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1. Elements of differential geometry

The essence of general relativity is that gravity is described by the geometry of

spacetime, and so this first section pauses to summarize some of the mathematics

used to describe non-Euclidean geometries. Before doing so, a brief reminder about

Euclidean geometry.

Euclidean geometry

Euclid founded his study of plane (i.e. 2-dimensional) geometry on the following five

axioms:

1. Any two points can be joined by a straight line.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment as

radius and one endpoint as center.

4. All right angles are congruent.

5. Parallel postulate: If two lines intersect a third in such a way that the sum of

the inner angles on one side is less than two right angles, then the two lines

inevitably must intersect each other on that side if extended far enough.

All of these seem to be obviously true, given the standard notions of what a point,

straight line, circle, right angle and congruence mean. Among the consequences of

these axioms are many familiar statements like: the ratio of a circle’s circumference,

C, to its radius, r, is a universal number: C/r = 2π; the ratio of a circle’s area,

A, to the square of its radius is also a universal number A/r2 = π; the sum of the

interior angles of a triangle sum to 180 degrees, and so on. We are used to taking
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these consequences for granted when understanding the relations amongst objects in

physical space.

The rest of this section is devoted to describing simple situations where they

do not all apply. Once this is done, it becomes an experimental issue whether or

not the Euclidean axioms are properties of the space in which we find ourselves

situated. The goal of this section is to develop the tools for this, by setting up a

precise characterization of these new geometries, and the ways they can differ from

Euclidean space.

1.1 Geometry of surfaces

The non-Euclidean geometries that are easiest to visualize are those of two-dimensional

surfaces, such as planes, spheres or hyperbolae. These are easy to picture since we

can envision these surfaces embedded in 3-dimensional space.

To this end consider the 3-dimensional vector space, IR3, whose vectors, r, de-

scribe the distance from an (arbitrary) origin, O, to the various points in space. It

is convenient to describe such a vector by its components referred to a ‘rectangular’

basis of unit vectors, {ex, ey, ez}, oriented in a fixed but arbitrary direction, so that

r = x ex + y ey + z ez

= xi ei , (1.1)

where the three coordinates, (x, y, z), each can run from −∞ to ∞.

Some important notation is introduced in the second equality of eq. (1.1), which

writes x1 = x, x2 = y, x3 = z, and e1 = ex, e2 = ey and e3 = ez. There is

also an implied sum from 1 to 3 over the repeated index ‘i’, or any other repeated

index taken from the middle of the Latin alphabet for that matter. (Indices taken

from the beginning of the Latin alphabet are encountered later, where they run over

a, b = 1, 2; and indices from the Greek alphabet also come up, and will be summed

from µ, ν = 0, 1, 2, 3.) This rule for summing over repeated indices is called the

Einstein summation convention, and in terms of it the dot product of two vectors

with components a = ai ei and b = bi ei can be written a · b = δij a
ibj, where the

Kronecker-δ symbol has the property that δij = 1 if i = j and δij = 0 otherwise.

We take the distance, s(r1, r2), between any two points, r1 and r2, in IR3 is given

in terms of their rectangular coordinates by the usual Pythagorean rule

s(r1, r2) = |r1 − r2| =
√

(r1 − r2) · (r1 − r2)

=

√
δij(xi1 − xi2)(x

j
1 − xj2) (1.2)

=
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ,
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where the middle line again uses the Einstein summation convention. This definition

has the important property that it does not depend at all on the origin, O, and

orientation of the axes, ei = {ex, ey, ez}, that are required to define the coordinates

xi = {x, y, z} describing r1 and r2.

Curves in Space

Before describing two-dimensional surfaces in IR3, it is worth briefly digressing to

describe the simpler case of one-dimensional curves. A curve in IR3 is defined by the

locus of points that are swept out as a single parameter varies:

r(u) = x(u) ex + y(u) ey + z(u) ez

= xi(u) ei . (1.3)

Here the parameter u labels the points on the curve and our interest is usually in

component functions xi(u) = {x(u), y(u), z(u)} that are multiply differentiable with

respect to u.

For example, straight lines in this picture are described by linear functions,

r(u) = a + bu, where a and b are arbitrary constant vectors. When the origin, O,

is not on the straight line (i.e. a ̸= 0) then the origin together with the line define

a plane, which is spanned by the vectors a and b. More generally, a straight line is

also given by r(u) = a+b f(u), for any function f(u) that satisfies df/du ̸= 0, since

this simply represents a relabelling of the points along the curve.

By contrast, a curve of the form r(u) = c + a cosu + b sinu traces out a more

complicated closed shape, which becomes an ellipse if a and b are perpendicular to

one another: a · b = axbx + ayby + azbz = 0. In this case c specifies the position of

the ellipse’s centre, and its two semi-major axes are

a = |a| =
√
a · a =

√
a2x + a2y + a2z =

√
δij aiaj

b = |b| =
√
b · b =

√
b2x + b2y + b2z =

√
δij bibj . (1.4)

This ellipse is inscribed on the plane spanned by the vectors a and b, and degenerates

into a circle in the special case that a and b have the same length: a = b.

The family of vectors that lie tangent to a curve r(u) is found by differentiation,

t(u) =
dr

du
=

dx

du
ex +

dy

du
ey +

dz

du
ez =

dxi

du
ei , (1.5)

and a one-parameter family of unit vectors tangent to the curve is found by normal-

izing

et(u) =
t(u)

|t(u)|
, (1.6)
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so et · et = 1 for all u. For a straight line, r(u) = a+ bf(u), the tangent

t(u) =
dr

du
= b

df

du
, (1.7)

has a constant direction, but a u-dependent length that depends on the precise

function f(u) used to parametrize the curve. But for any parametrization the unit

tangent vector for a straight line is a constant vector: et = b/|b|. The basis vectors,
ei = {ex, ey, ez} may themselves be regarded as unit tangent vectors to the curves

defining the rectangular coordinate axes themselves: that is, ex is the unit tangent

to the curves along which y and z are constant, and similarly for ey and ez.

