erate system of fermions experiences an attractive interaction it is energetically favourable for

them to form pairs, since these pairs behave as bosons and so in many ways are released from

the constraints of Fermi statistics. This phenomenon underlies a number of many-body effects

involving fermions, such as superconductivity and superfluidity, and (because the nucleons

are statistically degenerate) also contributes to the energetics of nuclei. There is considerable

evidence for this pairing energy: (i) the larger number of stable or long-lived isotopes for

even-even nuclei (for which both N and Z are even, so for which all nuclei can pair up) and

the relative paucity of these states for odd-odd nuclei; (ii) even-even nuclei have spin zero in

their ground states, indicating a preference for nucleon pairing into configurations with zero

angular momentum; (iii) the energy cost for removing the outermost neutron (or neutron

separation energy Sn(A,Z) = EB(A,Z)−EB(A− 1, Z)) is systematically several MeV higher

when N is even than when it is odd (see Figure 34) and a similar statement holds for the

proton separation energy, Sp(A,Z) = EB(A,Z)−EB(A− 1, Z − 1), when Z is even and odd.

Figure 35. Example of a fit that leads to the parameters in the semi-empirical mass formula. This fit

shows two fits to the A-dependence of the pairing energy). (Figure source: Hans van Deukeren - Own work,

CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=51293587

The Weizäcker formula expresses the main gross effects that contribute to nuclear binding

energies and captures the competition between volume and surface (as well as Coulomb and

symmetry) energies that shape the form of the nuclear valley of stability. For example Figure

36 plots EB(Z,A) as a function of Z for A = 12, showing how it is maximized for Z = 6

(corresponding to the stable nucleus 12C). Table 8 evaluates the relative contributions of each

contribution to EB for each of the nuclei shown in this Figure, illustrating the trade-off (and
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relative size) of each term. There are many more detailed features of binding energies that

the Weizäcker formula does not capture, however, such as the existence of ‘magic numbers’

for which particularly stable nuclei exist. For these we turn to a slightly more refined model

of nuclear structure.

Figure 36. A plot of the binding energy EB(Z,A) vs Z for fixed A = 12, as computed using the

semi-empirical mass formula (5.17) (with numerical coefficients from (5.19)). This is maximized at

Zmax = 6, corresponding to the stable nucleus 12C. Such plots are useful for judging which types of

radioactive decays are allowed energetically. For instance, instability towards the β decay n→ p e−ν̄

occurs once EB(Z,A) < EB(Z + 1, A)−me (so e.g. 12N→ 12C is allowed).

Table 8. Contributions (in MeV) to EB(Z,A) for A = 12

Element Z N Evol Esurf Eem Esym Epair EB EB/A

Li 3 9 192 −89.1 −1.57 −75 −3.46 23 1.9

Be 4 8 192 −89.1 −3.14 −33.3 3.46 70 5.8

B 5 7 192 −89.1 −5.24 −8.33 −3.46 86 7.2

C 6 6 192 −89.1 −7.86 0.0 3.46 98 8.2

N 7 5 192 −89.1 −11.0 −8.33 −3.46 80 6.7

O 8 4 192 −89.1 −14.7 −33.3 3.46 58 4.9

F 9 3 192 −89.1 −18.9 −75 −3.46 5.6 0.46

Exercise 5.1: Use the Weizäcker mass formula to plot the binding energy of

nuclei with A = 127 as a function of Z. What integer value of Z should be the

most stably bound nucleus for this value of A? Evaluate the binding energy for

the isobars Z = 48, 49 and Z = 57, 58. Based on this how would these four isobars

decay? (i.e. do you expect them to dominantly experience α, β or γ decays, and

if so to what should they decay?) What are the decay energies, Q, expected to
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be released as kinetic energy by these decays? Later sections show that a rough

estimate for the rate for β decay is Γ ' G2
FQ

5/(4π)3, where Q is the energy

released in the decay. If β decay is the dominant process, estimate the expected

decay lifetimes for the above decays, using GF = 1.166379× 10−5 GeV−2.

Exercise 5.2: Use the Weizäcker mass formula to compute the optimal (most

tightly bound) value for Z for any given A. (Neglect the pairing energy when

doing so.) Show that your result depends on both A and on x := cC/csym, and

verify that Zopt → 1
2 A if x→ 0. Show that as A→∞ the optimal value instead

satisfies Zopt → 2A1/3/x. Using the best-fit values for x what is the prediction for

Zopt when A = 56? How does this compare with the observed stable isotopes for

this value of A?

5.2.2 Fermi gas model

The Fermi gas model of a nucleus considers each nucleon to move independently within a

potential whose shape is meant to capture the average influence of all of the other nucleons. In

the model the nucleons are considered to be independent of one another (i.e. non-interacting)

since their interactions with the potential is meant to capture the main effects of nucleon-

nucleon interactions. Because nucleons are fermions they cannot multiply occupy a quantum

state and so they instead fill the available single-particle energy levels up to a nonzero Fermi

energy, EF , as in Figure 33.

At first sight this kind of picture might not be expected to be a very good description

of a nucleus given the strong inter-nucleon interactions that are in play. It turns out not to

do too badly, at least for heavier nuclei, for several reasons. One reason is that the residual

inter-nucleon interactions can be taken to be somewhat weaker once the potential is included,

since the potential already captures part of underlying inter-nucleon interactions (including,

in particular, the binding of the nucleon to the nucleus). The other reason is due to the Fermi

statistics satisfied by nucleons. At low energies most of the energy levels into which a nucleon

might scatter are already occupied and so cannot be accessed because of Fermi statistics (this

is often called ‘Pauli blocking’, in reference to the Pauli exclusion principle). This means that

even a relatively strong interaction can have fairly weak matrix elements within a nuclear

ground state, because the only nonzero matrix-elements connect a relatively narrow range

of states very close to the Fermi energy. (This same argument is also why the free-electron

model often works so well for conduction electrons in a metal.)

This picture leads to the simple understanding of the ‘symmetry’ term in the Weizäcker

mass formula, on which we now elaborate in a bit more detail. The main observation is that

the Fermi energy is determined by the number density of each type of nucleon. Consequently

the Fermi energy for protons, EF (p), can be regarded as being a function of Z/V ∝ Z/A,

while the Fermi energy for neutrons, EF (n), is a function of N/V ∝ N/A.
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This is most explicit in the limiting case that the nucleons are regarded as free particles,

whose single particle energy is E(p) = p2/2mN . Then, because momentum states are quan-

tized for a particle living within a volume V , successively filling the least energetic momentum

states with N particles fills them up to the Fermi momentum, pF , defined by

N =

∫ pF

0
d3p

(
dn

d3p

)
= 4π

∫ pF

0
dp p2

(
dn

d3p

)
, (5.20)

where dn/d3p is the particle’s density of states (and is assumed in the second equality to be

a function only of p = |p|). So (for example) for a free particle (for which dn/d3p = V/(2π)3,

with V the system volume) pF is given by

p3
F = 6π2

(
N
V

)
=

6π2

vN

(
N
A

)
, (5.21)

where the last equality uses V ∝ A and vN is the average volume per particle. The Fermi

energy then is EF = E(pF ), and so 2mNEF = p2
F = (6π2N/V )2/3, where N = N for neutrons

and N = Z for protons.

The N and Z dependence of the symmetry energy near Z = N does not depend on the

detailed form of EF (p) and EF (n) as functions of N/A or Z/A, however. It may be found by

expanding the Fermi energies about Z = N , by writing

N =
A

2

[
1 +

N − Z
A

]
and Z =

A

2

[
1− N − Z

A

]
, (5.22)

so that, for instance, EF (N/A) = EF (1/2) + E′F (1/2)[(N − Z)/2A] + · · · , giving

EnF (N/A) ' E0
nF +

[
E′nF

]0N − Z
2A

+
1

2

[
E′′nF

]0
(
N − Z

2A

)2

and EpF (Z/A) ' E0
pF −

[
E′pF

]0N − Z
2A

+
1

2

[
E′′pF

]0
(
N − Z

2A

)2

, (5.23)

where the superscript ‘0’ indicates evaluation at Z/A = N/A = 1/2. Consequently, assuming

nuclear charge-independence implies [E′nF ]0 =
[
E′pF

]0
the contribution of the Fermi energy to

the nuclear binding budget is

EpF (Z/A) + EnF (N/A) '
[
E0
pF + E0

nF

]
+

1

8

[
E′′pF + E′′nF

]0
(
N − Z
A

)2

. (5.24)

Since this is a contribution to the binding energy per nucleon, multiplying through by A gives

EB. The first term is a contribution to the volume energy, cv, while the second term is the

leading contribution to the symmetry energy, csym, as advertised.
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5.2.3 Shell model

The shell model elaborates on the Fermi gas picture by describing the nucleon energy levels

in more detail. In particular, given the mean potential well the model also predicts the

spacing and degeneracy of nucleon energy levels. This allows us to ask whether nuclei exhibit

phenomena like ‘closed shells’ in the same way that closed electron shells do when explaining

chemical properties in terms of atomic structure. There is evidence that nucleons also enjoy

special properties near closed shells, which correspond to the existence of ‘magic’ values of N

and Z where nuclei are particularly well bound (an example of which can be seen in Figure

34). These magic numbers are observed to occur when Z or N is equal to 2, 8, 20, 28, 50, 82

or 126.

To compute these energy levels and degeneracies requires first knowing the shape of the

potential. Because of the short range and the saturation of nuclear forces the shape of the

potential should be expected to track the average density of nucleons, such as given in (5.15)

or Figure 32. This leads to a potential well whose shape — for spherical nuclei at least —

lies somewhere between a spherical square well and a spherical harmonic oscillator. In both

cases total angular momentum is conserved since the potentials are spherically symmetric, so

states will be labelled by quantum numbers (n, `, `z) with ` = 0, 1, 2, · · · and `z = −`,−` +

1, · · · , ` − 1, `, and n determined by solving the appropriate radial part of the Schrödinger

equation.

Rotational invariance implies the energy eigenvalues found by solving the Schrödinger

equation are independent of the magnetic quantum number `z: E = En`, so each energy level

is degenerate by at least the 2(2` + 1) states corresponding to two spin states each for each

choice of m. Consider first the harmonic oscillator potential,

V (r) =
1

2
M ω2 r2 =

1

2
M ω2

(
x2 + y2 + z2

)
, (5.25)

where the reduced mass M = mN is the nucleon mass (assuming the rest of the nucleus is

much heavier than the nucleon of interest).

When solving for the energy levels we can either think of this as a radial harmonic

oscillator for which `, `z are the angular momentum quantum numbers, or we can think

of this as three independent one-dimensional harmonic oscillators in the x, y and z di-

rections. In this second way of thinking about it we know that energies are given by

E =
(
nx + ny + nz + 3

2

)
~ω, and so the lowest energy state has E0 = 3

2 ~ω and can be

obtained only through the unique choice nx = ny = nz = 0. It therefore must correspond to

` = 0, and (keeping in mind the nucleon’s two spin states) so has degeneracy 2. Following the

nomenclature of atomic electron levels this ground state level is called the 1s orbital, where

s corresponds to ` = 0 and 1 is the value of the radial quantum number, n.

The next level has E1 = 5
2 ~ω and can be obtained in one of three ways: by making

(nx, ny, nz) = (1, 0, 0) or (0, 1, 0) or (0, 0, 1). This therefore corresponds to ` = 1 and so has
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degeneracy 6, and is called the 1p orbital. Next comes E = 7
2 ~ω which can be obtained from

the following choices: (nx, ny, nz) = (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1) and (0, 1, 1).

These six combinations corresponds to the 2(2`+ 1) = 10 states appropriate to ` = 2 of the

1d level plus the 2(2`+ 1) = 2 states of the 2s level, and so on.

Table 9. Nucleon shells for the 3D Harmonic Oscillator

N Orbital Parity Degeneracy Cumulative number of levels

0 1s + 2 2

1 1p − 6 8

2 2s, 1d + 12 20

3 2p, 1f − 20 40

4 3s, 2d, 1g + 30 70

5 3p, 2f , 1h − 42 112

6 4s, 3d, 2g, 1i + 56 168

A list of the degeneracies of several more of the lowest harmonic-oscillator levels are

given in Table 9, labelled by their value of ntot = nx + ny + nz and their parity (i.e. how

they behave under spatial inversion: ψ(−r) = ±ψ(r)). The parity of a state in the shell

model is dictated by its orbital angular momentum, and since spherical harmonics satisfy

Y``z(θ, φ) = (−)`Y``z(π − θ, φ + π) their parity is simply (−)`. This means all s, d, g and i

orbitals are parity even while p, f and h are parity odd. Notice that the degeneracies of these

first few energy levels of Table 9 precisely reproduce the first few magic numbers: 2, 2+6 = 8

and 2 + 6 + 12 = 20, but not the remaining ones.

Part of the problem with getting the remaining magic numbers is specific to the har-

monic oscillator potential, since it is not generic for rotationally invariant potentials that,

for instance, the 2s and 1d levels have the same energy. This is not true of the square-

well potential, for example, and so a more realistic potential shape is expected to lift these

harmonic-oscillator specific degeneracies. This is indeed what happens, and because the flat-

ter bottom of the realistic potential deepens the potential for larger r relative to the harmonic

oscillator, it has the effect of lowering the energy of the larger-` states (thereby splitting, for

instance, the 2s and 1d states by lowering 1d relative to 2s). This leads to the more accurate

ordering of orbitals shown in Table 10. Notice the splittings can be large enough to mix up

the harmonic oscillator levels: the ntot = 5 1h state moves down below the uppermost (3s)

ntot = 4 state. Similarly, 1i of the ntot = 6 level gets depressed relative to the 3p level of the

ntot = 5 harmonic oscillator level.

We see from the table that the larger magic numbers at 50, 82 and 126 remain (so

far) unexplained. The missing ingredient is a spin-dependent interaction, δVso = −Cso L · s,
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Table 10. Nucleon shells for more realistic potentials

Initial level number Orbital Parity Degeneracy Cumulative number of levels

0 1s + 2 2

1 1p − 6 8

2 1d + 10 18

2 2s + 2 20

3 1f − 14 34

3 2p − 6 40

4 1g + 18 58

4 2d + 10 68

5 1h − 22 90

4 3s + 2 92

5 2f − 14 106

6 1i + 26 132

5 3p − 6 138

where Cso is a constant while L is the nucleon’s orbital angular momentum and s is its spin.

This type of interaction splits the degeneracy of the 2(2` + 1) states in each orbital because

the different nucleon spin states can now have different energies. Furthermore, because the

interaction is proportional to L its effects are biggest for the largest ` and so change more

the f , g and h orbitals than the s, p and d ones. As a result this kind of interaction can alter

the large magic numbers without changing much the smaller ones. Spin-dependent couplings

also play a role in atomic electron levels, through the spin-orbit interaction.

But are nucleon-nucleon interactions really spin-dependent? There is good evidence they

are, an example of which is given by the properties of the ground and first excited states of

the isotope 5
2He. We know 4

2He is very tightly bound and spinless, as expected for a ‘doubly

magic’ nucleus where both Z and N take the lowest magic number corresponding to filling

the 1s orbital for both protons and neutrons. We expect the additional neutron in 5
2He to be

in the 1p orbital, but because of the neutron spin the rules of combining angular momenta

tell us this ` = 1 orbital can have total angular momentum J = L + s with quantum number

j = `+ 1
2 = 3

2 or j = `− 1
2 = 1

2 . What is found experimentally is that the j = 3
2 combination

has slightly lower energy than the j = 1
2 combination, so the 5

2He ground state has j = 3
2 and

its first-excited state has j = 1
2 . Evidently some sort of inter-nucleon interaction is depressing

the j = 3
2 elements of the 1p orbital relative to the j = 1

2 ones.

The interaction Vso = −Cso L·s can do precisely this. In particular, using J2 = (L+s)2 =

L2 + s2 + 2 L · s and that the eigenvalues of J2, L2 and s2 are respectively given by j(j + 1),
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Figure 37. Diagram showing how harmonic oscillator energy levels split when replaced by a

more accurate potential with a flatter bottom and then split again once spin-dependent interac-

tions are added. The final level diagram does reproduce the observed magic numbers. (Figure source:

http://www.slideshare.net/brucelee55/nuclear-isomerism-probes-of-nuclear-structure)

`(`+ 1) and s(s+ 1), the eigenvalues of Vso acting on a state with quantum numbers |j, `, s〉
are

Eso(j, `, s) = −1

2
Cso

[
j(j + 1)− `(`+ 1)− s(s+ 1)

]
. (5.26)

For nucleons we have s = 1
2 and j = `± 1

2 and so this becomes

Eso(j = `+ 1/2) = −1

2
Cso ` and Eso(j = `− 1/2) =

1

2
Cso (`+ 1) , (5.27)

which gives a splitting of ∆Eso = −Cso
(
`+ 1

2

)
, whose magnitude grows with ` (as expected).