The tangent to the elliptical curve centered at the origin, r(u) = a cosu+b sinu

is given by t(u) = −a sinu + b cosu, whose direction changes continuously with u,

with norm |t(u)| =
√
a2 sin2 u+ b2 cos2 u (and we use a ·b = 0). In this case the unit

tangent is et(u) = (−a sinu+b cosu)/|t(u)|. Notice that the inner product between
the radius vector and the tangent is t(u) · r(u) = (b2 − a2) sinu cosu, which vanishes

for all u in the case of a circle, where b = a.

Distances along curves

Measures of length and angle play a central role in geometry, and since angle (in

radians) is defined in terms of ratios of lengths, the basic problem is how to measure

length within curved surfaces. This section describes a first step in this direction:

measuring length along curves.

The starting point is eq. (1.2), telling us how distances are measured in IR3. We

apply this to find the distance, ds, between two points on a curve, r(u) and r(u+du),

that are infinitesimally far from one another.

ds = |r(u+ du)− r(u)| =
∣∣∣∣drdu

∣∣∣∣ du =

√
dr

du
· dr
du

du =

√
δij

dxi

du

dxj

du
du , (1.8)

The arc-length along a finite-sized interval of the curve is then obtained by integration

s(u1, u2) =

∫ u2

u1

du

√
δij

dxi

du

dxj

du
. (1.9)

For example, for the circle r(u) = a(ex cosu+ey sinu) we have dr/du = a(−ex sinu+

ey cosu) and so ds = a du, giving s(u1, u2) = a(u2 − u1).

Arc-length provides a particularly physical way to parameterize a curve. Once

this is done the tangent vector to a curve is automatically a unit vector. To see this

consider a generic curve, r(u), defined using a generic parameter, u. The tangent

vector computed using arc-length as a parameter is

dr

ds
=

dr

du

du

ds
=

t

|t|
= et , (1.10)

where t = dr/du and eq. (1.8) is used to evaluate du/ds = 1/|t|.
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Curvature of curves

Figure 1: The Frenet-Serret basis vectors

and the osculating plane (Wikipedia).

In addition to the unit tangent, et =

dr/ds, there is also a natural family of

orthonormal basis vectors that can be

defined everywhere along a curve. A unit

vector, n, that is always perpendicular

to et is found as above by differentia-

tion with respect to arc length: n(s) =

det/ds. The fact that this definition gives

a vector normal to et can be seen by dif-

ferentiating the condition et · et = 1, as

follows:

et · n = et ·
det
ds

=
1

2

d

ds

(
et · et

)
= 0 .

(1.11)

The plane spanned by t(s) and n(s) at

each u is called the osculating plane for

the curve r(s). The vectors

et(s) , en(s) =
n(s)

|n(s)|
and the cross product eb(s) = et(s)× en(s) , (1.12)

give an orthonormal triad of vectors at each point along the curve, one of which is

always tangent.

Because these vectors form a basis, their derivative along the curve can be ex-

panded in terms of them, leading to:

det
ds

= κ en

den
ds

= −κ et + τ eb (1.13)

deb
ds

= − τ en .

These expressions are known as the Frenet-Serret formulae, and the basis et, en

and eb is called the Frenet-Serret basis. The coefficients in this expression give a

differential measure of the curvature, κ(s), and torsion, τ(s), at each point of the

curve r(s).

Exercise 1: Use the definitions of et, en and eb to prove that only

two parameters, κ and τ , are required to label their derivatives as in

eqs. (1.13).
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Notice that the definitions show that κ = τ = 0 for a straight line. Conversely,

if κ and τ vanish for all u, then eqs. (1.13) can be integrated twice to show that the

corresponding curve, r(u), is a straight line. Similarly, if τ should vanish for all u

(with κ(u) arbitrary), then the curve must be confined to the plane that is normal

to the constant vector eb.

Exercise 2: Show that the curvature and torsion of the curve r(s) =

a[ex cos(s/a) + ey sin(s/a)] (a circle of radius a) are constant, with κ =

1/a and τ = 0. Repeat for the helical curve r(u) = a(ex cosu+ey sinu)+

ℓ u ez, keeping in mind that the arc-length in this case satisfies s =

u
√
a2 + ℓ2.

Surfaces in IR3

A two-dimensional surface embedded in IR3 is similarly defined by the locus of points

swept out by a two-parameter family,

r(u, v) = xi(u, v) ei = x(u, v) ex + y(u, v) ey + z(u, v) ez . (1.14)

Alternatively, it is sometimes more convenient to define the surface implicitly, rather

than explicitly, such as through an algebraic condition of the form f(r) = 0. In this

case the expression r(u, v) can be regarded as being obtained as the solution to this

condition. We next provide explicit representations for some simple surfaces, many

of which are used as illustrative examples in later sections.

Planar surfaces:

A plane passing through the origin and spanned by two linearly-independent

vectors a and b is swept out by a surface whose equation has the form

r(u, v) = au+ b v , (1.15)

with −∞ < u, v < ∞. Straight lines can be inscribed inside such a plane, such as

r(u) = au or r(v) = b v or r(u) = (a+ b)u, as can circles. As is easily verified, the

geometry of these circles and straight lines defined for any such a plane satisfies the

axioms of Euclidean geometry.

Planes can equally well be specified through a constraint f(r) = 0. For example,

the plane r(u, v) = ex u+ ey v defined by the x- and y-axes is equally well described

as the general solution to the condition z = 0, and so f(r) := z = ez · r.

Cylindrical surfaces:

A slightly more interesting example is provided by a cylindrical surface. A rep-

resentation for a cylinder concentric with the z-axis and having an elliptical profile
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aligned with the x- and y-axes would be

r(u, v) = ex a cosu+ ey b sinu+ ez v , (1.16)

where 0 ≤ u < 2π and −∞ < v < ∞. The constants a and b define the semi-major

axes of the elliptical cross sections taken at fixed z. This elliptical cylinder could

equally well be specified by the condition f(r) := (x2/a2) + (y2/b2) − 1 = 0. It is

possible to inscribe straight lines on such a cylinder, but only if they are parallel

with the z-axis: for instance r(v) = ex a cosu⋆ + ey b sinu⋆ + ez v, where u⋆ is any

particular, fixed, value of u.

Spherical surfaces:

The surface of a sphere provides an example of a truly curved surface (in a

sense explained in detail below). A representative sphere centered at the origin with

radius a can be represented as the surface f(r) := x2+ y2+ z2− a2 = 0, or explicitly

parameterized using spherical polar coordinates (u = θ and v = ϕ) by:

r(u, v) = ex a sinu cos v + ey a sinu sin v + ez a cosu , (1.17)

with 0 < u < π and 0 ≤ v < 2π. It is intuitively clear that no straight lines can be

inscribed on a sphere.

Inscribed Curves

Given a surface r(u, v) = xi(u, v) ei in IR3, an inscribed curve is a curve, x(w) =

xi(w) ei, in IR3 whose points also lie within the surface. For instance if the surface

is defined by a condition of the form f(r) = 0, then an inscribed curve satisfies

f(x(w)) = 0 for all values of its parameter, w. An alternative way of describ-

ing an inscribed curve is to specify the curve parameters, {u(w), v(w)}, that trace

out the points along the curve: r((u(w), v(w)) = x(w). For instance, the circle

x(w) = a(ex cosw + ey sinw) is inscribed in the sphere r(u, v) = a(ex sinu cos v +

ey sinu sin v+ez cosu), and can be described by the parameter values {u(w), v(w)} =

{π
2
, w}.
The tangent to an inscribed curve can therefore be written either in terms of

derivatives of x(w) or r(u, v),

t =
dx

dw
=

d

dw
r(u(w), v(w)) =

∂r

∂u

du

dw
+
∂r

∂v

dv

dw
. (1.18)

It is useful to use the Einstein summation convention to combine the above expres-

sions into the more compact notation

t =
∂r

∂ua
dua

dw
=
∂xi

∂ua
dua

dw
ei , (1.19)
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where a = 1, 2 with u1 = u and u2 = v.

A particularly simple family of inscribed curves is obtained by holding fixed either

one of the two parameters, u or v, that define the surface itself. Consider for instance

a surface defined by the locus of points swept out by a particular parameterization

r(u, v). A family of curves lying in this surface, parameterized by u, is found by

setting v to some fixed value v = v⋆: r(u) = r(u, v⋆). Different values of v⋆ produce

different members of this family of curves. A second family of curves lying within

r(u, v) is similarly obtained by fixing u at a sequence of values, u = u⋆, and letting

the variation of v parameterize the curves: r(v) = r(u⋆, v). Different choices for u⋆

then define different members of this family of curves.

It is possible to use the tangents of inscribed curves to define a pair of linearly

independent tangent vectors to any surface that are not necessarily orthogonal. These

are given above simply by computing the tangent vector for the inscribed curves along

which only one of either u or v varies. The tangent to the curves along which only

u varies is given by

t(u) =
∂r

∂u
(u, v⋆) , (1.20)

and a family of unit vectors tangent to these curves are then given by eu = t(u)/|t(u)|.
The tangents to the curves along which only v varies are similarly given by

t̂(v) =
∂r

∂v
(u⋆, v) , (1.21)

and the unit tangent becomes ev = t̂(v)/|t̂(v)|.
Again using the notation ua = {u1, u2} = {u, v}, these may be written

ta =
∂r

∂ua
=
∂xi

∂ua
ei , (1.22)

where t1 = t while t2 = t̂. The span of the normalized vectors ea(u, v) define the

tangent plane to the surface at the point labelled by (u, v).

A normal vector defined everywhere on the surface r(u, v) may then be con-

structed using the two families of tangent vectors defined above, eu and ev, by taking

the cross product: en(u, v) = eu(u, v)× ev(u, v). This defines a basis of vectors that

is adapted to the surface at every point.

Notice that if the surface is specified by a constraint, f(r) = 0, then an alternative

way to identify this normal direction is by taking the gradient of f :

n = ∇f = ex

(
∂f

∂x

)
+ ey

(
∂f

∂y

)
+ ez

(
∂f

∂z

)
, (1.23)

because the following argument shows this vector is orthogonal to the tangent vectors.

The argument relies on the observation that if r(u, v) is a parametrization of the
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surface defined by f(r) = 0, then what this means is f(r(u, v)) = 0 for all u and v.

Differentiating this last expression with respect to u or v, and using the chain rule,

then implies ∇f · (∂r/∂u) = ∇f · (∂r/∂u) = 0, or

ta · ∇f =
∂r

∂ua
· ∇f =

∂xi

∂ua
∂if =

∂x

∂ua
∂f

∂x
+

∂y

∂ua
∂f

∂y
+

∂z

∂ua
∂f

∂z
= 0 , (1.24)

which states that ∇f is perpendicular to both the tangent vectors, ta = {t, t̂}.
Eq. (1.24) introduces the notation

∂i :=
∂

∂xi
, (1.25)

and (for practice) is rewritten several ways to emphasize the Einstein summation

convention.