Notice that for the particular case of the 1p state (as appropriate for 5
2He) the initially 6-fold
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degenerate 1p state becomes split into 1p1/2 and 1p3/2 states (where the subscript gives the

value taken for j), and the 1p3/2 state has lower energy if Cso > 0.

This same interaction also allows the level diagrams described earlier to account for the

larger magic numbers (see Figure 37). The key point is that the splitting of the largest-`

levels (i.e. 1g, 1h and 1i levels) is big enough that it pushes the j = ` + 1
2 state down into

the lower shell but keeps the j = ` − 1
2 state from also doing so. For example, Figure 37

shows that the first level for which this happens is the 1g9/2 level, which drops down to the

next lowest shell and so adds its 2j + 1 = 10 states to the 40 already in these lower shells to

achieve the magic number 50. Similarly, only the 1h11/2 state drops down to the shell below

with its 2j + 1 = 12 states, leaving the 10 states of the 1h9/2 orbital in the higher shell. This

then properly reproduces the magic number at 82. Finally, only the 14 states of the 1i13/2

orbital actually move to the lower shell, leaving the 12 of 1i11/2 in the upper level. This gives

the magic number at 126, and so on.

Table 11. Nuclei with closed shells plus an additional nucleon

Nuclide Z N Shell-model prediction Observed spin/parity

17O 8 9 d5/2
5
2

+

17F 9 8 d5/2
5
2

+

41Sc 21 20 f7/2
7
2

−

209Pb 82 127 g9/2
9
2

+

209Bi 83 126 h9/2
9
2

−

Similar to what happens for the shell model of atomic electrons, the shell model for

nucleons predicts the properties of all nuclei that are obtained from closed shells by adding

or removing a single nucleon. In particular, since the closed shell is spinless the spin of

the ground state with one extra (or one missing) nucleon is given by the j for the nucleon

in question. The shell model does reasonably well on this score, properly predicting the

properties of these nuclei (Table 11 shows several examples).

Exercise 5.3: The spin-orbit Hamiltonian for a particle of mass m and radial

distance r from the axis of rotation has the form

Hso = −S · L
mr2

.

Use this expression and the properties of inter-nucleon forces discussed in §5.2.1

to estimate how the constant Cso in eq. (5.26) depends on the atomic weight A.

Find the value of Cso required to account for the 4 MeV splitting between the

j = 3
2 ground state of 5He and its lowest j = 1

2 excited state.
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Exercise 5.4: Use the single-particle shell model to explain why islands of iso-

merism exist. (Long-lived excited nuclear states are called isomers, and ‘islands

of isomerism’ refers to the fact that isomers arise for groups of nuclei that all

have similar values for Z and A.) In particular, explain why the excited state

with energy 0.225 MeV of the nuclide 85Sr has a fairly long half-life (which turns

out to be about 70 minutes). [HINT: Possibly useful for this explanation is the

observation that emission of a photon (the usual way a nuclear state de-excites)

changes nuclear angular momentum by ∆j = ±1 since the photon has spin one.]

5.3 Isospin and meson exchange

The inter-nucleon potential turns out to be relatively complicated in its details, as might be

expected of a residual interaction between pairs of objects that are themselves built from

smaller things. The complications of this potential can be inferred most easily from the

features of Deuterium, which we’ve seen most pristinely involves its implications only for

a single pair of nucleons. This section describes some of these complications, leading to the

concept of isospin and of interactions having their origin (at least in part) due to the exchange

of pions.

We start by formulating more precisely the spin-dependence of the inter-nucleon forces,

since this sets up the language with which to treat the charge-independence of the nucleon-

nucleon interaction.

There are really several nuclear potentials under discussion when talking about inter-

nucleon interactions, depending on whether or not we have protons interacting with protons,

protons with neutrons or neutrons with neutrons. For scattering our interest really is with

the matrix elements of these interactions between initial and final states, for instance in the

Born approximation we seek the Fourier transform of the potential, which has the form

〈f |V |i〉 =

∫
d3x ψ∗f (x)V (x)ψi(x) ∝

∫
d3x V (x) exp

[
i(pi − pf ) · x

]
, (5.28)

where the initial and final states are plane waves, ψi(x) ∝ exp
[
ipi·x

]
and ψf (x) ∝ exp

[
ipf ·x

]
,

that describe the relative motion of the scattering particles once their overall centre-of-mass

motion is factored out.

5.3.1 Spin-dependent and tensor interactions

In the previous sections we saw that the inter-nucleon force is spin-dependent; how is this

incorporated in the above expression? Although spin-dependence is not in itself pertinent

to the issue of charge-independence of nuclear forces, it is worth digressing to discuss how

to incorporate it since the tools used do play a role for charge-independence. It is tempting

simply to say that both of ψi and ψf should be given a two-component spin label: ψi↑ and

ψi↓ and similarly for ψf↑, ψf↓, and so promote V into a two-by-two matrix of potentials: V↑↑,
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V↑↓, V↓↑ and V↓↓. However this is not general enough since in scattering there are two initial

and final nucleons, and so their combined spins can take any of 2 × 2 = 4 initial and final

configurations; the scattering matrix should really be a 4× 4 matrix rather than just a 2× 2

one. We are being fooled by the form of (5.28), which for the position label gives the illusion

of a one-particle problem because of our removal of the centre-of-mass motion.

The proper formulation of spin-dependent two-body interactions therefore instead thinks

of 〈f |V |i〉 as a 4-by-4 matrix in spin space, with both |i〉 and 〈f | described by two spin

labels (one each for the spin of the initial or final particles): e.g. |i〉 = | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉
and similarly for 〈f |. The general spin-dependent potential then becomes a collection of 16

possible combinations: 〈a, b|V (x)|c, d〉 = Vab;cd(x), where each of the labels a, b, c and d takes

the two values ↑ and ↓ .

This all sounds fairly complicated, but we also know that interactions should be rotation-

invariant and this limits the kinds of matrices that can appear in Vab;cd(x). Rotation invariance

states that Vab;cd(x) must be invariant under arbitrary 2-by-2 unitary rotations of |i〉 and |f〉
that mix up ↑ and ↓ simultaneously for both particles:
|↑↑ 〉
|↓↑ 〉
|↑↓ 〉
|↓↓ 〉

→ U

|↑↑ 〉
|↓↑ 〉
|↑↓ 〉
|↓↓ 〉

 and
(
〈↑↑| 〈↓↑| 〈↑↓| 〈↓↓|

)
→
(
〈↑↑| 〈↓↑| 〈↑↓| 〈↓↓|

)
U† . (5.29)

In practice this means V must be built only from the unit matrix and dot products of some

combination of the spin matrices for each particle, s(1) and s(2), with each other or with

another vector, such as the relative angular momentum, L, or the relative position, x. Here

the spin matrices s(1) = 1
2 σ⊗I and s(2) = I⊗ 1

2σ act separately on each of the nucleon spins:

〈f | s(1)|i〉 =
∑
abcd

〈ab| s(1)
ab;cd |cd〉 =

1

2

∑
abcd

〈ab|σac δbd |cd〉 , (5.30)

and

〈f | s(2)|i〉 =
∑
abcd

〈ab| s(2)
ab;cd |cd〉 =

1

2

∑
abcd

〈ab| δac σbd |cd〉 . (5.31)

Here σ denotes the usual Pauli matrices: i.e. the vector of matrices: σ = {σ1, σ2, σ3}, with

σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)
and σ3 :=

(
1 0

0 −1

)
. (5.32)

Notice that these definitions do what is expected for spin-half objects. In particular,

because the Pauli matrices all square to the 2-by-2 unit matrix, we have s(1) ·s(1) = s(2) ·s(2) =
3
4 I, where I is the 4-by-4 unit matrix (as opposed to the 2-by-2 unit matrix I), in agreement

with the expectation that these should be s(s + 1)I for the case s = 1
2 . Similarly the sum

s = s(1)+s(2) squares to give a 4-by-4 matrix s·s whose four eigenvalues are {λi} = {2, 2, 2, 0}.
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These correspond to s · s having eigenvalue s(s + 1) = 2 for a 3-by-3 space of states with

combined total spin 1 (spanned by the states |↑↑〉, |↓↓〉 and 1√
2
(|↑↓〉+ |↓↑〉)) as well as having

eigenvalue zero when acting on the state 1√
2
(|↑↓〉 − |↓↑〉) (which has total spin 0).

Exercise 5.5: In the 4-dimensional basis of states given by (5.29) show that the

definitions (5.30), (5.31) and (5.32) imply s(1) and s(2) are given by the following

explicit 4-by-4 matrices:

s(1)
x =

1

2

(
σx 0

0 σx

)
, s(1)

y =
1

2

(
σy 0

0 σy

)
, s(1)

z =
1

2

(
σz 0

0 σz

)
,

s(2)
x =

1

2

(
0 I

I 0

)
, s(2)

y =
1

2

(
0 −iI
iI 0

)
, s(2)

z =
1

2

(
I 0

0 −I

)
,

where each entry is itself a 2-by-2 matrix (with I denoting the 2-by-2 unit matrix).

Use these expressions to verify s(1) ·s(1) = s(2) ·s(2) = 3
4 I and that the eigenvalues

of the matrix s · s – with s := s(1) + s(2) – are {2, 2, 2, 0}.

Examples of spin-dependent rotationally invariant interactions written this way then are

V (r) = VLS(r) L ·
[
s(1) + s(2)

]
+ VSS(r) s(1) · s(2) + VT (r) S12 , (5.33)

and so on. Only a few of the many possible terms are written explicitly here. The first of these

is essentially a spin-orbit coupling along the lines discussed above for the shell model, while

the second represents a spin-spin interaction. The last term is called a tensor interaction,

with the quantity S12 defined by

S12 = 3 (s(1) · er)(s(2) · er)− s(1) · s(2) , (5.34)

and its explicit dependence on the direction of r, implied by the appearance of er := r/r,

ruins the invariance under rotations of r — with the s(i) fixed — on which the conservation

of orbital angular momentum, L, relies.28

The properties of Deuterium provide several lines of evidence for the existence of a ten-

sor interaction like VT in the inter-nucleon force. One such involves the deuteron magnetic

moment, which does not come out quite right when combining just the magnetic moments

of its constituent nucleons for the ` = 0 ground state that arises when angular momentum is

conserved. The observed value turns out to be consistent with expectations if the deuteron

actually contains a small admixture of a d-wave ` = 2 state in addition to the main, s-wave

` = 0, component. But this kind of mixture of two different angular momenta is only possible

if the potential depends on the direction of x in addition to its magnitude (as does the tensor

interaction).

28Notice that VT remains rotation invariant provided the spins, s(i), rotate in the same way as does r.
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Additional evidence for the admixture of ` = 2 states in the deuteron (and so also for

the tensor interaction) comes from the fact that the deuteron is measured to have a nonzero

electric quadrupole moment. This is forbidden if the deuteron only consists of ` < 2 states,

but is also explained if there is a small ` = 2 component to the ground state.

5.3.2 Isospin and charge-independence of nucleon forces

With these tools in hand we can now state more precisely what is meant by the charge-

independence of the inter-nucleon force. The idea is to consider the proton and neutron as if

they are two ‘spin-like’ components of the nucleon: N↑ = p and N↓ = n. This is not meant

as anything to do with real spin, but is instead a useful way to think about the neutron and

proton label that distinguishes the two types of nucleon. In this way we can write the four

single-nucleon spin states as |t, s〉, where the spin quantum number is s = ↑, ↓ (and labels the

3rd component of spin as usual) while the isospin (or isotopic spin) label t = ↑ corresponds

to a proton while t = ↓ corresponds to a neutron. That is

|p(s =↑)〉 = |t =↑, s =↑〉 , |p(s =↓)〉 = |t =↑, s =↓〉 ,

|n(s =↑)〉 = |t =↓, s =↑〉 , |n(s =↓)〉 = |t =↓, s =↓〉 . (5.35)

In this language the charge-independence of nuclear forces can be phrased as the require-

ment that the interactions are invariant under arbitrary 2× 2 unitary rotations acting on the

nucleon isospin index. That is, it is invariant under an ‘isospin rotation’[
|p(s)〉
|n(s)〉

]
→ U

[
|p(s)〉
|n(s)〉

]
, (5.36)

where UU † = U †U = I, with I representing the 2 × 2 unit matrix. Any such a matrix is

described by four complex entries subject to the four real conditions implied by U †U = I,

and so can be written in terms of four real free parameters.

A convenient choice for these parameters is

U = eiθ exp

[
i

2
~ω · ~τ

]
, (5.37)

where the four real parameters are θ and ~ω = {ω1, ω2, ω3} and ~ω · ~τ = ω1τ1 + ω2τ2 + ω3τ3,

where τa again denote the three Pauli matrices

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
and τ3 =

(
1 0

0 −1

)
. (5.38)

Although Pauli matrices are usually defined acting on the spin degrees of freedom, s, s′, these

instead act on the ‘proton-neutron’ degree of freedom. (In what follows we reserve the symbol

σ for the vector of Pauli matrices acting on the spin degrees of freedom, and ~τ for the isovector

of Pauli matrices acting on the isospin label, t.)
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The vector symbol (or arrow superscript) for ~ω and ~τ is meant to convey that these

quantities transform like vectors under isospin rotations in the same way that L and σ

transform as vectors under ordinary spatial rotations, so the rules for making isospin-invariant

potentials is similar to what was found above for rotationally invariant (but spin-dependent)

potentials. The main difference is that quantities like L could be combined with the matrices

σ to make invariants because both transform under ordinary rotations. It is not possible to

similarly combine ~τ with L to make an invariant because although ~τ is a vector under isospin

rotations, it is not a vector under spatial rotations. Similarly, L is a rotation vector but does

not transform under isospin. (This is why we use different notation to represent these two

types of vectors — bold-face to denote spatial vectors but the arrow superscript to denote

isovectors.) The isospin rotations are an example of an internal symmetry under which a

label (like neutron- or proton-ness) transforms that has nothing to do with symmetries of

spacetime.

We can finally specify what a charge-independent (or isospin-invariant) inter-nucleon

potential looks like. Its isospin dependence can resemble (5.33), but with the vectors involved

involving the only two isovectors in the problem, the isospin matrices for each of the two

interacting nucleons: ~T (1) := 1
2 ~τ

(1) and ~T (2) := 1
2 ~τ

(2). That is, the isospin dependence of

the potential must have the form

V (x) = V0(x) I + V1(x) ~T (1) · ~T (2) , (5.39)

where we suppress any spin-dependence of these two terms. Here I is the unit matrix in the

4-by-4 isospin space spanned by the two isospin states (n and p) of the two initial and two

final nucleons, and the action of ~T (1) and ~T (2) on two-nucleon states is given — compare

with (5.30) and (5.31) — by

〈f | ~T (1)|i〉 =
∑
abcd

〈ab| ~T (1)
ab;cd |cd〉 =

1

2

∑
abcd

〈ab|~τac δbd |cd〉 , (5.40)

and

〈f | ~T (2)|i〉 =
∑
abcd

〈ab| ~T (2)
ab;cd |cd〉 =

1

2

∑
abcd

〈ab| δac ~τbd |cd〉 , (5.41)

where now the indices a, b, c and d take values ↑= p and ↓= n representing the two nucleon

states. These satisfy the same properties as do spin matrices when acting on a two-nucleon

state: [~T (1)]2 = [~T (2)]2 = t(t + 1) I = 3
4 I, as appropriate for isospin t = 1

2 . Also the total

isospin, ~T = ~T (1)+ ~T (2), squares to a matrix, ~T 2, that has eigenvalue 2 (appropriate for t(t+1)

with isospin t = 1) when acting on the symmetric combinations: |↑↑ 〉 = |pp〉, |↓↓ 〉 = |nn〉
and |↑↓ 〉 + |↓↑ 〉 = |pn〉 + |np〉, and takes the value 0 (as appropriate for t = 0) when acting

on the antisymmetric combination |↑↓ 〉 − |↓↑〉 = |pn〉 − |np〉.
The implications of the isospin-dependent term can be seen by rewriting it using the

same manipulations used for spin-dependent interactions, because the isospin symmetry has
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the same SU(2) structure as do ordinary rotations acting on spin-half states. In particular,

because

2 ~T (1) · ~T (2) = [ ~T ]2 − [~T (1)]2 − [~T (2)]2 = t(t+ 1)− 2

(
3

4

)
=


−3/2 if t = 0

+1/2 if t = 1

, (5.42)

when acting on the isoscalar (t = 0) and isovector (t = 1) two-nucleon combinations (5.39)

gives

V (x) =


V0(x)− 3

4 V1(x) if t = 0

V0(x) + 1
4 V1(x) if t = 1

. (5.43)

This shows how charge-independence can be consistent with the existence of a bound state

(the deuteron) within the isosinglet antisymmetric state |pn〉−|np〉, without there also having

to be a bound state in the isotriplet symmetric combinations, |nn〉, |pp〉 and |pn〉+ |np〉. All

that is required is for V1 to be positive and large enough in magnitude to dominate V0 so that

V has opposite signs for these two combinations. Notice also that, when combined with the

fermi statistics of the nucleon, and the symmetry of the dominant ` = 0 part of the spatial

wave-function, the antisymmetry of the bound isosinglet state requires the nucleon spins to

be in a symmetric combination, predicting that the deuteron has spin 1 (as it does).