Distances along surfaces

Distances along a surface are similarly measured along a curve inscribed in this

surface, and in general the distance between two points depends on the details of

which curve is used to link these points, just as is also true for points in IR3.

In IR3 when one speaks of the distance between two points without referring to

the curve involved, what is meant is the distance along the straight line that connects

the two points. Since a straight line cannot in general be inscribed into a generic

curved surface it is clear that the same definition cannot generically be used to define

a distance between points in a generic surface.

An exception to this is when the two points of interest are infinitesimally sepa-

rated on the surface: r(u, v) and r(u+du, v+dv), since in this case the straight-line

curve that connects them is arbitrarily close to an inscribed arc lying on the surface.

In this case the distance between the points becomes

ds = |r(u, v)− r(u+ du, v + dv)| =
∣∣∣∣ ∂r∂ua dua

∣∣∣∣ =
√
δij

∂xi

∂ua
∂xj

∂ub
dua dub . (1.26)

The last version of this equation, using the Einstein summation convention, is most

commonly written without the ugly square root:

ds2 = γab(u, v) du
adub , (1.27)

where the right-hand side defines what was historically called the surface’s first fun-

damental quadratic form — or its induced metric in more modern parlance — with

γab = δij
∂xi

∂ua
∂xj

∂ub
. (1.28)

A central point of the geometry of surfaces is that any intrinsic property of the

surface — that is, involving only distances and angles associated to inscribed curves

on the surface — can be expressed in terms of γab(u, v) and its derivatives.
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Exercise 3: Show that the induced metric for the plane given by r(u, v) =

ex u+ ey v in IR3 is

γab = δab =

(
1 0

0 1

)
, (1.29)

where δab is the Kronecker δ-function, defined just above eq. (1.2). Repeat

the calculation for the cylinder r(u, v) = a(ex cosu + ey sinu) + ezv to

show that

γab =

(
γuu γuv

γvu γvv

)
=

(
a2 0

0 1

)
. (1.30)

Finally repeat for the sphere r(u, v) = a(ex sinu cos v + ey sinu sin v +

ez cosu), to show

γab =

(
γuu γuv

γvu γvv

)
=

(
a2 0

0 a2 sin2 u

)
. (1.31)

The arc-length along any inscribed curve running between points A and B may

now be found by integrating eqs. (1.27) in the form:

s(A,B) =

∫ wB

wA

dw
ds

dw
=

∫ wB

wA

dw

√
γab(w)

dua

dw

dub

dw
, (1.32)

where γab(w) = γab(u(w), v(w)).

Angles between inscribed curves

The angle, θ, between two inscribed curves that intersect at a point P can also be

computed using γab evaluated at P .

To see this suppose the curves x1(s) and x2(s) inscribed in the surface r(u, v)

intersect at the point labelled by (u, v) = (u⋆, v⋆). The angle between these curves

may be defined as the angle between their tangent vectors, evaluated at P :

t1 =
dx1

ds
=

∂r

∂ua
dua1
ds

, (1.33)

where ua1(s) = {u1(s), v1(s)} describes the parameters which describe the locus of

points on the surface through which the inscribed curve x1(s) = r(u1(s), v1(s)) passes.

An identical expression also holds for t2 = dx2/ds and u
a
2(s) = {u2(s), v2(s)}. Clearly

the norm of the tangent vector evaluated at P is therefore given by

|t1|2 =
dx1

ds
· dx1

ds
=

∂r

∂ua
∂r

∂ub
dua1
ds

dub1
ds

= γab(u⋆, v⋆)
dua1
ds

dub1
ds

, (1.34)
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and similarly for |t2|2.
Using a · b = |a||b| cos θ, where θ is the angle between a and b, we have

cos θ =
t1 · t2
|t1||t2|

=
1

|t1||t2|

(
∂r

∂ua
· ∂r
∂ub

)
dua1
ds

dub2
ds

=
γab(u⋆, u⋆)

|t1||t2|
dua1
ds

dub2
ds

. (1.35)

Combining eq. (1.35) with eq. (1.34) applied to both |t1| and |t2| then shows that

θ can be determined purely in terms of γab(u⋆, v⋆) and the quantities dua1/ds and

dua2/ds, all of which would be accessible to an observer trapped to live on the surface.

Geodesics

Although straight lines cannot in general be defined for curves inscribed on a general

surface in IR3, there is a natural definition of what is the straightest line possible

given the surface’s curvature. This definition starts from the observation that a

straight line connecting two points in IR3 gives the curve along which the distance

between these points is minimized.

This suggests identifying those curves on a given surface that minimize the dis-

tance between points, and letting these stand in for straight lines from the point of

view of the intrinsic geometry of the surface. Such curves are called geodesics, and

are readily computed once the induced metric, γab(u, v), is everywhere known. The

explicit calculation of these curves is left to a subsequent section.

Curvature of surfaces

We have seen that it is always possible to define the curvature, κ(s), for a curve,

x(s), by using the Frenet-Serret basis for x(s) as above, whose derivatives along the

curve satisfy the Frenet-Serret formulae, eqs. (1.13). In particular, the first formula,

det/ds = κ(s) en, gives κ in terms of the magnitude, |det/ds|, of the rate of change

of the curve’s unit tangent. However, because the en direction need not be specially

correlated with the tangent or normal to the surface in which x(s) is inscribed, this

definition of curvature need have little to do with the properties of the surface.

To obtain a measure of the surface’s curvature it is therefore useful to focus on a

specific family of inscribed curves, x(s), defined by the intersection of the surface with

any of the planes that contain the surface’s normal vector, n (see fig. 2). Because

they are defined by construction to lie within a plane, such inscribed curves have

vanishing torsion, τ(s) = 0. Furthermore, because the osculation plane spanned by

et and en = det/ds contains n, and because the surface’s normal, n, is necessarily

orthogonal to the tangent of any inscribed curve, it follows that det/ds must be

parallel (or antiparallel) to the normal direction, n.

The curvature, κ(s), defined using the Frenet-Serret formulae, eqs. (1.13), for

such a curve is called a normal curvature, κn(s), of the surface at the point x(s).
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Figure 2: Illustration of several planes whose intersection with a surface define the curves

whose curvature is a normal curvature (Wikipedia).

These are not unique, since they depend on the direction of the plane containing n

that is used in the construction. The surface’s principal curvatures, κ1 and κ2, are

defined at each point as the maximum and minimum values taken by the normal

curvatures as the direction of this plane is varied.

The surface’s mean curvature, H, and Gaussian curvature, K, are then defined

as the arithmetic and geometric means of κ1 and κ2:

H =
1

2
(κ1 + κ2) and K = κ1κ2 . (1.36)

Although it is not clear from its definition, Gauss’ Theorema Egregium states that

the Gaussian curvature can be determined purely in terms of lengths and angles

measured within the surface — that is, in terms of the induced metric γab and its

derivatives — and so is a property intrinsic to the surface itself (as opposed to an

extrinsic property that depends on how the surface is embedded into the external

IR3).

Exercise 4: Show that the principal curvatures for the plane r(u, v) =

ex u+ey v are κ1 = κ2 = 0. Repeat for the cylinder r(u, v) = a(ex cosu+

ey sinu) + ezv to show they are κ1 = 0 and κ2 = 1/a. Finally, show that

for the sphere r(u, v) = a(ex sinu cos v + ey sinu sin v + ez cosu), the

principal curvatures are equal and positive: κ1 = κ2 = 1/a.
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Changing the parametrization

Notice that the discussion so far did not need to provide any details about the

kinds of parameters, (u, v), used to specify the surface. Before generalizing the

above discussion to more general spaces, it is worth first digressing briefly about how

quantities change as the coordinates used to describe them change.

Contravariant vectors

When describing a surface, r(u, v), we saw that the inscribed curves along which

the parameters ua = {u, v} vary could be used to provide a natural basis, ta =

∂r/∂ua, for the surface’s tangent plane. Because this forms a basis, it can be used

to define the components of any vector at all that is tangent to the surface:

c = ca ta = cu tu + cv tv , (1.37)

Suppose we now change our parametrization of the surface, defining new pa-

rameters ua
′
(u, v) = {u′(u, v), v′(u, v)} that provide equally good labels for points

on the surface: r(u, v) = r(u′(u, v), v′(u, v)). Provided that the new parameters are

really independent of one another (more about this below), the tangents to these

new parameter curves define a new basis, ta′ = ∂r/∂ua
′
, of the same tangent plane,

in terms of which the same vector c has the expansion

c = ca
′
ta′ = cu

′
tu′ + cv

′
tv′ . (1.38)

To obtain the relation between the coefficients ca
′
and ca we relate the two sets

of tangent bases to one another, using the chain rule:

ta =
∂r

∂ua
=
∂ua

′

∂ua
∂r

∂ua′
=
∂ua

′

∂ua
ta′ , (1.39)

and so

c = ca ta = ca
∂ua

′

∂ua
ta′ (1.40)

which implies

ca
′
= ca

∂ua
′

∂ua
. (1.41)

Components ca that transform in this way under a change of parametrization are

called contravariant components, and c would be called a contravariant vector.

An earlier-mentioned proviso to this discussion was the requirement that the new

coordinates be independent of one another and so provide a faithful parametrization

of the surface. Eq. (1.39) provides a local criterion for when this is so, since it is

equivalent to asking when the new pair of tangent vectors are linearly independent of
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one another (as is required if they are to form a basis). Since eq. (1.39) can equally

well be written in matrix notation as

t = J t′ , (1.42)

with

t =

(
tu

tv

)
, t′ =

(
tu′

tv′

)
and J =

(
∂u′/∂u ∂v′/∂u

∂u′/∂v ∂v′/∂v

)
, (1.43)

the new basis is linearly independent if and only if the matrix J is invertible, or

equivalently if its determinant, J = det J — the Jacobian of the transformation

(u, v) → (u′, v′) — is nonzero: J ̸= 0.

Covariant Vectors

There is an alternative way of using parameters on a surface to describe vectors

that are tangent to the surface. Instead of defining a set of basis vectors that are

tangent to lines along which one parameter varies, ta = ∂r/∂ua = (∂xi/∂ua) ei, one

can instead define a basis of vectors, sa, using the normals to the surfaces along

which one of the parameters is held constant. That is we ask the basis sa to satisfy

the defining condition

sa · tb = δab , (1.44)

where, as before, the Kronecker symbol satisfies δab = 1 if a = b and vanishes

otherwise. Such a basis is often called a basis dual to the basis of tangent vectors.

Although these two definitions give the same bases

Figure 3: An example where

normals to coordinate surfaces

(small arrows) are not equiva-

lent to tangents to coordinate

directions (lines).

in many of the simple coordinates commonly used

(like rectangular or polar coordinates), they need not

always do so. An example of an ‘oblique’ set of coor-

dinates, where these two definitions would not agree,

is given by the parameters on a plane defined by

r(u, v) = au + b v, when the vectors a and b are

not orthogonal to one another. A cartoon of these

coordinates is given in figure 3. In general curvi-

linear coordinates both bases are possible, and most

importantly, transform differently when the surface

is reparameterized (u, v) → (u′v′).