The appearance of

~T (1) · ~T (2) =
1

4

[
τ

(1)
1 τ

(2)
1 + τ

(1)
2 τ

(2)
2 + τ

(1)
3 τ

(2)
3

]
, (5.44)

implies V contains what is called an ‘exchange’ interaction, that interchanges n with p in

addition to depending on x. That this is present can be seen from the appearance of the

matrices τ1 and τ2, both of which (5.38) and (5.40) and (5.41) show are off-diagonal. For

instance, acting on a two-nucleon state these equations imply

τ
(1)

1 τ
(2)

1 |n p〉 = τ
(1)

1 τ
(2)

1 |↓↑ 〉 = |↑↓ 〉 = |p n〉 . (5.45)

This is also an important feature for the internucleon potential to have, since this kind of

interaction acts like a hard repulsive core that can cause strong back-scattering when nucleons

interact. It is precisely this kind of interaction that is needed to account for the saturation

of nuclear forces that is required for understanding nuclear properties.

Exercise 5.6: Use the explicit expressions for the matrices in Exercise 5 to write

out the explicit form for the 4-by-4 matrix ~T (1) · ~T (2) in a two-nucleon sector with

basis states given by 
|p p 〉
|n p 〉
|p n 〉
|nn 〉

 .
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Figure 38. A quark rearrangement in which the production of a dd pair allows a ∆+ baryon to convert

to a neutron while emitting a charged pion: ∆+ → nπ+. Similar processes also allow closely related

reactions like ∆− → nπ−, ∆− → pπ0, ∆0 → pπ− as well as absorption processes like p+ π+ → ∆++,

p+ π− → ∆0, n+ π− → ∆− and so on. Because these proceed through the strong interactions their

rates are much faster than for electromagnetic and weak-interaction processes.

Use this to evaluate the size of the matrix elements 〈nn|V |nn〉, 〈n p|V |p n〉,
〈nn|V |n p〉 and 〈p p|V |p p〉 in terms of V0 and V1, for the potential given in (5.39).

5.3.3 Pions and inter-nucleon interactions

How can spin-dependent, tensor and exchange potentials arise from the underlying quark and

gluon physics of the strong interactions? It happens that the longest-range part of the inter-

nucleon force can be regarded as arising due to the exchange of pions between nucleons. Such

an exchange is quite likely to happen for nucleons sufficiently close to one another through

reactions that rearrange the quarks from which nucleons and pions are made. Figure 38

illustrates this by showing how quark-antiquark production within a baryon can cause it to

emit a pion, such as the pictured reaction ∆+ → nπ+. (The initial quark combination cannot

be a proton because p→ nπ+ is not allowed by energy-momentum conservation.) The reverse

reaction, wherein an antiquark annihilates one of the nucleon quarks, similarly allows a pion

to be absorbed by a nucleon, such as through π+n → ∆+. The production of ∆ mesons as

intermediate states makes these baryons appear as resonances when scattering pions from

nucleons, such as in π−p → ∆0 → π−p. This is why they are also sometimes known as the

3− 3 resonance: they arise in pion-nucleon scattering in the spin-3
2 and (see below) isospin-3

2

channel.

While energy-momentum conservation forbids charged pions from being directly emitted

by a nucleon, it does not prevent their being emitted provided they are then re-absorbed

quickly (and nearby) enough to allow the uncertainty relation to interfere with energy-

momentum conservation. This means that pion exchange can give rise to interactions between

protons and neutrons, once these are brought sufficiently close enough together that they are

separated by less than the pion’s Compton wavelength, λπ = ~/mπc ∼ 2 fm (which is the

distance over which the uncertainty principle can cause uncertainties in energy and momenta

of order mπ). The exchange of neutral pions in this way does not change the character of
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the emitting (or absorbing) nucleon (as in the left panel of Figure 39), while charged pion

exchange also swaps the proton with the neutron (as in the right panel of Figure 39).

(a) pp→ pp through π0 exchange (b) np→ pn through π+ exchange

Figure 39. The quark-level processes corresponding to neutral pion exchange between nucleons (left

panel) and to an exchange reaction in which np→ pn through the exchange of a charged pion (right

panel).

The energy change associated with several such pion emissions and absorptions occurring

in sequence turns out to be responsible for the longest-range part of the inter-nucleon inter-

action. We see that the effective range of this part of the force is set by the pion’s Compton

wavelength, R <∼ λπ, and it is because the pion is the lightest meson that it dominates the

long-distance part of the potential. The pion mass therefore also explains why inter-nucleon

forces extend out only to distances of order a fm.

Many properties of the inter-nucleon potential can be related to properties of the pion-

emission and -absorption process, which themselves can be measured directly by bombarding

nucleons with pions. In particular, pion emission and absorption appears to preserve isospin,29

with the three pion states — π+, π− and π0 — transforming as an isotriplet (i.e. 2t+1 states

with t = 1) and the 2t + 1 = 4 iso-quadruplet of ∆ baryons transforming with t = 3
2 .

In particular, as we’ve seen, the exchange of charged pions can generate the inter-nucleon

exchange potential. Furthermore, the couplings of the isotriplet pions, ~π, involve the pion

momentum dotted into the nucleon spin and isospin, (pπ · s)~T , and so also can introduce a

spin-dependent component to the potential.

In general inter-nucleon forces are complicated, and get more so when examined at smaller

and smaller distances where (among other things) more mesons are present whose exchange

can compete with pion exchange. But the picture that emerges of the inter-nucleon interaction

appears broadly to have what is required to account for nuclear properties.

29Invariance of nuclear interactions under isospin rotations is ultimately understood in terms of the interac-

tions between quarks and gluons that bind them into nucleons. These turn out to be invariant under isospin

rotations that treat u quark as t = ↑ and d quarks as t = ↓ in the limit that these two quarks have equal

masses. Since these masses are not precisely equal, small isospin-breaking effects can arise that are of order

the quark masses, mu,md ∼ few MeV, divided by the typical strong-interaction scale Λs ∼ 200 MeV.
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5.4 Radioactivity

With the previous section’s general picture of nuclear binding energy in hand, we can also now

better describe radioactivity in terms of nuclear decays. The general picture is that nucleons

are most tightly bound in nuclei like Fe for which EB/A is maximized. Decay options start

to arise as one moves away from these special nuclei. Since the contribution of EB to the

nuclear energy (or mass) is −EB, stable nuclei sit at the bottom of an energy valley (rather

than at the top of an energy ridge) called the ‘valley of stability’.

5.4.1 Decay overview

As one climbs the sides of the valley of stability by increasing or decreasing N/Z for fixed

A, then the strong (N − Z)2 dependence of the symmetry energy implies that the binding

energies quickly shrink until eventually they are negative, indicating that nucleons no longer

prefer to remain bound. Before this happens, even if EB(Z,A) > 0 once

Zmp + (A− Z)mn − EB(Z,A) > Zmp + (A− Z)mn − EB(Z,A− 1) (5.46)

is true — and so EB(Z,A) < EB(Z,A−1) — it can be profitable to shed just a single neutron.

Similarly, once EB(Z,A) < EB(Z−1, A−1) it can be profitable to shed a single proton. Once

either of these is true the nucleus quickly sheds the excess proton or neutron to return to the

valley of stability.

The locus of points in the N − Z plane where nucleons can be easily shed in this way

are called the proton drip line (on the side of excess protons) and the neutron drip line (on

the side of excess neutrons). Because candidate nuclei beyond these drip lines can emit

nucleons through the strong interaction their decays are usually very fast; with lifetimes of

order strong-interaction timescales ∼ 10−23 sec. The criteria for proton and neutron drip are

illustrated in Figure 40, which plots the relevant binding energies for the case A = 12. As

this figure shows, for A = 12 nuclei are expected to decay very rapidly if Z < 4 or30 Z > 8.

Observations bear this out, with the encyclopaedic Table of Isotopes listing for A = 12 only
12Be, 12B and 12N as being metastable enough to decay on millisecond timescales to 12C

(dominantly through β decay – as we now discuss).

Nuclei not far enough up the side of the valley to allow nucleon emission still have a way

to try to lower their energy, through β-decays that can convert neutrons into protons (and

vice-versa). For instance a candidate nucleus with an excess of neutrons can move to a more

stable configuration through the reaction n→ p e−νe which increases Z by one and lowers N

by one, keeping A fixed. Similarly, nucleons with an excess of protons relative to the valley

of stability can lower their energy through positron emission: p → n e+νe (sometimes called

30According to Fig. (40) the metastability of both Z = 7 and Z = 8 – or 12N and 12O – is difficult

to determine because for these two cases the accuracy of eq. (5.17) is likely insufficient to decide which of

EB(Z,A) or EB(Z − 1, A− 1) is larger.
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Figure 40. A plot of the binding energy EB(Z,A) (blue dots) and EB(Z,A − 1) (orange + signs)

and EB(Z − 1, A − 1) (green asterisks) vs Z for fixed A = 12, as computed using the semi-empirical

mass formula (5.17) (with numerical coefficients from (5.19)). The point where EB(Z,A) falls below

EB(Z,A− 1) shows where the neutron drip line intersects A = 12 and EB(Z,A) < EB(Z − 1, A− 1)

does the same for the proton drip line.

β+ decay) or by electron capture: e−p → nνe (both of which raise N by one and lower Z

by one, at fixed A). As we shall see, all of these processes proceed only through the weak

interactions and have rates that are much slower than for nucleon emission (which is why we

call this new interaction ‘weak’).

Figure 41. A 3D plot of −EB(Z,A)/A vs Z and A, as computed using the semi-empirical mass

formula (5.17) (with numerical coefficients from (5.19)). The figure shows both the steep sides of the

valley of stability (particularly at smaller A) and the much shallower curvature along the bottom of

the valley.

Alternatively, moving along the valley of stability (rather than transverse to it) also

leads to instability due to the slow falloff of EB/A with increasing A seen in Figures 29 and

41. Once beyond Lead (Z = 82) all nuclei become unstable, either to β-decay or to the
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spontaneous emission of small 4He nuclei (or α particles, which we have seen are particularly

tightly bound), or (for very massive nuclei) to spontaneous fission into several much smaller

fragments of roughly similar size. While α decays reduce both Z and N by two (and so also

lower A by four), fission can reduce A and Z by much larger values in one step. But both

take the nucleus back down the valley of stability towards the smaller nuclei that bind their

nucleons more tightly.

Nuclear fission is the mechanism that underlies the energy release of nuclear reactors.

Some nuclei are more unstable towards fission than are others, and it can be possible to

initiate the process by first bombarding with neutrons, whose absorption can produce the

more fissile nuclide from a more stable one. Chain reactions can then become possible because

neutrons are often emitted as a by-product of the fission reaction itself. It is usually necessary

to slow these emitted neutrons down because slower neutrons have much higher absorption

cross sections (see e.g. Figure 21), and this is the reason nuclear reactors have moderators;

relatively light materials with which energetic neutrons can scatter (and thereby be slowed

down, or cooled).

Conversely, energy can also be extracted from very light nuclei, like Hydrogen or Deu-

terium, by fusing them together into heavier nuclei, thereby profiting from the growth of

EB/A with increasing A for small nuclei. This process — called nuclear fusion — is only

possible if the initial nuclei can be brought together fast enough to overcome their Coulomb

repulsion at larger distances so that they can get close enough together to profit from the

short-ranged nuclear interactions. Collisions this fast can occur at high enough temperatures,

and the fusion of Hydrogen into Helium is the source of energy that powers relatively young

stars, such as our Sun.

Most often the above decays, or any nuclear reactions caused by colliding nuclei with one

another or with nucleons, generate final nuclei that are not in their ground states. In this

case the excited nuclei can often de-excite through the emission of a very energetic photon,

or γ ray. This kind of de-excitation is responsible for γ-rays seen in radioactive materials.

Because the process involved is electromagnetic (due to the need to create a photon), lifetimes

for γ decays are usually longer than for intrinsically nuclear processes but shorter than for

weak-interaction-mediated processes like β decays.

5.4.2 α decays

As described above, α decay is the process whereby a heavy nucleus decays (and so increases

its binding energy per nucleon) through α-particle emission. We have seen that nucleons,

particularly in light nuclei, tend to gather together into α-particle clusters within nuclei, so

it is not so crazy that these clusters could sometimes escape and thereby fragment a nucleus.

In general, energy conservation allows a nucleus to fragment with N(Z,A) → N(Z ′, A′) +

– 149 –



N(Z − Z ′, A−A′) once

EB(Z,A) < EB(Z ′, A′) + EB(Z − Z ′, A−A′) . (5.47)

Usually the very tight binding of the α particle means this criterion is satisfied first for

Z ′ = 2 and A′ = 4 and when this is true the nucleus becomes unstable towards α emission.

A comparison of the energy released for several choices of (Z ′, A′) is shown in Table 12 using

the case of Uranium 232 as an example, which shows that only the α particle is so tightly

bound that it can escape to infinity.

Table 12. Energy release (in MeV) if various particles were emitted from 232U

Particle: n p 2H 3H 3He 4He 5He 6He 6Li

Energy: −7.26 −6.12 −10.7 −10.2 −9.92 +5.41 −2.59 −6.19 −3.79

But if the α particle can escape to infinity with positive energy, why is it trapped at

all by the nuclear potential well? It remains trapped because its electric charge ensures

the α particle ‘sees’ a Coulomb barrier when outside a nucleus, and although this Coulomb

repulsion is overwhelmed by nuclear forces once within a nucleus itself, its value just outside is

sufficiently large to keep α particles from leaving the nucleus (at least classically – see Figure

42). We have seen that the Coulomb energy of two protons separated by 1 fm is of order 1.4

MeV, and so the Coulomb energy of an α-particle with charge 2e a distance 1 fm from a decay

daughter of charge (Z − 2)e is (Z − 2)2.8 MeV, or 250 MeV for Z = 92 (as for Uranium).

It is this large Coulomb barrier that traps a few-MeV α particle (at least classically) within

a nucleus. (This large barrier is also why scattering of α particles from heavy nuclei never

deviates from Rutherford scattering: the point of closest classical approach is beyond the

reach of nuclear forces.)

In order to escape, an α particle must tunnel through this classical energy barrier and it

is this tunnelling that is at the root of the wide diversity of lifetimes observed for α-emitters.

Some of these, such as Uranium, have lifetimes in the billions of years and so can be found

naturally occurring even though the nuclei are basically unstable. Other α-emitters can

decay much much faster than this, by an amount that is often correlated with the energy loss

released in the decay. For the even-even isotopes of any particular element the α-decay rates,

Γ, are related to the energy release, Q, by the phenomenological Geiger-Nuttall rule:

ln Γ(Q) ' − C0√
Q

+ C1 , (5.48)

where C0 and C1 are constants that differ for different chemical elements but are the same

for the isotopes of any specific element. This relation is plotted in Figure 43, together with
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Figure 42. A sketch of the potential barrier through which an α-particle tunnels. (Figure source:

http://physics.stackexchange.com/questions/102364/what-does-the-coulomb-barrier-really-mean)

measured values for experimental lifetimes and energy loss. The figure shows how the expo-

nential dependence of Γ on Q is such that a factor of 2 in Q can correspond to many orders

of magnitude in decay width.

Figure 43. A plot of the α-decay width vs the energy loss Q for several isotopes of even-even nuclei.

(Figure source: Qi et. al., Physics Letters B734 (2014) 203 (arXiv:1405.5633).)

Tunnelling can account for such a wide range of lifetimes because tunnelling rates depend

exponentially on the shape of the potential being tunnelled under, with rate Γ ' (vin/R)e−2G

with vin =
√

2M(Q+ V0) being the speed of the α-particle within the nuclear well (modelled

as a square well with potential −V0 within the range r < R) and so vin/R gives the rate with

which it classically arrives at the inner side of the barrier. The exponential factor comes from
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the tunnelling probability, with the Gamow factor, G, given (for zero angular momentum, `)

by

G =

∫ b

a
dr
√

2M [V (r)−Q] . (5.49)

Here M is the alpha-particle mass, while V (r) = 2(Z−2)α/r is the Coulomb potential for an

α-particle and the daughter nucleus (with charge Z − 2). The integration limits are: a = R,

the radius of the nuclear potential well, and b = 2(Z − 2)α/Q, the classical closest approach

for an α-particle of energy Q (see Figure 42).