Since the sa form a basis for the surface’s tangent

plane, a general vector, c, tangent to the surface can be expanded

c = cb s
b , (1.45)
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and the coefficients in this expansion are given by

c · ta = cb s
b · ta = cb δ

b
a = ca . (1.46)

These components change if the parameters used to label the surface are changed,

(u, v) → (u′(u, v), v′(u, v)), but in a different way than did the components ca arising

when c is expanded directly in terms of the ta’s. Using eq. (1.39) with eq. (1.46)

gives

ca′ = c · ta′ =
∂ub

∂ua′
c · tb =

∂ub

∂ua′
cb , (1.47)

where we use that the partial derivatives ∂ub/∂ua
′
make up the elements of the matrix

J−1 that is inverse to the matrix J whose elements are ∂ua
′
/∂ub. Equivalently, using

the Einstein summation convention we use the identity

∂ub

∂ua′
∂ua

′

∂uc
= δbc and its partner

∂ub
′

∂ua
∂ua

∂uc′
= δb

′
c′ . (1.48)

Coefficients that transform as in eq. (1.47) are said to transform as covariant com-

ponents.

Tensors

Since the first fundamental form, γab, is so central to the geometry on a surface,

it is worth knowing how it transforms when the parameters labelling the surface

are changed. Keeping in mind its definition in terms of the distance, ds, along the

surface, eq. (1.27), and recognizing that a physical quantity like dsmust be parameter

independent shows that if (u, v) → (u′, v′), then the chain rule implies

ds2 = γab du
adub = γab

∂ua

∂uc′
∂ub

∂ud′
duc

′
dud

′
, (1.49)

which shows

γc′d′(u
′, v′) = γab(u(u

′, v′), v(u′, v′))
∂ua

∂uc′
∂ub

∂ud′
. (1.50)

Since this looks like two copies of the transformation rule, eq. (1.47), the quantity

γab is said to transform like a covariant tensor of rank 2.

More generally, if something having many indices transforms under a change of

parameters like

T a′1..a
′
k
b′1..b

′
ℓ
(u′, v′) = T c1..ck

d1..dℓ(u(u
′, v′), v(u′, v′))

∂ua
′
1

∂uc1
· · · ∂u

a′k

∂uck
∂ud1

∂ub
′
1
· · · ∂u

dℓ

∂ub
′
ℓ

,

(1.51)

is called a tensor of covariant rank ℓ and contravariant rank k. The special case

of something which has no indices, such as an inner product between two vectors

tangent to a surface,

m · n = (ma ta) · (nb tb) = manb ∂r

∂ua
· ∂r
∂ub

= γabm
anb , (1.52)
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transforms according to

γa′b′ m
a′nb′ =

(
γcd

∂uc

∂ua′
∂ud

∂ub′

)(
me ∂u

a′

∂ue

)(
nf ∂u

b′

∂uf

)
= γef m

enf , (1.53)

(which uses eq. (1.48) twice) and is called a scalar.

The reason tensors like this are important is that physical laws cannot depend

on our arbitrary choice of how we parameterize a surface. A physical statement

— like F = m a, say — directly relates physical objects, like vectors, distances or

inner products. And although the components of each quantity like F, m and a

can individually change when different parameters or bases are used, it is always

true that both sides of the equality transform in precisely the same way. Thus it is

important for Newton’s Law that F and the product of m times a both transform

as vectors.

We similarly demand on curved space that any reasonable physical law must have

the form A = B, where both sides of the equation are tensors of precisely the same

type. This ensures that once we know the components Aa1..ak
b1..bℓ and B

a1..ak
b1..bℓ are

equal in a particular basis, it is automatic that they will also be equal in any other

basis we should choose to examine.

1.2 General curved space

We are now ready to kick away the crutch of embedding surfaces into flat IR3 and

formulate directly what non-Euclidean geometry might look like in three (or more)

dimensions. The key in doing so is to focus on those relations derived above for

surfaces that do not make any reference at all to how the surface is situated within

its embedding space.

Tensors and curvilinear coordinates

We start by choosing an arbitrary set of coordinates, xi, to label the points in three di-

mensions, without requiring that these coordinates be the usual rectangular {x, y, z}.
For instance we could instead use spherical polar coordinates xi = {r, θ, ϕ}, or any
other choice of coordinates which happens to suit our purposes.1

Just as for surfaces we can also define curves ‘inscribed’ within our space by

specifying how the coordinates vary along the curve: xi(u) = {x1(u), x2(u), x3(u)}.
At each point P in our three-dimensional space we can define a tangent space, TP —

1As a technical point, it is not necessary that any one choice of coordinates describe all of the

points in space. It is sufficient to have a collection of coordinate choices which cover the entire

space once taken together, with sufficient overlap between pairs of coordinate patches to allow the

results of measurements to be translated from one set of coordinates to another.
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i.e. a generalized tangent plane — comprising the vector space spanned by all of the

tangents at P to the curves that pass through P .

A choice of coordinates provides a natural basis for describing vectors that lie

within the tangent space at each point. This can be taken to be defined by the vectors

ti that are tangent to the curves along which only one of the coordinates varies.

Notice that this basis need not be normalized or mutually orthogonal, although it

must be linearly independent and complete.

In terms of the basis ti, the tangent, t, to any other curve defined by xi(w) has

components

t =
dxi

dw
ti . (1.54)

These components define a contravariant vector, in the sense that if we change co-

ordinates from xi to xi
′
, the components t in the new basis vectors, ti′ , are given

by
dxi

′

dw
=
∂xi

′

∂xj
dxj

dw
. (1.55)

Such a coordinate transformation is only well-defined if the matrix whose entries are

∂xi
′
/∂xj is invertible.

A contravariant tensor, T, having rank p is similarly defined to have components

involving p indices, that transform under a coordinate change according to

T i′1..i
′
p(x′) = T j1..jp(x(x′))

∂xi
′
1

∂xj1
· · · ∂x

i′p

∂xjp
. (1.56)

Metrics

We now come to the central concept. The essence of the geometry is determined

by specifying a notion of distance between points within the space. This is done

by giving the metric, gij(x) = gji(x), which is a symmetric three-by-three positive-

definite matrix whose entries are a function of position. gij(x) is defined to give the

distance between two infinitesimally displaced points, situated at xi and xi +dxi, as

ds =
√
gij(x) dxi dxj . (1.57)

The square root is always real because gij is positive definite, and ds = 0 only occurs

if dxi = 0. This last equation is more commonly written without the square root as

ds2 = gij(x) dx
i dxj . (1.58)

Besides providing a notion of distance, the metric provides a natural way to define

the angle between two curves. This is done by using the metric to define an inner

product between the tangent vectors of the two curves at their point of intersection.

That is, suppose the curves xi1(u) and xi2(v) both pass through the point P , then
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their tangent vectors, m1 and m2 respectively have components dxi1/du and dxi2/dv.

Guided by eq. (1.35), we can then define the intersection angle between the two

curves as

cos θ =
m1 ·m2√

(m1 ·m2)(m2 ·m2)
, (1.59)

evaluated at P , where the inner product is defined in terms of the vector components

as

a · b = gij a
i bj . (1.60)

Notice that in particular the inner product of the tangents of the two curves xi1(u)

and xi2(v) becomes

m1 ·m2 = gij
dxi1
du

dxj2
dv

, (1.61)

and so in particular, for basis vectors defined as tangents to the coordinate lines

themselves we have

ti · tj = gij . (1.62)

Having a notion of angles also means we know what it means for vectors to be

orthogonal: a · b = 0. This then allows the definition of the second natural basis for

vectors, si, in terms of the normals to the surfaces on which one coordinate is held

fixed. Such a dual basis must satisfy si · tj = δij, and so if a vector m is expanded

m = mi ti and m = mi s
i, then the components are given by

mi = m · ti = (mj tj) · ti = mj gij . (1.63)

It is convenient to define the quantities gij as the components of the matrix

that is inverse to the matrix whose components are gij. Such a matrix always exists

because the fact that gij is positive definite excludes the possibility of it having a

zero eigenvector, and so not having an inverse. With this definition we have

gij gjk = δik , (1.64)

and so multiplying eq. (1.63) by gik (including the implied sum over i, from the

Einstein summation convention) gives

mk = gkimi . (1.65)

Notice that its definition, together with the invariance of the distance element,

ds, implies that under a coordinate transformation gij transforms as

gi′j′ = gkl
∂xk

∂xi′
∂xl

∂xj′
, (1.66)
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what is called the transformation of a covariant tensor of rank 2. Similarly the

covariant components, mi, of a vector m transform as (compare with eq. (1.56))

mi′ = mj
∂xj

∂xi′
, (1.67)

which is a covariant tensor of rank 1, or one-form. The transformation properties of

covariant tensors of higher rank can be similarly defined.

Geodesics

Returning to the main line of development, following the example of curves on a sur-

face, we now define a geodesic as the curve that minimizes the distance between two

points. Such curves are the natural generalization of the straight lines of Euclidean

geometry.

To determine the local equations that govern geodesics, we must first find an

expression for the distance between two points, A and B, that is to be minimized.

If this distance is measured along a curve, xi(u), that connects them, the distance

may be found by integrating the infinitesimal definition, eq. (1.57), in the form

sAB =

∫ uB

uA

du
ds

du
=

∫ uB

uA

du

√
gij(x(u))

dxi

du

dxj

du
=

∫ uB

uA

du
√
gij(x(u)) ẋi ẋj .

(1.68)

This introduces the simplifying notation ẋi := dxi/du.

If xi(u) were the curve of minimum length, then the quantity sAB should be

stationary with respect to small changes, xi(u) → xi(u) + δxi(u), to the curve, at

least to first order in δxi(u). Such variations must vanish in the same way that small

changes to a function, f(x), vanish to linear order in δx if they are evaluated at a

function’s minimum, x = xm: f(xm + δx)− f(xm) ≃ f ′(xm) δx = 0. The conceptual

difference here is that the length sAB is a functional that depends on the shape of

the entire curve, xi(u), and not simply on its value at a single point, like A or B.

To see what it means for sAB to be stationary, let us write it as sAB[x(u)],

to emphasize that it depends on the shape of the curve xi(u) in addition to the

endpoints. We then evaluate the difference, δsAB = sAB[x(u)+δx(u)]−sAB[x(u)], and

expand the result out to linear order in δxi(u), using gij(x(u)+ δx(u)) ≃ gij(x(u))+

δxk(u) ∂kgij(x(u)) in eq. (1.68) to find

δsAB =
1

2

∫ uB

uA

du

(
δxk ∂kgij ẋ

iẋj + gij δẋ
i ẋj + gij ẋ

iδẋj√
gij ẋi ẋj

)

=

[
gij ẋ

iδxj

ṡ

]B

A

−
∫ uB

uA

du

(
gij δx

j

ṡ

)[
ẍi + Γi

klẋ
kẋl −

(
s̈

ṡ

)
ẋi
]
. (1.69)
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This uses the notation ṡ = ds/du =
√
gij ẋiẋj and s̈ = d2s/du2 and defines

Γi
jk = Γi

kj :=
1

2
gil
(
∂jgkl + ∂kgjl − ∂lgjk

)
, (1.70)

which is a useful quantity known as the Christoffel symbol of the second kind.2 Finally,

the last equality in eqs. (1.69) also arranges there to be no derivatives of δxi by

performing an integration by parts, using the identity

gij ẋ
iδẋj

ṡ
=

d

du

[
gij ẋ

iδxj

ṡ

]
− δxj

d

du

[
gij ẋ

i

ṡ

]
. (1.71)

Exercise 5: Explicitly verify both equalities in eq. (1.69).