Evaluating the integrals gives

G = 2α(Z − 2)

√
2M

Q

[
cos−1√x−

√
x(1− x)

]
' 2α(Z − 2)

√
2M

Q

[π
2
− 2
√
x+ · · ·

]
(when x = Q/VC(R)� 1) , (5.50)

with x = a/b = Q/VC(a), where VC(a) = 2(Z − 2)α/a is the height of the Coulomb barrier

at r = a = R. The approximate equality in the expression for G gives the leading behaviour

when x� 1 (which is the limit of physical interest). This clearly reproduces the exponential

dependence on Q appearing in the Geiger-Nuttall relation, with

C0 = πα(Z − 2)
√

2M and C1 ' 4
√
α(Z − 2)MR . (5.51)

In particular notice (C1/
√
Q)/C0 ' (π/4)

√
2α(Z − 2)/QR� 1 because Q� VC(a) = 2α(Z−

2)/R, so that relatively small changes in Q cause enormous changes to Γ. We see in this way

how the interplay between the strong and electromagnetic interactions can account for both

the dramatic range of possible α-decay lifetimes and (in some circumstances) their correlation

with the emitted α-particle energy.

5.4.3 β decays and multiple neutrinos

Whereas α and γ decays are well-described in terms of nucleons interacting through the

electromagnetic and strong interactions, an understanding of β decays required both the

proposal of a new type of particle (the neutrinos) and the discovery of new interactions: the

weak interactions. An entirely new type of interaction turned out to be required because the

strong and electromagnetic interactions both preserve the number of each type of quark (and

lepton). As a result they cannot describe a process whereby d and u quarks (or neutrons and

protons) inter-convert into one another.

As mentioned earlier, β decays presented a puzzle to early researchers because of the

continuous distribution of produced electrons. In those days it was known that a neutron

converts to a proton plus an electron (as required by electric-charge conservation), through a

reaction that was assumed to have the form n→ p e−. But because this is a two-body decay
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conservation of 4-momentum then implies the proton and electron should have a unique

energy in the decaying neutron’s rest frame, and this is not what is observed. The outgoing

electron is instead seen to take a continuous range of energies in the decay, and only the

uppermost energy of this range equals the difference of binding energies between the initial

and final nucleus.

This puzzle led to Pauli’s proposal of the existence of a new particle that also would

appear in these decays. To have avoided discovery it would have to be electrically neutral

(and, like the electron, not participate in nuclear interactions) and to appear in the decay it

would have to be much lighter than the neutron; hence31 the name neutrino.

Over time, with the discovery of more particles and their decays, two more things became

clear. The first was that the same kind of weak interaction needed to describe nuclear β-decay

could also account for the decay of these new particles. The second was that more than one

neutrino might be necessary. The crucial clue for the need for more neutrinos came from the

absence32 of interactions that should have been present were only one neutrino involved.

To see why more neutrinos were required, it is important to recognize that although

neutrinos themselves are close to invisible (because they interact so weakly), they can be

produced in beams intense enough to measure their presence. And when they are produced

they are always produced in association with a charged lepton. For instance, neutrino beams

are in practice produced by reactions like n→ p+ e−+ (invisible) and the ‘invisible’ flux can

be large enough for the neutrinos in it to be detected downstream if the neutron decays are

produced within the intensely radioactive core of a nuclear reactor. Alternatively, neutrino

beams can be produced from the reaction π± → µ± + (invisible) and this has a large flux if

the pions are caused by strong nuclear reactions (such as by bombarding nuclei with protons,

neutrons or α-particles) because these emit pions and every pion decays essentially 100% of

the time to muons plus neutrinos. Essentially every muon produced this way then also decays

to an electron plus more neutrinos: µ± → e± + (invisible).

Most importantly, the reactions used to detect the presence of the neutrinos downstream

of such a production process also usually involve a charged lepton, such as if they are detected

through the inverse processes, like ν + n → p + e− or ν + n → p + µ−. What (until very

recently) was never seen to happen was to have a neutrino produced in association with an

electron (in a reactor, say) then be detected in association with a muon (or vice versa). This

led to the hypothesis of there being two types of neutrinos, νe and νµ, whose interactions

would separately conserve electron and muon number: Le and Lµ. Only νe takes part in

reactions associated with electrons and only νµ takes part in interactions associated with

muons. Both must be present in the reaction µ± → e± + (invisible), and the presence of

two invisible particles is in this case also indicated by the fact that the outgoing electron (or

31The ending ‘-ino’ being deminuative in Italian.
32Much like Sherlock Holmes’ ability to solve a crime using the clue of the dog that didn’t bark in the night.
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positron) has a continuous distribution of energies rather than the unique energy that would

have been required by a two-body decay.

5.4.4 Neutrino oscillations

This picture of multiple neutrinos and the separate conservation of Le and Lµ provided a

very good description of all neutrino measurements for more than 50 years, until it began to

unravel not so long ago with the discovery of neutrino oscillations. In retrospect, the first

signs of a problem arose when people began to measure the neutrino flux coming to us from

the Sun. These neutrinos are produced by the same chain of nuclear reactions that power the

Sun, whose net result is

2 e− + 4 p→ 4He + 2 νe , (5.52)

which releases energy because the Helium nucleus is so tightly bound. The two electrons

are required by electric charge conservation and so the two neutrinos are required by lepton

number conservation. They must be electron neutrinos because the underlying reaction at

work is p+ e− → n+ νe, and so occurs in association with an electron.

Since we know how much energy comes out of the Sun we know how many reactions

took place and so can work out the number of neutrinos being sent our way. The problem is

that once these neutrinos were detected there were never quite as many as expected. Because

the detectors dominantly detected the neutrinos using interactions associated with electrons,

such as quasi-elastic scattering from protons: νe p → n e+, they were mostly just sensitive

to the presence of the one type of neutrino. This was fine so long as only the one type of

neutrino comes from the Sun, but the persistent shortfall eventually raised strong doubts

about whether this was really so. The issue was eventually settled with the development of a

detector — the Sudbury Neutrino Observatory, or SNO — that could detect all three species

of neutrino. SNO verified that the expected neutrino flux really is there, it just involves all

three of the known neutrino species and not just νe.

Around the same time further evidence that Le and Lµ are not separately conserved

also became available from the study of neutrinos produced when cosmic rays hit the Earth’s

upper atmosphere. Cosmic rays are mostly protons and when these hit Nitrogen and Oxygen

nuclei in the atmosphere they emit many pions. Because essentially every charged pion decays

through the process

π+ → µ+ + νµ → (e+ + νe + νµ) + νµ , (5.53)

or its counterpart with π− → µ− → e−, it was expected that one would find close to two muon

neutrinos (or anti-neutrinos) for every electron-type neutrino. But although experiments

found this to be largely true for neutrinos coming down from collisions in the atmosphere

overhead, they instead found that when the neutrinos are detected coming up (starting from

a collision in the atmosphere on the opposite side of the Earth, with the neutrinos penetrating

through the entire Earth — which is possible because neutrinos interact so weakly) the ratio
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is more like one-to-one. Again the total number of neutrinos seemed OK but the distribution

into each species was not consistent with conservation of Le and Lµ.

Both these lines of discovery have since been also verified using man-made (and so better

controlled) neutrino beams, rather than extra-terrestrial sources. Although separate conser-

vation of Le and Lµ can be a very good approximation in many circumstances, we now have

good experimental evidence for two things: (i) there are indeed (at least) three species of

neutrino,33 and (ii) it is clear that Le and Lµ are not exactly conserved.

Figure 44. A process where a charged muon interacts with something to produce a neutrino, which

then propagates to react with other particles and produce another charged muon.

It turns out that there is a nonzero amplitude to find all species of neutrinos emitted in

association with any particular charged lepton. This turns out only to be observable when

neutrinos propagate over relatively long distances because then a pattern of interference

(‘oscillations’) can be seen in the admixture of different neutrinos. For instance, suppose an

initial neutrino-production event involving an associated charged muon takes place at time

t0 with an amplitude, ai, with i = 1, 2 corresponding to each of two neutrino types ν1 and

ν2 (the generalization to more neutrinos is straightforward). We do not label the neutrino

species with e or µ anymore because in the general case the neutrinos are not associated

exclusively with charged electrons or muons. The amplitude for the neutrino to be absorbed

at some later time t in association with another muon, say, is similarly a∗i . For only two types

of neutrinos ai satisfies
∑

i |ai|2 = |a1|2 + |a2|2 = 1, since either one type or the other type

33Part of this evidence comes from measuring the rate for Z bosons to decay ‘invisibly’, which can be

determined by measuring their total decay width. (This can be done despite some of the decays being invisible

by measuring the total width, Γ, of the Z-boson resonance shown in Fig. 11, for example.) Comparing the

result with the rate for observed Z decays shows that the Z indeed sometimes does decay invisibly, with a rate

consistent with Z → νν provided there are 3 (not 2 or 4) neutrino species participating in the decay, whose

masses are much lighter than half the Z mass. More than 3 neutrinos can exist only if they either do not

couple to the Z boson, or are too heavy to appear in these decays.
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must be emitted with total probability 1. As a result we can write a1 = sin θ and a2 = cos θ,

for some angle, θ, called the neutrino mixing angle.

The time-dependence of the joint amplitude for neutrino production followed by absorp-

tion then is

Aµ→µ(t, t0) = A0

∑
i

|ai|2 e−iEi(t−t0) = A0

[
sin2 θ e−iE1(t−t0) + cos2 θ e−iE2(t−t0)

]
, (5.54)

where A0 is the amplitude for the rest of the process and the phases are due to the evolution

of the neutrino state from t0 to t, where Ei =
√
p2 +m2

νi and mνi is the mass of neutrino type

‘i’. In these expressions the factors of ai come from the amplitude for emitting the neutrino

and a∗i comes from the amplitude for this neutrino’s later absorption. The total probability

for this process therefore is

Pµ→µ(t, t0) = |A(t, t0)|2 = |A0|2
{

cos4 θ + sin4 θ + 2 sin2 θ cos2 θ cos
[
(E2 − E1)(t− t0)

]}
= |A0|2

{
1− 2 sin2 θ cos2 θ + 2 sin2 θ cos2 θ cos

[
(E2 − E1)(t− t0)

]}
= |A0|2

[
1− sin2(2θ) sin2

(
∆m2L

4E

)]
, (5.55)

where we use Ei ' p + m2
νi/2p + · · · � mνi and t − t0 ' L/c = L for ultra-relativistic

neutrinos (where L is the distance between the neutrino-production and absorption events)

to write 1
2(E2 − E1)(t − t0) ' (m2

ν2 −m
2
ν1)(t − t0)/(4p) ' ∆m2L/(4E). Here ∆m2 denotes

the difference between the neutrino squared-masses. The probability for starting with muon-

associated neutrino production event and absorbing the neutrino in an electron-associated

event is similarly

Pµ→e(t, t0) = |A0|2
[
sin2(2θ) sin2

(
∆m2L

4E

)]
, (5.56)

so that their sum is |A0|2, as it must be.

The name ‘oscillations’ comes from the oscillatory dependence of these expressions on

the production-to-detection distance, L. The distance λ := 4E/∆m2 is called the oscillation

length, since it shows how big L must be in order to see an appreciable effect. For ∆m2 ' 10−3

eV2 and E ∼ 1 GeV the oscillation length is λ ∼ 1012 eV−1 ∼ 100 km, showing that

production and detection must take place significantly far apart from one another to see

oscillations using neutrinos produced on Earth.

Exercise 5.7: For two neutrino species repeat the arguments made when estab-

lishing eqs. (5.54) and (5.55) but for µ → e processes (for which the neutrino is

produced in association with a muon and detected in association with an electron),

and thereby provide an independent derivation of (5.56).
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5.4.5 β decays and the weak interactions

Weak decays are usually much slower than decays that proceed through the electromagnetic

and strong interactions. Their rate is characterized by a new interaction constant of nature,

called the Fermi constant: GF = 1.166379 × 10−5 GeV−2. This was first captured in the

Fermi theory of β-decay, with further refinements being added with the development of the

‘V −A’ theory of the weak interactions by Feynman and Marshak and by Sudarshan. These

theories have since been superseded by the Standard Model of particle physics (as described

below in more detail), within which the earlier theories arise instead as the low-energy limit

of a more fundamental interaction involving the exchange of a new particle: the W boson.

For instance for muon decay, µ−(k) → e−(p)νe(q)νµ(r), the invariant amplitude is pre-

dicted in these theories to be

M = 64G2
F (p · r)(k · q) , (5.57)

where p · r = ηµνp
µrν and so on. Using this in (2.29) then gives the differential decay rate.

Typically only the outgoing electron momentum is observed in this decay, allowing one to

perform the sum and integral over the other (unmeasured) final-state spins and momenta.

For unpolarized muons the electron direction is isotropic and after performing the integrals

over unmeasured momenta the differential rest-frame rate as a function of the electron energy

becomes
dΓ

dε
=
G2
Fm

5
µ

4π3

(
ε− 4ε2

3
+ ε r2 − 2r2

3

)√
ε2 − r2 , (5.58)

where ε := Ee/mµ and r := me/mµ. This is a monotonically increasing function and so the

most likely electron energy is the maximum available: εmax = 1
2(1 + r2) (corresponding to

one of the neutrinos carrying away no energy at all).

Performing the last integration over the range r ≤ ε ≤ 1
2(1 + r2), the total rest-frame

muon decay rate then finally becomes

Γ(µ→ eνν) '
G2
Fm

5
µ

192π3
J(r) , (5.59)

where the mass-dependent function, J(r), is given by

J(r) = 1− 8r2 − 24r4 ln r + 8r6 − r8 , (5.60)

and differs from unity at the 10−4 level given the mass ratio r = me/mµ ' 0.511/105 ∼
5×10−3. It is comparisons of this expression (plus some sub-leading corrections) with precise

measurements of the muon lifetime that give our best value for GF .

Exercise 5.8: Use (5.57) in (2.29) to derive (5.58). Sketch your result for dΓ/dε

as a function of ε. Integrate (5.58) to derive (5.59) and (5.60).
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Notice that the mean lifetime predicted by this formula is τwk = 1/Γ of order microsec-

onds, which is much longer than the typical strong-interaction decay time, τstr ∼ 1/mµ which

is of order 10−23 seconds. This huge difference is largely driven by the small dimensionless

ratio GFm
2
µ ∼ 10−7. This turns out to be a general conclusion: weak interactions are weak

provided the energy release involved remains small compared with 1/
√
GF ∼ 300 GeV. At

energies much larger than this the nature of the weak interactions turns out to change, in a

way that more strongly resembles electromagnetic interactions in their strength. The story of

this change, leading to a unified picture of electro-weak interactions at these higher energies,

is told by the Standard Model of particle physics.

As is now illustrated with a few examples, the same coupling, GF , also gives a good

description of other decays, including nuclear β-decay rates. (One of these has already been

described, in (2.34).) For hadronic systems involving quarks there are two complications to

this comparison. First, there is a small correction because quarks do not quite enjoy precisely

the same weak-interaction couplings as do leptons (more about which later). But another

complication when considering hadronic (and in particular nuclear) decays is the uncertainty

of their structure, since this is poorly understood and often cannot be computed reliably. An

important exception where the nuclear structure does not interfere with β-decay calculations

arises for decays between two spin-zero states that lie within the same isospin multiplet,

because in this case it turns out that the invariant amplitude is dictated by isospin symmetry

considerations. Concrete examples of such decays are the super-allowed decay 14C → 14N

(relevant to radio-carbon dating), where the decay is to the isospin partner of the 14C ground

state. Another process of this type is the pion decay π− → π0 e− νe.

Exercise 5.9: Consider the case of super-allowed β-decay of the form A(p) →
B(q) + e−(k) + νe(r), where pµ, qµ, kµ and rµ are the respective 4-momenta and

the initial and final hadron (nucleus, baryon or meson) are partners within a single

isospin multiplet. This includes the two examples 14C→ 14N and π− → π0 e− νe

mentioned in the main text. In this case the invariant matrix element for the

decay A→ B + e− + νe turns out to be

16G2
FC

2|Vud|2
[
2(k · q)(r · q)− q2(k · r)

]
, (5.61)

where the Kobayashi-Maskawa matrix element, |Vud| = 0.974, quantifies the rela-

tive strength of the weak interactions for u− d quarks relative to leptons (and is

determined by comparing our final prediction for Γ with experimental measure-

ments). The quantity C depends on the isospin quantum numbers of the states

A and B by

C =
√

(t− t3)(t+ t3 + 1) , (5.62)

where t is the isospin of the common isospin multiplet in which both A and B

live, and t3 = t3(A) = t3(B)− 1 is the eigenvalue of the 3rd component of isospin
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for these states. For example, for both 14C and π− decay the parent and daughter

lie in an isotriplet multiplet, with t = 1 and t3 = t3(A) = −1 and t3(B) = 0 so

C =
√

2.

After integrating over the unmeasured neutrino momentum and the momentum

of the recoiling daughter particle B, show that the rest-frame differential decay

rate as a function of electron momentum is given by

dΓ[A(p)→ B(q) + e−(k) + νe(r)] =
G2
FC

2|Vud|2

2(2π)4

{
[−(k − p)2 −m2

B]2

−(k − p)2

}
d3k ,

(5.63)

where −(k − p)2 = m2
A + m2

e − 2EemA in the decay rest-frame. This shows the

rate is independent of the electron direction (after integrating over the neutrino

and recoil directions). Finally, defining Q = mA −mB as the energy released by

the decay, and neglecting both me/mA and Q/mA (but not necessarily me or Ee

relative to Q), show that the rest-frame differential decay rate becomes

dΓ

dEe
' G2

FC
2|Vud|2

(2π)3

[
(2EemA +m2

B −m2
A)2

m2
A − 2EemA

]
Ee
√
E2
e −m2

e

' G2
FC

2|Vud|2

2π3

(
mAEe

mA − 2Ee

)
(Ee −Q)2

√
E2
e −m2

e . (5.64)

Neglecting the electron mass show that the allowed range for Ee is me ' 0 ≤ Ee ≤
Emax := (m2

A −m2
B)/(2mA) ' Q. Perform the final integration and show

Γ(A→ Be−νe) =
G2
FC

2|Vud|2m5
A

2π3
I(∆) , (5.65)

where ∆ := Emax/mA = (m2
A −m2

B)/(2m2
A) ' Q/mA and

I(∆) = −1

4

[
∆

4
− 3∆2

4
+

∆3

3
+

∆4

6
+

1

2

(
∆− 1

2

)
ln
(

1− 2∆
)]

' ∆5

30

[
1− 3∆

2
+O(∆2)

]
. (5.66)

Comparison of (5.65) (for a variety of super-allowed nuclear β-decays) with ob-

servations is what determines |Vud|.

Exercise 5.10: Expression (5.65) found in Exercise 5.9 also describes well π− →
π0e−ν decay, which (with C2 = 2 for pion decay) implies

Γ(π− → π0e−νe) =
G2
F |Vud|2Q5

30π3

(
1− 3Q

2mπ−
+ · · ·

)
. (5.67)
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As seen in (2.34) — since Γ(π− → µ−ν) = Γ(π+ → µ+ν) — the same combination

GF |Vud| also controls the rate of π− → µ−ν decay. In particular, the ratio of

(5.67) to (2.34) (called the branching ratio) gives the fraction of times a charge

pion decays to leptons rather than semi-leptonically. Use this to show

B =
Γ(π− → π0e−ν)

Γ(π− → µ−ν)
' 2Q5

15π2m2
µF

2
πmπ−

(
1−

m2
µ

m2
π−

)−2

' 1.09× 10−8 , (5.68)

which agrees well with the experimental value: Bexp = (1.036±0.006)×10−8 (with

the difference captured by the dominant subleading theoretical corrections). The

small size of GFQ
2 clearly gets the size of this decay right as well.

Exercise 5.11: Neutron decay is the decay of the simplest ‘nucleus.’ Theory

predicts the invariant differential rate for neutron decay — with 4-momentum

assignments n(r)→ p(p) + e(k) + ν(q) — is given to good approximation (in the

neutron rest frame) by

M(n→ p eν) ' 16G2
F |Vud|2mpmnEνEe

[
F
(

1 +
q · k
EνEe

)
+ G

(
1− q · k

3EνEe

)]
,

(5.69)

where we neglectQ/mp whereQ = mn−mp is the energy release, and this allows us

to drop the kinetic energy of the daughter proton, so Ep ' mp+p2/2mp+· · · ' mp.

The constants F = g2
V and G = 3 g2

A are the ‘Fermi’ and ‘Gamow-Teller’ terms,

arising from the q2 → 0 limit of the form factors relevant to the weak interactions

(similar in spirit to the form factors used earlier for the proton’s electromagnetic

interactions). Both are associated with the unknown details of the substructure of

the nucleon. It happens that the electric charge of the proton determines gV = 1

(much as was true for GE(q2 = 0)) but gA need not also be close to unity (much

as also was GM(q2 = 0)). The value of gA can be determined by comparing with

the measured neutron lifetime, and because gA also appears in other expressions

(like the amplitude for pion emission by nucleons) the theory is predictive.

Show that the rest-frame differential rate for n→ pe−ν is therefore given by

dΓ(p→ peν)

d3p d3q d3k
=
G2
F |Vud|2

2(2π)5

[
F(1 + q · k) + G

(
1− q · k

3

)]
δ3(p+q+k)δ(Q−Ee−Eν) .

(5.70)

Since nothing in the integrand depends on p its integral can be done using the

momentum-conserving delta function, leaving the integrals over k and q uncorre-

lated in direction. Use this to perform the integration over q and the direction of
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k to obtain the differential decay rate as a function only of electron energy:

dΓ

dEe
(n→ peν) =

G2
F |Vud|2(F + G)

2π3
Ee(Q− Ee)

√
E2
e −m2

e

√
(Q− Ee)2 −m2

ν ,

(5.71)

where F+G = g2
V +3g2

A and mν is the mass of the relevant neutrino. The presence

of a neutrino mass can be tested by plotting y =
[
(dΓ/dEe)/Ee

√
E2
e −m2

e

]1/2

against Ee (called a Kurie plot), since this ought to be a straight line if mν = 0.

Dropping the neutrino mass (which is at most of order an eV or so), perform the

integral over me ≤ Ee ≤ Q to obtain

Γ(n→ peν) =
G2
F |Vud|2(g2

V + 3g2
A)Q5

60π3
I

(
Q

me

)
, (5.72)

with

I(Q/m) =

(
1− 9m2

2Q2
− 4m4

Q4

)√
1− m2

Q2
+

15m4

2Q4
ln

(
Q+

√
Q2 −m2

m

)

' 1 +O
(
m2

Q2

)
(if m� Q) . (5.73)

Again it is the quantity GFQ
2 ∼ 10−11 that determines the decay lifetime and

makes it so long. Use gV = 1 and gA ' 1.267 to evaluate the free-neutron lifetime.

(You should find around 950 seconds, which is longer than the measured value

of 880.3 ± 1.1 seconds. This difference is mostly to do with the distortion of

the outgoing electron wave-function at r = 0 by the Coulomb field of the final

proton, which is energy-dependent and so should be included before performing

the integration over Ee.)

6 Quantum Field Theory

An important missing step in the above story is the way one computes the invariant rates,

M, that govern the cross sections and decay rates described above. Although we know

how to compute this in terms of an underlying Hamiltonian for scattering in single-particle

nonrelativistic quantum mechanics we do not yet know how to do this for something like a

decay process, which changes the number and type of particles present.

Filling in this step (at least partially) is the goal of this section, and involves describing

the formalism of quantum field theory (which is the natural language for describing processes

that involve many particles (and in particular can change the number or type of particles).
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6.1 Heisenberg’s harmonic oscillator

Before starting, first a brief but useful aside to review the Heisenberg treatment of the one-

dimensional harmonic oscillator. This is useful to review because the harmonic oscillator

shares the spectrum of the quantum field theory of non-interacting many-particle systems.

They resemble one another because both systems involve energy levels that are precisely

equally spaced: En+1 − En = ω is independent of n.

The single-particle 1D harmonic oscillator is defined by the time-independent Schrödinger

equation

Hψn(x) =

[
− 1

2m

∂2

∂x2
+

1

2
mω2 x2

]
ψn(x) = En ψn(x) , (6.1)

where m is the particle mass and ω is the oscillator frequency. This has eigenvalues

En =

(
n+

1

2

)
ω , (6.2)

with eigenfunctions

ψn(x) =

√
mω

π2nn!
Hn(x) e−

1
2
mωx2 , (6.3)

where n = 0, 1, 2, . . . and Hn(x) are the (nth order) Hermite polynomials.

Heisenberg’s treatment of this problem focusses on the ladder operator

A :=
1√

2mω
(mωX + i P ) =

1√
2mω

(
mω x+

∂

∂x

)
, (6.4)

and its adjoint,

A? :=
1√

2mω
(mωX − i P ) =

1√
2mω

(
mω x− ∂

∂x

)
, (6.5)

rather than the position and momentum operators X and P . The commutation relations

[X,P ] = i implies A satisfies the commutation relation[
A,A?

]
= AA? −A?A = 1 , (6.6)

as can be checked by acting on an arbitrary function, ψ(x), and performing the differentiations

explicitly.

Since X and P can be rewritten in terms of A and A?,

X =
1√

2mω

(
A? +A

)
and P = i

√
mω

2

(
A? −A

)
, (6.7)

the same is true of any other observable for the harmonic oscillator, making A, A? an equiv-

alent basis of operators to X and P when describing harmonic oscillator observables. In

particular, the Hamiltonian itself is given by

H =
P 2

2m
+

1

2
mω2X2 =

ω

2
(A?A+AA?) = ω

(
A?A+

1

2

)
, (6.8)
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and the last equality uses the commutation relation (6.6). This expression for H is also easily

verified by directly writing out the right-hand side in terms of the explicit derivatives given

in (6.4) and (6.5).

The above formula for H shows in particular that the combination N := A?A is diagonal

in the energy eigenbasis with eigenvalue n. That is, if ψn(x) = 〈x|n〉 for the energy eigenstates

|n〉, then

A?A |n〉 = n |n〉 so that H |n〉 =

(
n+

1

2

)
ω |n〉 . (6.9)

This last equation implies in particular that A?A gives zero when acting on the ground state,

and this is easily verified by applying A directly to ψ0(x):

〈x|A|0〉 =
1√

2mω

(
mω x+

∂

∂x

)
ψ0(x) = 0 , (6.10)

where the last equality uses ψ0(x) = C exp
(
−1

2 mω x
2
)

where C is a normalization constant

(recall H0(x) is an order-0 polynomial and so is a constant).

More generally A and A? are ladder operators, in the sense that they take one energy

eigenstate and give the next one, with n shifted by one. That is, we now show

A? |n〉 =
√
n+ 1 |n+ 1〉 and A |n〉 =

√
n |n− 1〉 . (6.11)

Notice that taking the inner product of the second of these with itself agrees with (6.9).

Eq. (6.11) can be proven by direct application of the definitions together with the definition

of the Hermite polynomials. But an easier way to show it is to instead start from the

easily proven commutation relation [H,A?] = HA? − A?H = ωA?, together with its adjoint

[H,A] = HA−AH = −ωA. This commutation relation implies

H (A? |n〉) = HA? |n〉 = (A?H + ωA?) |n〉

=

[(
n+

1

2

)
ω + ω

]
A? |n〉 =

[
(n+ 1) +

1

2

]
ω (A?|n〉) , (6.12)

which uses H |n〉 =
(
n+ 1

2

)
ω |n〉. The above manipulations show A?|n〉 is also an eigenstate

of H with eigenvalue
[
(n+ 1) + 1

2

]
ω and so A? |n〉must be proportional to |n+1〉, as required.

The proportionality constants in (6.11) then follow from the orthogonality and normalization

conditions 〈n|m〉 = δmn.

6.2 Creation and annihilation operators

The reason for the above digression on harmonic oscillators is that it is very similar to

the quantum system of many noninteracting particles. The similarity arises because of the

observation that harmonic oscillator energy levels are equally spaced:

En+1 − En = ω for any n. (6.13)
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This is very similar to the energy difference between states containing n identical non-

interacting particles all having mass (i.e. rest energy) M . The energy of n such particles

is then simply n times M plus whatever energy, E0, the no-particle state (or vacuum) may

have: E = E0 + nM , and so En+1 − En = M for any n.

6.2.1 Creation and annihilation for bosons

We now formalise this resemblance more explicitly. To this end suppose we consider a non-

interacting particle whose single-particle states are labelled by momentum and a collection of

other labels, |pσ〉, where σ denotes all of the other labels (spin, charge, baryon number, and

so on) required to uniquely specify a given particle state. Then the Hilbert space of ordinary

single-particle quantum mechanics is the span of these basis states: H1 is the set of all states

of the generic form |ψ〉 =
∑
c(p, σ) |pσ〉 for some complex coefficients c(p, σ), with the ‘sum’

running over all allowed values for p and σ.

The Hilbert space of quantum field theory is much larger than just the space of states in

H1. For instance, it also includes the space of no-particle states, spanned by the single state

|0〉, so H0 = {|0〉}. It also contains the space of all possible two-particle states: H2, spanned

by all possible states of the form |p1 σ1 ,p2 σ2〉, as well as H3, spanned by all three-particle

states, and so on for Hn for all integers n ≥ 0. In general it is useful to use the ‘occupation

number’ basis, where we label a given state by the quantum number of the single-particle

states that are occupied, as well as with the number of particles occupying the state. For

instance

|(p1, σ1)n1 ; · · · ; (pr, σr)nr〉 , (6.14)

represents a state in which (for each j = 1, 2, ..., r) the single-particle state, |pj σj〉, is occupied

by nj particles, so the total number of particles present is

N =
r∑
j=1

nj . (6.15)

Using the operator A? for the harmonic oscillator as a guide, we define the creation

operator a?pσ as the operator that adds one particle with quantum numbers pσ to any given

state. That is, when acting on an N -particle state we have

a?pσ|(q1 ζ1)n1 ; . . . ; (qr ζr)nr〉 = |pσ; (q1 ζ1)n1 ; . . . ; (qr ζr)nr〉 , (6.16)

if pσ is not already present, while

a?pσ|(q1 ζ1)n1 ; . . . ; (qr ζr)nr〉 =
√
nj + 1 |(q1 ζ1)n1 ; . . . ; (qj σj)nj+1; . . . ; (qr ζr)nr〉 (6.17)

if pσ = qj ζj for one of the particles already present (whose label is j).
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Similarly, the annihilation operator apσ is defined to remove one particle with quantum

number pσ if such a particle is present, and to give zero if no such particle is present. That

is

apσ|(q1 ζ1)n1 ; . . . ; (qr ζr)nr〉 =
r∑
j=1

δ3(p− qj)δσζj
√
nj |(q1 ζ1)n1 ; . . . ; (qj σj)nj−1; (qr ζr)nr〉 .

(6.18)

In particular, acting on zero- and single-particle states the above specializes to

apσ|0〉 = 0 , a?pσ|0〉 = |pσ〉 and apσ|q ζ〉 = δ3(p− q) δσζ |0〉 , (6.19)

while any multiple-particle state can be regarded as being obtained by applying an appropriate

combination of creation operators to the vacuum:

|(q1 ζ1)n1 ; . . . ; (qr ζr)nr〉 ∝
(
a?q1ζ1

)n1 · · ·
(
a?qrζr

)nr |0〉 . (6.20)

Repeated application of these operators shows (not surprisingly) that they satisfy the

same commutation relations as did34 A and A?:[
apσ, a

?
qζ

]
= apσa

?
qζ − a?qζapσ = δ3(p− q) δσζ . (6.21)

Notice that this algebra only applies to bosons since only bosons can have multiply occupied

states. Because a multi-particle bose state must be completely symmetric under particle

interchange (this is the definition of a boson), |q1 ζ1; q2 ζ2〉 = |q2 ζ2; q1 ζ1〉, and because

|q1 ζ1; q2 ζ2〉 = a?q1ζ1a
?
q2ζ2
|0〉, it follows that we can choose apσaqζ = aqζapσ and so[

apσ, aqζ

]
= apσaqζ − aqζapσ = 0 . (6.22)

Just as is true for the harmonic oscillator, the algebra defined by (6.21) and (6.22)

ensures that the operator Npσ = a?pσapσ is diagonal in the occupation number representation.

Keeping track of the density of states associated with the switch from discrete to continuum

normalization, its eigenvalues count the number of particles in the following precise sense:

a?pσapσ|(q1 ζ1)n1 ; . . . ; (qr ζr)nr〉 =

r∑
j=1

nj δ
3(p− qj)δσζj |(q1 ζ1)n1 ; . . . ; (qr ζr)nr〉 , (6.23)

and so it is the operator N =
∑

σ

∫
d3p a?pσapσ that counts the number of particles present

in a state:

N |(q1 ζ1)n1 ; . . . ; (qr ζr)nr〉 =
∑
σ

∫
d3p a?pσapσ|(q1 ζ1)n1 ; . . . ; (qr ζr)nr〉

=

r∑
j=1

nj |(q1 ζ1)n1 ; . . . ; (qr ζr)nr〉 . (6.24)

34This is the same up to normalization, since we normalize momentum eigenstates different than we do

harmonic oscillator states.
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Consequently the Hamiltonian for free particles can be written

Hfree = E0 +
∑
σ

∫
d3p ε(pσ) a?pσapσ , (6.25)

with ε(pσ) the single-particle energy for a state labelled by (pσ). For relativistic systems

the single-particle energy is ε(pσ) =
√

p2 +M2(σ), but for nonrelativistic systems it can be

more complicated. The above manipulations show that H does what it should do:

Hfree|q1 ζ1 n1; . . . ; qr ζr nr〉 = Efree (q1 ζ1 n1; . . . ; qr ζr nr) |q1 ζ1 n1; . . . ; qr ζr nr〉 , (6.26)

with

Efree (q1 ζ1 n1; . . . ; qr ζr nr) = E0 +
r∑
j=1

nj ε(qj σj) . (6.27)

In particular, the ground state is the state with the lowest-energy eigenvalue which —

assuming35 ε(pσ) > 0 — is given by the no-particle state, |0〉, with

Hfree |0〉 = E0 |0〉 . (6.28)

Usually this vacuum energy is not measurable in experiments in the laboratory, because

such measurements usually are sensitive only to energy differences in which E0 cancels out.

The vacuum energy density can be measured, however, through its gravitational effects since

gravity responds to all energies, regardless of their origin. The evidence for the existence of

Dark Energy in cosmology can be interpreted as the detection of the gravitational influence

of the vacuum energy.

6.2.2 Creation and annihilation for fermions

As mentioned earlier, the above discussion necessarily involves particles that can multiply

occupy a state, since nothing stops applying a creation operator a?pσ as often as one wishes

to a state like |pσ〉 already containing the particle in question. Consequently the formalism

as described so far necessarily only applies to bosons.

How do creation and annihilation operators for fermions differ from the previous discus-

sion? Since a fermionic state is either occupied or not, it is essentially a two-level system,

rather than the infinite tower of states described above. Suppose, then, we denote the unoc-

cupied and occupied states as follows

|0〉 =

(
0

1

)
(unoccupied) and |1〉 =

(
1

0

)
(occupied) . (6.29)

35Notice that if ε(pσ) < 0 for any (pσ) then the spectrum of Hfree is not bounded from below, since the

energy can be lowered arbitrarily far just by multiply occupying any negative-energy particle states. For this

reason systems with negative-energy single-particle states are usually regarded as being sick.
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In this case the creation and annihilation operators are defined by the four conditions

a|0〉 = 0, a|1〉 = |0〉, a?|0〉 = |1〉 and a?|1〉 = 0. This corresponds to the following explicit

two-by-two matrices

a =

(
0 0

1 0

)
and a? =

(
0 1

0 0

)
. (6.30)

Explicit matrix multiplication then shows that a (and a?) is nilpotent — that is, a2 = 0 and

(a?)2 = 0 — and furthermore that a and a? satisfy the anticommutator relation{
a?, a

}
:= a? a+ a a? = 1 . (6.31)

Furthermore direct multiplication also shows that

a?a =

(
1 0

0 0

)
, (6.32)

and so

a?a|n〉 = n|n〉 (for n = 0, 1) . (6.33)

Fermi statistics also determines how the creation and destruction operators for differ-

ent particles or different momenta commute or anticommute. That is, fermionic states are

antisymmetric under particle interchange, |q1 σ1; q2 σ2〉 = −|q2 σ2; q1 σ1〉 (and similarly for

states with more particles). Consequently, because |q1 ζ1; q2 ζ2〉 = a?q1ζ1a
?
q2ζ2
|0〉 we impose the

following anticommutation relations for fermionic operators{
a?q1ζ1 , aq2ζ2

}
:= a?q1ζ1 aq2ζ2 + aq2ζ2 a

?
q1ζ1 = δ3(q1 − q2) δζ1ζ2 , (6.34)

and {
aq1ζ1 , aq2ζ2

}
:= aq1ζ1 aq2ζ2 + aq2ζ2 aq1ζ1 = 0 . (6.35)

The upshot is that the Hamiltonian for free fermions can also be written in precisely the

same way as for bosons:

Hfree = E0 +
∑
σ

∫
d3p ε(pσ) a?pσapσ , (6.36)

with ε(pσ) the single-particle energy for a state labelled by (pσ). This again does what it

should do:

Hfree|q1 ζ1 n1; . . . ; qr ζr nr〉 = Efree (q1 ζ1 n1; . . . ; qr ζr nr) |q1 ζ1 n1; . . . ; qr ζr nr〉 , (6.37)

with

Efree (q1 ζ1 n1; . . . ; qr ζr nr) = E0 +

r∑
j=1

nj ε(qj σj) , (6.38)

with the only new feature (relative to bosons) being that relations (6.34) and (6.35) replace

(6.21) and (6.22) in order to ensure that the occupation numbers, nj , always equal zero or

one.
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6.3 Interactions and fields

The previous sections provide a description of noninteracting particles and their energies.

It also provides a language in terms of which to describe interactions that can change the

number of particles.

6.3.1 Interactions

To see how this works imagine a world containing only two kinds of particles: a heavy spinless

boson, h, with mass M and a lighter spin-half fermion, f , with mass m < 1
2 M . We assume

relativistic single-particle dispersion relations, so

ε(p) =
√

p2 +m2 and ω(k) =
√

k2 +M2 , (6.39)

for light and heavy particles respectively.

Denote the annihilation operator for the boson by ak and the annihilation operator for

the fermion by cpσ, where σ = ±1
2 denotes the state’s 3rd component of spin. Because the

heavy state is a boson and the light state is a fermion the creation and annihilation operators

satisfy [
ak , aq

]
= 0 ,

[
ak , a

?
q

]
= δ3(k− q)

and
{
ckσ , cqζ

}
= 0 ,

{
c?kσ , cqζ

}
= δ3(k− q) δσζ . (6.40)

The free Hamiltonian for such a system is then given in terms of these operators by

Hfree = E0 +

∫
d3p

a?pap ω(p) +
∑
σ=± 1

2

c?pσcpσ ε(p)

 , (6.41)

We wish to describe an interaction, Hint, that allows the heavy boson to decay into a pair

of light fermions: h→ ff . To describe the decay this should have a nonzero matrix element

of the form 〈pσ; q ζ|Hint|k〉 where the single-particle state on the right is |k〉 = a?k |0〉 and

the two particle state on the left is

〈pσ; q ζ| =
(
|pσ; q ζ〉

)?
=
(
c?pσc

?
qζ |0〉

)?
= 〈0| cqζ cpσ . (6.42)

An interaction that could describe this decay is, for example,

Hint = G
∑
σ=−ζ

∫
d3p√

(2π)32ε(p)

d3q√
(2π)32ε(q)

d3k√
(2π)32ω(k)

(6.43)

×
[
ak c

?
pσc

?
qζ + a?k cqζ cpσ

]
(2π)3δ3(k− q− p) ,

whereG is a real ‘coupling constant’ and the second term in the square bracket is the hermitian

conjugate of the first one, so that Hint is hermitian. Applying the rules for how creation and
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annihilation operators act on particle states shows that this interaction Hamiltonian has the

matrix element

〈pσ; q ζ|Hint|k〉 =
G√

8(2π)9ε(p) ε(q)ω(k)
(2π)3δ3(k− q− p) δσ,−ζ . (6.44)

Applying the standard rules of time-dependent perturbation theory in the interaction

picture, as might be seen in a quantum mechanics class, shows that the transition amplitude

for the process h→ ff is then (to lowest order in the coupling constant G) given by

T [h(p)→ f(pσ) f(q ζ)] = −2πi 〈pσ; q ζ|Hint|k〉 δ[ω(k)− ε(p)− ε(q)]

= − iA√
8(2π)9ε(p) ε(q)ω(k)

(2π)4δ4(k − p− q) , (6.45)

where the invariant amplitude for this reaction is

A = G δσ,−ζ . (6.46)

Standard manipulations then show that the differential reaction rate is

dΓ[h(k)→ f(pσ) f(q ζ)] =
|A|2

2ω(k)
(2π)4δ4(k − p− q) d3p

(2π)32ε(p)

d3q

(2π)32ε(q)
, (6.47)

and so comparing with (2.29) shows that the invariant decay rate, M(h → ff), as we have

defined it in earlier sections is given in terms of A(h→ ff) by

M = |A|2 = |G|2 δσ,−ζ . (6.48)

It is calculations such as these that allow one to compute the invariant rates used in the

exercises in previous sections given proposals for the interaction Hint. For instance, in the

weak interactions the term responsible for a decay like µ(p σ)→ e(q ζ)νµ(k ξ)νe(r υ) in Hint is

proportional to something of the schematic form GF ap σb
?
q ζc

?
k ξd

?
rυ where a, b, c and d are the

appropriate annihilation operators for muons, electrons and the two types of neutrinos, with

a proportionality factor that requires a more detailed treatment of the relativistic particle

spins.

6.3.2 Fields

There is one feature about interactions that the above discussion makes obscure: the locality

of interactions. That is, we expect that if systems that are sufficiently far apart from one

another at a given time and start off in uncorrelated states, then their evolution should

preserve their lack of correlation. Since probabilities factorize for uncorrelated systems this

means we should expect that the time evolution operator, U(t, t0) ∝
∏
x Ux(t, t0), should

come to us as a product of independent evolution at different spatial points, x. But because
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U(t, t0) = exp[−iH(t− t0)] this means that the system’s Hamiltonian should come to us as a

sum of independent terms for each spacetime point:

H =

∫
d3x H(x) , (6.49)

for some energy density, H(x).

The natural variable on which H(x) should depend directly is then the combination of

apσ and a?pσ that corresponds to a definite position: the position-space field

ψσ(x) =

∫
d3p

(2π)3/2
apσ e

ipx =

∫
d3p

(2π)3/2
apσ e

−iε(p)t+ip·x , (6.50)

and its adjoint

ψ?σ(x) =

∫
d3p

(2π)3/2
a?pσ e

−ipx =

∫
d3p

(2π)3/2
a?pσ e

iε(p)t−ip·x . (6.51)

For instance, if for non-relativistic particles we have the Schrödinger Hamiltonian,

H(x) =
∑
σ

ψ?σ(x)

[
−∇

2

2m

]
ψσ(x) , (6.52)

then substituting (6.50) and (6.51) then gives the following free-particle Hamiltonian

H =

∫
d3x H(x) =

∑
σ

∫
d3x

∫
d3p

(2π)3/2

∫
d3q

(2π)3/2
a?pσ

[
q2

2m

]
aqσ e

i(q−p)x

=
∑
σ

∫
d3p

(2π)3/2

∫
d3q

(2π)3/2
a?pσ

[
q2

2m

]
aqσ (2π)3δ3(p− q) (6.53)

=
∑
σ

∫
d3p ε(p) a?pσapσ ,

with single-particle energy

ε(p) =
p2

2m
. (6.54)

More generally, suppose

H(x) =
∑
σ

ψ?σ(x)

[
− 1

2m
∇2 + V (x)

]
ψσ(x) , (6.55)

and suppose the corresponding time-independent Schrödinger equation has solutions un(x),[
− 1

2m
∇2 + V (x)

]
un(x) = εn un(x) , (6.56)

for some energy eigenvalues, εn. The Hamiltonian can be written in its diagonalized form in

this case using the fields

ψ(x) =
∑
n

an un(x) and ψ?(x) =
∑
n

a?n u
∗
n(x) , (6.57)

– 170 –



since this, when substituted into (6.55) gives

H =

∫
d3x H(x) =

∑
nm

∫
d3x a?nu

∗
n(x)

[
− 1

2m
∇2 + V (x)

]
am um(x)

=
∑
nm

εma
?
nam

∫
d3x u∗n(x)um(x) (6.58)

=
∑
n

εna
?
nan ,

where the last equality uses the orthonormality of the wave-functions un(x):∫
d3x u∗n(x)um(x) = δmn . (6.59)

In this case the single-particle energy is εn and the Hamiltonian (6.55) clearly describes a

system of potentially many particles that interact with a potential but not with each other,

with energy levels E =
∑

nNnεn (where Nn is the number of particles present prepared in

state n).

A possible interaction term for this kind of system that does not change the number of

particles might be written in position space by

Hint =

∫
d3x d3y ψ?(x)ψ(x)U(x− y)ψ?(y)ψ(y) , (6.60)

while an interaction that describes the emission and absorption of a boson destroyed by the

operator bk might be written

Hint =

∫
d3x ψ?(x)ψ(x)

[
g φ(x) + g∗φ?(x)

]
, (6.61)

where g is a coupling constant, φ(x) =
∑

k bk e
ikx and so on.

6.4 Relativistic quantum field theory

The relation between the field in position space and the creation and annihilation operators

takes a different form in relativistic field theories. Rather than expressions like (6.50) and

(6.51), in relativistic theories one instead always finds the position-space field is given by

expressions like

ψ(x) =

∫
d3p√

(2π)32ε(p)

[
ap e

ipx + ā?p e
−ipx

]
, (6.62)

where ap destroys the particle of interest and āp destroys its antiparticle.36

36One way to think about the need for antiparticles to enter into fields this way comes from the problem

of reconciling relativity of simultaneity with the Heisenberg uncertainty principle. Relativity of simultaneity

states that different observers can disagree on the ordering of two events, A and B, in time provided A and
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The antiparticle term in (6.62) turns out to be necessary in order to ensure that the field

and its adjoint commute (or anticommute, for fermions) for space-like separations, and this

is in turn ultimately required in order for H(x) to commute with H(y) when xµ and yµ are

space-like separated. And this commutation of H(x) with itself at spacelike-separated points

is required in order for interactions to preserve Lorentz-invariance. This necessity can be

seen, for instance, from the ubiquitous appearance of time-ordered correlation functions like

〈0|T [H(x)H(y)]|0〉 in perturbative calculations of scattering in quantum mechanics. Here the

symbol T [H(x)H(y)] denotes the time-ordered product: equal to H(x)H(y) if y0 > x0 (i.e.

the event xµ is later than yµ), but equal to H(y)H(x) if x0 > y0 (i.e. when xµ is earlier than

yµ). But the relativity of simultaneity implies the relative size of x0 and y0 is ambiguous when

xµ and yµ are space-like separated, because different observers can disagree on the ordering

in time of space-like separated events. So such time-orderings of H can only be unambiguous

in a relativistic theory if H(x) commutes with H(y) at space-like separation.

It is this requirement that fields and their adjoints commute/anticommute at spacelike

separations (sometimes called micro-causality) that is ultimately at the origin of the need for

antiparticles. It is also at the root of a number of other very general consequences of the

reconciliation of special relativity and quantum mechanics, whose explanation goes beyond

the scope of these notes but which are listed here for completeness.

• Existence of antiparticles: For every type of particle, p, there also exists an antipar-

ticle, p, which in some circumstances (for particles that carry no conserved charges —

see below) can be the same as the particle.

• Inevitability of particle-number changing interactions: Particles and antipar-

ticles enter interactions only through the fields, which schematically depend on parti-

cle and antiparticle creation and annihilation operators only through the combination

ψ ∼ a+a?. Consequently while ψ destroys particles its antiparticle part creates antipar-

ticles, and they enter with the same relative strength. This implies that any interactions

B are space-like separated: s2(A,B) = (∆x)2 − (∆t)2 > 0. In relativity this inability to agree on ordering

in time does not preclude predicting the future from the past (which, after all, is the goal of science) because

no information can travel faster than light. A cannot influence B (or vice versa) because doing so requires

something to move faster than the speed of light. But this argument breaks down in quantum mechanics,

because if you know you are precisely at A then you must be arbitrarily uncertain about your momentum

and so there can actually be a nonzero quantum amplitude for you to move faster than light and so have A

influence B, say. But since some observers see B to be earlier than A they must also have a story to tell.

In relativistic quantum field theory the story that makes everything consistent is that if one observer sees A

earlier than B and sees a particle carry charge, Q, and energy, E, from A to B, then for an observer with

B earlier than A there must be another particle (which we call the antiparticle) that carries charge −Q and

energy E from B to A, with exactly the same amplitude. This is ultimately why antiparticles exist, and why

their charges are precisely opposite (and their mass precisely equal) to those of the particles to which they

correspond, and why they enter into interactions with precisely the same strength.
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built from ψ(x) and ψ?(x) necessarily must change particle number, so it is not really

possible to have Lorentz-invariant interactions that preserve the number of particles at

all energies.

• Crossing Symmetry: Because the particle and antiparticle parts enter into ψ with

the same relative strength, the amplitude for any process with particle p in the final

(initial) state is precisely the same as that for the process with its antiparticle p in the

initial (final) state. For example the amplitude for n → p + e− + νe is identical to the

amplitude for e+ + n → p + νe and for νe + n → p + e− and for n + p → e− + νe and

so on. Of course the phase space for these various reactions need not be the same and

this can cause differences in their overall rates at any given energy.

• CPT Symmetry: Because a and a appear only through the schematic combination

a+a? within ψ, particles and antiparticles must have precisely opposite charges for any

conserved additive charge (like electric charge or lepton number): i.e. Q(p) = −Q(p)

and L(p) = −L(p). They must also have precisely equal masses: M(p) = M(p).

These requirements require the particle and antiparticle to be different from one another

whenever either carries a nonzero conserved charge. The precise equality of properties

can be formalized by the statement that any local relativistic (and unitary) quantum

system has a symmetry called CPT, consisting of simultaneous interchange of particle

and antiparticle (C: a↔ a), parity (or reflection of all spatial coordinates, P: x↔ −x)

and time-reversal (T: t↔ −t).

• Spin-Statistics connection: Having ψ ∼ a+a? actually ensures interactions commute

for spacelike separations, [H(x, t),H(y, t)] = 0, only if all integer-spin (s = 0, 1, 2, . . . )

particles satisfy Bose statistics and all half-odd-integer spin (s = 1
2 ,

3
2 , . . . ) particles

satisfy Fermi statistics.

6.4.1 Quantum electrodynamics

The poster child of a relativistic quantum field theory is Quantum Electrodynamics, in which

it is the electromagnetic field that gets expanded in terms of creation and annihilation oper-

ators for photons, as in (6.62). That is, consider electric and magnetic fields describing an

electromagnetic wave, which can be written in terms of the vector potential A as

E =
∂A

∂t
and B = ∇×A , (6.63)

where

A(x) =
∑
λ=±1

∫
d3k√

(2π)32ω(k)

[
e(kλ) akλ e

ikx + e∗(kλ) a?kλ e
−ikx

]
, (6.64)

where e(k, λ) denotes the polarization vector of the photon with momentum k and helicity

λ = ±1, and kx = −ω(k) t+ k · x where the photon energy is ω(k) = |k|.
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In this case the free Hamiltonian for noninteracting photons is simply the usual expression

for the energy density of the field in terms of electric and magnetic fields,

Hfree =

∫
d3x

[
ρ0 +

1

2

(
E2 + B2

)]
=

∫
d3x ρ0 +

1

2

∑
λ=±1

∫
d3k

[
a?kλakλ + akλa

?
kλ

]
ω(k)

= E0 +
∑
λ=±1

∫
d3k a?kλakλ ω(k) , (6.65)

where the second equality uses (6.63) and (6.64) and ρ0 parameterizes the classical energy

density of the vacuum. As expected, this Hamiltonian describes a collection of photons whose

single-particle energies add to give an energy eigenvalue

E = E0 +
∑
λ

∫
d3kNkλ ω(k) , (6.66)

when acting on a state with Nkλ photons with momentum k and helicity λ.

Notice that the total vacuum energy (i.e. energy of the no-particle state), E0, obtained

here, given explicitly by

E0 =

∫
d3x ρ0 + δ3(0)

∫
d3k

1

2
|k| , (6.67)

hides many sins. In particular it diverges in two separate ways (at long and short distances),

and such divergences are very common in quantum field theory. First, both terms in E0

diverge at long distances in the infinite-volume limit. The first term does so because ρ0 is a

constant and so
∫

d3x ρ0 = ρ0 V where V →∞ is the volume of space. The second term also

diverges for long distances — i.e. at long wavelengths, or the ‘infrared’ (or IR) — because it

is proportional to the momentum-space delta-function: δ3(0). This is also an infinite-volume

divergence because δ3(k) = (2π)−3
∫

d3x e−ix·k implies δ3(0) = limV→∞ V/(2π)3, where again

V is the volume of space.

Like most IR divergences the divergence with infinite V is telling us we are calculating the

wrong thing. In the present instance it is telling us that it is the energy density, ρvac = H/V ,

that is the observable quantity37 that has a chance to be finite at infinite volume rather than

the total energy.

But this is not the end of the divergence story because there is also a problem at short

distances, or the ‘ultraviolet’ (or UV), since

lim
V→∞

E0

V
= ρvac = ρ0 +

1

2

∫
d3k

(2π)3
|k| . (6.68)

37Indeed, the vacuum energy density can be observed – by the way it gravitates, for instance.
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This is infinite because
∫

d3k |k| ∝
∫

dk k3 diverges quartically as the upper integration limit

goes to infinity. UV divergences such as these are usually renormalized: since nothing physical

depends separately on ρ0 and the divergent integral in (6.68) we can imagine that the bare

parameter ρ0 also diverges in such a way that the sum in (6.68) remains finite. This is all

that is required because it is only ρvac (as opposed to ρ0) that is observable, and so must be

finite.

6.5 Bosons and forces

The upshot of the previous sections is that there is a creation and annihilation operator for

all types of particles. So once the Hamiltonian is written in local form this also means that

there is also a separate field for each type of particle, obtained by Fourier transforming the

corresponding creation and annihilation operators (for the particle and its antiparticle in the

schematic combination a+ a?).

But at the classical level we normally associate fields with forces, and although some

particles and fields do seem to be associated with forces (such as the photon, gluon or graviton)

we do not normally associate forces with all particle types (such as electrons or protons). Why

is this, and what decides which particles are associated with forces?

The answer to this is that any particle satisfying Bose statistics can in principle mediate

a force, although for the force to be described by a classical field usually also requires the

particle mass to be quite small compared with the energies of interest. Bose statistics and low

masses are required because field states begin to look like classical fields once they involve large

particle occupation numbers, and both Fermi statistics and low energy block the occurrence

of large occupation numbers.

For instance, the interactions of the electromagnetic field with matter usually take the

form

Hint =

∫
d3x J(x) ·A(x) , (6.69)

where the electric current operator, J(x), is built out of the fields for electrically charged

particles, like electrons. In static situations current conservation requires ∇·J = 0. Notice in

particular that Hint is linear in A, and so is also linear in the photon creation and annihilation

operators once expressed in terms of akλ and a?kλ. Because of this linearity Hint does not

commute with photon number,

N =
∑
λ

∫
d3k a?kλakλ , (6.70)

and so when the source currents are sufficiently strong the eigenstates of the electromagnetic

field can be driven not to have a definite number of photons.

When an interaction like Hint that is linear in a bosonic field happens to play an dominant

role in a physical process then the system often is well-described by a coherent state, defined
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as an eigenstate of the operator akλ rather than N or Nkλ. That is, suppressing the labels

(kλ), a coherent state, |α〉, satisfies:

a|α〉 = α|α〉 , (6.71)

for some complex number α. This eigenvalue condition can be solved explicitly, leading to

the following expression for |α〉 in terms of the occupation-number basis, |n〉:

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 = e−

1
2
|α|2 eαa

? |0〉 . (6.72)

Particle number is clearly not diagonal in these states, and instead the probability of

detecting n particles is given by a Poisson distribution,

P (n) = |〈n|α〉|2 = e−n̄
n̄n

n!
, (6.73)

where

n̄ := 〈n〉 = 〈α|a?a|α〉 = |α|2 , (6.74)

is the mean value for n. The variance of n in such a distribution is similarly

(∆n)2 := 〈(n− n̄)2〉 = 〈n2 − n̄2〉 = |α|2 , (6.75)

and so n̄2 � (∆n)2 whenever n̄ = |α| � 1, showing that fluctuations become relatively small

once the average occupation number becomes large.

Another way to see why |α〉 behaves like a classical field when |α| � 1 can be found by

comparing the expectation value of a?a with that of a a?, using [a?, a] = 1:

〈α|a?a|α〉 = |α|2 while 〈α|a a?|α〉 = 〈α|a?a+ 1|α〉 = |α|2 + 1 , (6.76)

showing that inside expectation values 〈a a?〉 and 〈a?a〉 are approximately equal (and so a and

a? behave effectively like classical commuting variables inside expectation values) provided

that n̄ = |α|2 � 1. Coherent states represent one example of how states involving large

occupation numbers for bosons can be approximately well-described by classical fields.

To summarize: because bosons love to congregate, systems containing bosons with small

masses (relative to the system energy) often evolve into states that are multiply occupied

by enormous numbers of bosons. Such states are often well-described by classical fields,

and it is because of this that bosons can mediate interactions between other particles. We

tend therefore to associate elementary bosons (and their associated fields) with fundamental

interactions.

7 The Standard Model

This section gives a brief summary of the particle content and some of the properties and

puzzles of the Standard Model, which is the quantum field theory that describes all but a

very few relatively recent experiments and observations. (A list of the apparent failures of

the Standard Model is given in the final subsection.)
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7.1 Fermions and the generation puzzle

We start with a summary of the Standard Model’s ‘matter content’, which is equivalent to

listing all of the fermions that are known and believed to be fundamental (in that there is no

evidence for their having any substructure).

Figure 45. A table listing the particle content of the Standard Model. (Figure source: Wikipedia

https://en.wikipedia.org/wiki/Standard Model).

The fundamental fermions all have spin 1
2 (consistent with the spin-statistics theorem of

relativistic quantum mechanics) and are shown in violet and green in Figure 45. All fermions

come in triplicate: there are four basic fermion types (the left-most column of 45) plus two

copies of these (the next two columns) that share all of the same charge assignments of the

first column, differing only in their mass.

Each column of fermions is called a generation and seems to be self-contained inasmuch

as the theory could have been consistent if there were only one or two generations. Nobody

knows why three generations appear in nature, a piece of current ignorance that is called the

Generation Puzzle.

7.1.1 Leptons

Each generation contains two kinds of particles that do not take part in the strong interactions

(more about which later), called leptons. Of these, the charged leptons (e, µ and τ) must

differ from their antiparticles because they carry electric charge. Because they have spin-half

there is a total of 4 spin states for each charged lepton: two spins each for the particle:38 e−L ,

e−R , and two more for the antiparticles of these: e+
R and e+

L . Plus copies of this for each of the

next two generations. The masses of the charged leptons turn out to be quite different from

38Here we conventionally denote the two spin states as ‘left-handed’ and ‘right-handed’, by projecting their

spin along the direction of their motion.
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one another: me ' 0.511 MeV, mµ ' 105 MeV and mτ ' 1.78 GeV. As discussed above, at

most one of the neutrinos can be massless, and the rest are known to have masses smaller

than 1 eV or so.

For each of the neutrinos the Standard Model includes only left-handed particles (and

their right-handed antiparticles), νeL and νeR plus their generational copies, since there is

no unambiguous evidence for the existence of any other spin states. Whether νe and νe

are distinct from one another or not depends on whether or not there exists a conserved

charge that distinguishes them, and so hinges on whether or not it turns out that total lepton

number, L = Le + Lµ + Lτ , is conserved.

It is common to group together the particles that the weak interactions allow transitions

between. This leads them to be grouped into 2-component column vectors, as in(
νeL

e−L

) (
νµL

µ−L

) (
ντL

τ−L

)
, (7.1)

where only left-handed particles are included because all evidence is that only these (and

their antiparticles) take part in weak-interaction transitions of the form e− ↔ νe (or its

generational counterparts). The spin-dependence of particles taking part in these interactions

can be inferred from the angular distribution of the final particles in collisions and decays.

7.1.2 Quarks and the hadronic zoo

The other two kinds of fermions in each generation are quarks, which (unlike leptons) do

participate in the strong interactions. There are two species of quarks in each generation:

an up-type quark with charge +2
3 and a down-type one with charge −1

3 . Since each of these

carries charge they are distinct from their antiparticles, and because all have spin half each

has two possible spin states. This leads to the independent states uL, uR, dL and dR plus their

respective antiparticles uR, uL, dR and dL (plus copies of all of these for each of the other two

generations).

The pattern of quark masses is also quite varied: mu ' 2.3 MeV, md ' 4.8 MeV,

ms ' 95 MeV, mc ' 1.28 GeV, mb ' 4.2 GeV and mt ' 173 GeV. There is no fundamental

understanding of what determines the pattern of masses seen for the various fundamental

fermions, and this lack of understanding is sometimes called the Flavour puzzle.

We have already seen that the up and down quarks combine under the strong interactions

into a variety of states called hadrons. These come in two main types: mesons (built from

quark-antiquark pairs) and baryons (built from 3-quark combinations). For up and down

quarks the ground states for these bound states were the proton, neutron, ∆ baryons and the

π and ρ mesons. Many more combinations are possible once the full complement of six quark

types are included, and of these all of those expected to be observable are seen.

It is also true for quarks that only left-handed particles seem to take part in the weak

interactions that change the species of quark, and so these are often grouped together into
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‘doublets’ (as was done for leptons):(
uL

d′L

) (
cL

s′L

) (
tL

b′L

)
, (7.2)

where the primes on the down quarks denote the following linear combinations

d′L = Vud dL + Vus sL + Vub bL

s′L = Vcd dL + Vcs sL + Vcb bL (7.3)

b′L = Vtd dL + Vts sL + Vtb bL .

The elements of the 3-by-3 matrix V of complex coefficients can be inferred by measuring

weak decays involving different species of quarks. We have already seen how Vud is measured

in super-allowed nuclear beta decays, such as 14C→ 14N, and it turns out that Vus can be

measured in K-meson decays (where K mesons are built using s quarks) and so on.

The implications of the Standard Model for the properties of weak decays of quarks are

very predictive despite the presence of the matrix Vij . It is predictive because the matrix V is

unitary: V †V = V V † = I, and many of its phases can be absorbed into five of the six quark

fields.39 So the nominally 9 complex parameters, Vij , are subject to 9 real unitarity conditions

plus 5 rephasing conditions and so can really be expressed in terms of 4 real parameters: the

three angles of a 3-by-3 rotation, (θ1, θ2, θ3), plus a physical phase40 eiδ. There are many more

than 4 observables amongst quark weak interactions, and their agreement with the Standard

Model’s predictions provides many nontrivial tests of the structure of Vij .

7.2 Bosons and the four forces

As discussed above, fundamental bosons in the Standard Model tend to be associated with

forces. Although not normally included in the Standard Model, this includes the spin-2

graviton which is the particle associated with waves in the gravitational field.

For the Standard Model proper there are a variety of bosons, each associated with a

known ‘force.’ All but one of these has spin-1, and the exception has spin zero. Besides

the photon of electromagnetism we have already encountered the 8 gluons whose exchange

mediates the strong force that binds quarks into hadrons, and whose residual interactions

over longer distances are what was historically called the nuclear force. Both the photon and

the gluon are massless in the Standard Model (as also is the graviton).

To these familiar spin-1 particles the Standard Model adds two more: the electrically

charged W− particle (and its antiparticle W+), and the electrically neutral Z0 (that is its

39The sixth phase corresponds to a common rotation of all quarks by the same phase and is a symmetry

responsible for baryon number conservation, and so cannot be used to remove a phase from V .
40This phase is the parameter ultimately responsible for CP-violation (i.e. the breaking of the symmetry

obtained by combining charge conjugation (C) – the swapping of particles with antiparticles – with parity (P)

– the reversing of the spatial coordinate, r→ −r) in the Standard Model.
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own antiparticle, as is also true for the photon). These have similar masses: the W boson has

mass mW ' 80 GeV and the Z boson has mass mZ ' 90 GeV. What are the forces associated

with these particles?

7.2.1 Charged-current weak interactions

The ‘force’ associated with the W boson is the weak interaction that is responsible for β-decay

and the other decays encountered to date. Within the Standard Model any element of one

of the doublets, (7.1) or (7.2), can turn into the other element of the same doublet, while

either emitting or absorbing a W boson. That is, within the Standard Model a decay like

d → u + e− + νe really takes place in two steps: d → u + W− followed by the subsequent

process W− → e−+ νe. Quantum mechanically the combined reaction can take place even if

the mass difference md −mu ' 1 MeV is too small to account for the W -boson mass, which

is now known to be mW ' 80 GeV, provided the emission and absorption of the W boson

takes place sufficiently quickly and over small enough distances. If these distances and times

are short enough then the uncertainty principle can allow the process to occur even though

it would have been forbidden if the W had survived for a long time. When the mass of the

decaying particle is much smaller than the mass of the W boson (that is, m� 80 GeV) then

the Standard Model description approximately reduces to the description of the Fermi theory,

with GF calculable in terms of more fundamental parameters.

In the Standard Model the emission or absorption of a W boson is associated with a

coupling parameter, g, in the same way that photon emission and absorption is associated

with the electromagnetic coupling e. Since (at low energies) a W must be both emitted and

absorbed in order to have a decay, we expect any decay amplitude to be proportional to g2.

Furthermore, the sense in which the Fermi theory emerges from the Standard Model is as the

leading term in a Taylor expansion in powers of the decay energy divided by m2
W . Since in

the Fermi theory it is GF that gets compared with the decay energy when determining the

rate, we expect to find GF ∝ g2/m2
W and this is indeed borne out by calculations, with the

precise relation given by
GF√

2
=

g2

8m2
W

. (7.4)

Measurements of GF and mW thereby determine the value of g. It is conventional to

express this value relative to the electromagnetic coupling in terms of an angle, θW , by

sin2 θW :=
e2

g2
=

α

αw
' 0.23126(5) , (7.5)

where αw = g2/4π is the weak fine-structure constant, analogous to α = e2/4π. Notice that

αw and α are not so different in size, and indeed the modern understanding of why the weak

interactions were historically regarded as being weak is because all early experiments and

decays were measured at energies much smaller than mW , rather than because the underlying

coupling, g, is particularly small.
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7.2.2 Neutral-current weak interactions

At 90 GeV the Z boson mass is just slightly larger than theW boson mass, and in the Standard

Model these masses are predicted to be related to one another by the (very successful) mass

formula

mW = mZ cos θW , (7.6)

where θW is the same angle as was defined in (7.5).

The Z boson is also associated with a weak interaction, called the neutral-current weak

interaction, which is mediated when Z bosons are emitted and absorbed. But this interaction

in the Standard Model is not responsible for any decays, because in the Standard Model

a fermion does not change type when emitting or absorbing a Z boson. That is, while

processes like u↔ u+Z or τ ↔ τ +Z occur in the Standard Model processes like µ↔ e+Z

or s ↔ d + Z are unobservably rare (given the present state of the experimental art), even

though not strictly forbidden by any conservation laws.

Hypothetical flavour-changing Z processes like these are called flavour-changing neutral

currents (or FCNCs) for historical reasons, and their observed absence is a strong piece of

evidence that supports the Standard Model over many of its alternatives. For instance if

the process s ↔ d + Z were possible then the charged meson K+ (consisting of a us quark

combination) could decay through the process

K+ = u s→ u d+ Z → u d+ (e+e−) = π+e+e− . (7.7)

If the amplitude for s↔ d+Z were comparable in size to the emission/absorption processes

s ↔ s + Z or d ↔ d + Z that do occur in the Standard Model, then it would be given by

g/ cos θW = e/(sin θW cos θW ) and so not be too different from the amplitude for emitting a

photon or a W boson. Consequently a process like (7.7) would happen for an appreciable

fraction of K+ decays. Since no such decays are seen it is a big success that the Standard

Model does not allow flavour-changing couplings for the Z.

An even stronger constraint on flavour-changing neutral currents comes from the neutral

K mesons, of which there are two: the K0 and K
0
, respectively consisting of d s and s d quark

combinations. If the process s d↔ Z were possible then because the Z is its own antiparticle

CPT symmetry41 implies that the process d s ↔ Z would also be allowed. The two of these

would then allow the transition K0 ↔ K
0

through the process

K0 = d s→ Z → s d = K
0
. (7.8)

The limits on the level at which this process can occur are particularly strong and so again

the absence of flavour-changing Z couplings is crucial to the Standard Model’s success.

41CPT symmetry is the combination of charge conjugation (C: swapping particles with antiparticles), parity

(P: reflecting r→ −r) and time-reversal (T: reflecting t→ −t). This combination of transformations is impor-

tant because it is a theorem that every Lorentz-invariant, unitary and local quantum field theory (including

in particular the Standard Model) is automatically also CPT invariant.
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7.2.3 The Higgs boson

The only elementary boson in the Standard Model that is not spin-1 is the Higgs boson,

which is spinless. The Higgs boson was the last Standard Model particle to be found, being

discovered only in 2013 with a mass mh = 125 GeV. The Higgs particle plays a special role

in the Standard Model because it couples to other Standard Model particles by an amount

proportional to the other particle’s mass. That is, in the Standard Model a Higgs particle

can be emitted by any other particle, though (just as for Z bosons) the emitting particle

never changes flavour when doing so: for example e ↔ e + h and t ↔ t + h can happen but

t ↔ c + h never happens. The amplitude for Higgs emission by a particle f is proportional

to mf/v where mf is the f particle mass and v ∼ G
−1/2
F = 246 GeV is a fundamental scale

in the Standard Model.

The reason the Higgs couples this way is the unusual way mass arises in the Standard

Model. It turns out that the field, H, associated with the Higgs has an unusual property:

it costs less energy to have the Higgs field be present than it does not to have it, so H is

nonzero in the vacuum (unlike the fields for other particles), regardless of whether or not

other sources are present. In the absence of the Higgs field particles in the Standard Model

would be massless, and acquire nonzero masses only because of their interactions with this

Higgs field in the vacuum (a process known as the Higgs mechanism).

7.3 Where the Standard Model fails

Although the Standard Model is an extremely successful synthesis of what we know about the

structure of Nature, it gets a few things wrong and so these notes close with a brief summary

of five of its known problems.

Neutrino Oscillations

The Standard Model predicts that neutrino masses vanish, and so cannot in itself describe

the evidence for neutrino oscillations. These oscillations can be described by applying one of

two minimal tweaks to the model, both of which amount to adding masses for neutrinos.

The simplest such tweak does not add any new degrees of freedom, and just gives masses

to the three Standard Model neutrino species. This tweaked model then predicts that overall

lepton number is not conserved and neutrinos are their own antiparticles (or, in the jargon,

neutrinos are Majorana in nature). If so this would predict the existence of neutrinoless

double-β decay, in which two β decays happen in immediate succession without the emission

of two associated neutrinos, (A,Z) → (A,Z + 2) + 2e−, because the two neutrinos can now

mutually annihilate. Although such decays have been sought, none has yet been seen.

Slightly more complicated variations on this theme add new particle states — so-called

right-handed neutrinos — that can pair off with the Standard Model neutrinos to give them

masses through their Higgs interactions, in much the same way as all other Standard Model
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fermion masses arise. Such constructions can, but need not, accommodate unbroken overall

lepton number, in which case neutrinoless double-β decay would never be seen. The required

right-handed neutrinos turn out not to couple at all to any of the spin-one particles and so

do not participate in any Standard Model interactions apart from the very feeble Higgs one

associated with their mass. Such particles consequently can interact even more weakly than

do the Standard Model neutrinos, and so are called sterile neutrinos. Although difficult to

detect, their presence can be sought in neutrino experiments (with no evidence for them yet

having arisen).

Dark Matter

Cosmologists have assembled a convincing picture of the universe around us and how it is

evolving, called the Hot Big Bang (or ΛCDM) model. This model — sometimes called the

Standard Model of Cosmology — very successfully describes many more observations than it

has parameters, and so works well even though it is over-determined. Among the observations

that are so well-described are measurements of the total average energy density of the universe,

regardless of whether or not this energy is directly visible, and these observations indicate

that 95% of what is out there is not contained in the Standard Model.

Some 25% of what is out there is called Cold Dark Matter or CDM, and seems to be some

kind of matter that gravitates as would a non-relativistic species of particle. There are many

separate lines of evidence pointing to CDM, including how galaxies rotate; the speed with

which galaxies move within clusters of galaxies; the amount of gravitational lensing caused

by clusters of galaxies and the properties of the relic Cosmic Microwave Background (CMB)

radiation, left over from an earlier epoch when electrons and nuclei first bound together into

atoms (after which the universe first became transparent).

We know the CDM cannot be ordinary matter (as described in the Standard Model)

because the total amount of this can also be inferred from the rates with which nuclei were

formed in in the early universe, as well as the measured cosmic speed of sound as inferred

from the properties of the CMB. Both only allow about 5% of the total energy density to be

ordinary matter, leaving the rest unexplained by any Standard Model physics.

Notice that ‘Standard Model physics’ here can also be taken to include using General Rel-

ativity to describe gravity, since the evidence for CDM in cosmology comes entirely from the

way visible matter responds to the CDM’s gravitational field. This evidence would therefore

need re-examining should another theory of gravity be found to provide a better description.

Attempts to tweak the Standard Model to explain CDM therefore group roughly into two

types: modify gravity or invent a new very weakly interacting type of particle (perhaps the

sterile neutrino mentioned above?).
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Dark Energy

Earlier sections alluded to the idea that the vacuum energy density has been detected in

cosmology, where it is called the Dark Energy and turns out to make up the remaining 70%

of the cosmic energy budget. The nature of Dark Energy is also largely unknown, though

it is known to be different from Dark Matter (and ordinary matter) because it causes the

universal expansion to accelerate (which Dark Matter and ordinary matter cannot do).

Dark Energy might be consistent with the Standard Model if it is just the vacuum energy,

but the problem in this case is that it is possible to compute in the Standard Model how large

the vacuum energy density should be and what is observed is many orders of magnitude too

small. It is as if something unknown is making the vacuum energy not gravitate as efficiently

as we think it should.

Primordial Fluctuations

The ΛCDM description of cosmology is very successful, but only if the universe is started off in

a very particular and unusual initial state. This is because the CMB is seen to have an almost

uniform temperature in all directions in the sky, even though in the standard cosmology there

has not yet been enough time in the universe’s history to have this temperature equilibrate

and so everywhere be the same.

Furthermore, small variations in the temperature have also been measured (at a level of

one part in 105) and these show correlations across the sky over regions that are too large to

have a causal explanation in the time available so far since the initial Big Bang.

In the Standard Model both of these would have to be accepted as a very unusual, con-

trived and unexplained initial condition for the initial universe. More likely the extrapolations

into the past are incorrect because they miss some sort of new physics, which dynamically

can explain the Hot Big Bang’s peculiar initial conditions.

Baryogenesis

Another peculiar initial condition that ΛCDM cosmology requires is that the initial universe

must for some reason have an incredibly tiny (but nonzero) excess of baryons over antibaryons.

This is because baryon number is conserved (at least to a very good approximation, given

the stability of the proton), and the Universe now seems to contain protons and neutrons

but very few of their antiparticles. The observed number of baryons (protons and neutrons)

minus antibaryons turns out to evolve in an expanding Universe the same way the number

of photons does, and the present rarity of baryons relative to CMB photons implies ηb =

(nB − nB)/nγ ∼ 10−10.

Because this ratio is time-independent it was also small in the remote past when every-

thing was much hotter. But for high enough temperatures the baryons are relativistic and

so nB and nB are both comparable to nγ . This means that there must initially have been an
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extremely tiny difference in the abundance of baryons and antibaryons, in order to have the

earlier antibaryons annihilate with baryons as the Universe cooled, while still leaving just a

few baryons left over. Why this should have happened is a puzzle.

If baryon number eventually proves not to be exactly conserved then it may eventually

be possible to understand how a world with initially zero baryon number might dynamically

evolve to end up with a net baryon number, and although no compelling picture for this yet

exists any such an understanding certainly requires ingredients that go beyond the Standard

Model.

At this writing it is not yet known how any of these five problems may ultimately be

resolved, nor how the Standard Model’s flavour and generation puzzles will eventually be

understood. But because these represent the very few places where there is real evidence that

the Standard Model’s predictions fail they provide the starting points for most explorations

of what might lie beyond.
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Units

This appendix collects together a list of useful conversions between conventional units and

fundamental units (with energies measured in eV).

1. Length and Time

1/Mp (= G/~c)
1
2 = 8.1897× 10−29 c2/eV = 1.6161× 10−35 mc/~

1/mp = 1.0658× 10−9 c2/eV = 2.1031× 10−16 mc/~
1 fm = 5.06773× 10−9 ~c/eV = 10−15 m

1/me = 1.957× 10−6 c2/eV = 3.8616× 10−13 mc/~
a0 (= 1/αme) = 2.6818× 10−4 c2/eV = 5.2918× 10−11 mc/~
1 A = 5.06773× 10−4 ~c/eV = 10−10 m

1 nm = 5.06773× 10−3 ~c/eV = 10−9 m

1 µm = 5.06773 ~c/eV = 10−6 m

1 cm = 5.06773× 104 ~c/eV = 0.01 m

1 m = 5.06773× 106 ~c/eV = 1 m

1 km = 5.06773× 109 ~c/eV = 103 m

1 sec = 1.51927× 1015 ~/eV = 2.99792× 108 m/c

1 min = 9.11562× 1016 ~/eV = 1.79875× 1010 m/c

1 hr = 5.46937× 1018 ~/eV = 1.07925× 1012 m/c

1 day = 1.31265× 1020 ~/eV = 2.59020× 1013 m/c

1 yr = 4.795× 1022 ~/eV = 9.461× 1015 m/c

1 pc = 1.564× 1023 ~c/eV = 3.08568× 1016 m

1 kpc = 1.564× 1026 ~c/eV = 3.08568× 1019 m

1 Mpc = 1.564× 1029 ~c/eV = 3.08568× 1022 m
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2. Microscopic Energy and Mass

1 eV = 10−9 GeV = 5.06773× 106 ~c/m
1 keV = 10−6 GeV = 5.06773× 109 ~c/m
1 MeV = 10−3 GeV = 5.06773× 1012 ~c/m
1 GeV = 1 GeV = 5.06773× 1015 ~c/m
αme = 3.7289× 10−6 GeV/c2 = 1.8897× 1010 ~/mc
me = 5.10999× 10−4 GeV/c2 = 2.5896× 1012 ~/mc

= 9.10939× 10−28 g

mp = 0.938272 GeV/c2 = 4.75491× 1015 ~/mc
= 1.67262× 10−24 g

= 1.83615× 103 me

Mp = (~c/G)
1
2 = 1.22105× 1019 GeV/c2 = 6.1879× 1034 ~/mc

= 2.17671× 10−5 g

= 1.30138× 1019 mp

M̂p = (~c/8πG)
1
2 = 2.43564× 1018 GeV/c2 = 1.23431× 1034 ~/mc

= 4.34191× 10−6 g

= 2.59588× 1018 mp
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3. Ordinary Units Expressed Microscopically

1 g = 5.60959× 1023 GeV/c2 = 2.84279× 1039 ~/mc
1 kg = 5.60959× 1026 GeV/c2 = 2.84279× 1042 ~/mc
1 Joule = 1 kg m2/s2 = 6.24151× 109 GeV = 3.16303× 1025 ~c/m
1 erg = 1 g cm2/s2 = 6.24151× 102 GeV = 3.16303× 1018 ~c/m

= 10−7 J

1 Newton = 1 kg m/s2 = 1.23162× 10−6 GeV2/~c = 3.16303× 1025 ~c/m2

= 1.23162× 1012 eV2/~c
1 dyne = 1 g cm/s2 = 1.23162× 10−11 GeV2/~c = 3.16303× 1020 ~c/m2

= 10−5 N = 1.23162× 107 eV2/~c
1 Watt = 1 J/s = 4.10824× 10−15 GeV2/~ = 1.05507× 1017 ~c2/m2

= 4.10824× 103 eV2/~
1 Hz = 1/s = 6.5821× 10−25 GeV/~ = 3.3356× 10−9 c/m

1 Kelvin = 8.61742× 10−14 GeV/kB = 4.36707× 102 ~c/mkB
= 8.61742× 10−5 eV/kB = 1/11604.4 eV/kB

4. Electromagnetic Units

1 Coulomb = 6.24151× 1018 e

1 Volt = 1 J/C = 1 eV/e = 5.06773× 106 ~c/me
= 10−9 GeV/e

1 Farad = 1 C/V = 6.24151× 1018 e2/eV = 1.23162× 1012 me2/~c
1 Ampere = 1 C/s = 4.10824× 103 eVe/~ = 2.08194× 1010 ec/m

1 Ohm = 1 V/A = 2.43413× 10−4 ~/e2

1 Mho = 1/Ohm = 4.10824× 103 e2/~
1 Weber = 1 V s = 1.51927× 1015 ~/e
1 Tesla = 1 Weber/m2 = 59.1572 eV2/~ec2 = 1.51927× 1015 ~/em2

1 Gauss = 10−4 Tesla = 5.91572× 10−3 eV2/~ec2 = 1.51927× 1011 ~/em2

φ0 = 2π~/e = 6.28319 ~/e = 4.13567× 10−15 Weber

= 1/(2.418× 1014 ) Weber

ε0 = 8.854× 10−12 F/m = 10.905 e2/~c
µ0 = 4π × 10−7 N/A2 = 0.0917012 ~/ce2 ε0µ0 = 1/c2

α = e2/(4πε0~c) = 7.2974× 10−3 1/α = 137.036
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Here is a selection of undergraduate textbooks on subatomic physics.

1. David Griffiths, Introduction to Elementary Particles, Wiley-VCH, 2010.

2. Ernest Henley and Alejandro Garcia, Subatomic Physics, Wiley-VCH, 2010.

Other useful references (to be completed...)
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