Now if xi(u) is a geodesic connecting A and B then sAB must be minimized for all

paths that connect A to B, so we must demand δsAB = 0 for any choice for δxi(u) that

satisfies δxi(A) = δxi(B) = 0. Since this last condition ensures [gij ẋ
iδxj/ṡ]BA = 0,

we ask what xi(u) must satisfy in order to ensure the vanishing of the integral in the

last line of eq. (1.69).

But now comes the main point: because δxi(u) is arbitrary, we can choose it to

vanish for all u apart from being positive in an arbitrarily narrow interval immediately

surrounding some point u = u⋆. This insures that the integral receives contributions

only from the integrand at u⋆, leading to the conclusion that the integrand must

therefore vanish at this point. But since we can choose δxi(u) to peak about an

arbitrary value of u⋆ and sAB must be stationary with respect to all such variations,

we can conclude that this integrand must vanish for all u when evaluated for any

geodesic. But since gij is positive definite this is only possible if the square bracket

vanishes, leading to the following geodesic equation:

Dẋi

du
:= ẍi + Γi

jk ẋ
jẋk =

(
s̈

ṡ

)
ẋi . (1.72)

Exercise 6: Use the transformation properties,

gij = gi′j′
∂xi

′

∂xi
∂xj

′

∂xj
and gij = gi

′j′ ∂x
i

∂xi′
∂xj

∂xj′
, (1.73)

under the coordinate transformation xi → xi
′
to derive the transforma-

tion law

Γi
jk = Γi′

j′k′
∂xi

∂xi′
∂xj

′

∂xj
∂xk

′

∂xk
+

∂2xi
′

∂xj∂xk
∂xi

∂xi′
, (1.74)

and show thereby that the Christoffel symbols are not tensors. Similarly

show that although ẋi transforms as a contravariant vector, ẍi does not.

Finally, show that the sum ẍi+Γi
jk ẋ

j ẋk does transform as a contravariant

vector, ensuring that if it vanishes in one set of coordinates, it must also

vanish in all others.
2The Christoffel symbol of the first kind is [i, jk] := gilΓ

l
jk = 1

2 (∂jgik + ∂kgij − ∂igjk).
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The special case where s̈ = 0 (and so u = as+ b for constants a and b) is called

an affinely-parameterized geodesic, which satisfies

ẍi + Γi
jk ẋ

jẋk = 0 . (1.75)

Exercise 7: Use the explicit form computed earlier for the metric on a

2-sphere of radius a, ds2 = a2(dθ2 + sin2 θdϕ2) in spherical polar coor-

dinates, to show that the only nonzero Christoffel symbols, Γa
bc, in these

coordinates are:

Γθ
ϕϕ = − sin θ cos θ and Γϕ

θϕ = Γϕ
ϕθ = cot θ . (1.76)

Use this to show that the equations for an affinely parameterized geodesic,

{θ(s), ϕ(s)}, on a sphere are

d2θ

ds2
− sin θ cos θ

(
dϕ

ds

)2

= 0

and
d2ϕ

ds2
+ 2 cot θ

(
dθ

ds

)(
dϕ

ds

)
= 0 . (1.77)

Show that the solutions to these equations are great circles. (HINT: It

will simplify your life to choose your coordinates so that the two points

connected by your geodesic are chosen to lie on the sphere’s equator.)

Curvature

Since the metric, gij, can take different forms in different coordinate systems, trans-

forming as eq. (1.66), when confronted with a complicated metric it is important

to know how much of the complication comes from complications in the underlying

geometry and how much simply arises due to the use of a complicated coordinate

system. For instance, the two following metrics describe the same physical distance

relation,

ds2 = dx2 + dy2 + dz2

ds2 = dx2 + x2 dy2 + x2 sin2 y dz2 , (1.78)

but simply do so with different coordinate choices (rectangular and spherical coordi-

nates, respectively). Given an arbitrary metric,

ds2 = f(x, y, z) dx2 + g(x, y, z) dy2 + h(x, y, z) dz2

+2j(x, y, z) dx dy + 2k(x, y, z) dx dz + 2l(x, y, z) dy dz , (1.79)

it is useful to have a criterion for deciding when a coordinate transformation exists,

x = x(u, v, w), y = y(u, v, w) and z = z(u, v, w), that can put this into a simple form

like ds2 = du2 + dv2 + dw2, for which gij = δij.

– 22 –



In fact, at first sight it is tempting to conclude that it is always possible to

perform such a transformation. After all, gij can be regarded as defining the compo-

nents of a real symmetric matrix, g, and the transformation rule, eq. (1.66), can be

regarded as a similarity transformation,

g′ = SgST , (1.80)

where the superscript ‘T ’ denotes transpose, and the matrix S has components

∂xi/∂xj
′
. But any real symmetric matrix can always be made into the unit matrix

with an appropriate choice of S, since it can first be diagonalized using an orthogonal

matrix, and then its diagonal elements can be rescaled to unity.

Although the above argument does show that it is always possible to choose

coordinates so that gij = δij at any one point, it does not follow that this can be

done for an entire region of points at the same time (using the same coordinates). To

see why, suppose that the required matrix, S(x), is found, that when used in eq. (1.80)

ensures gi′j′ = δi′j′ . This can only be accomplished by a coordinate transformation

if there exist coordinates xi(x′) such that

∂xi

∂xj′
= Sj′

i . (1.81)

But there can be integrability conditions that can obstruct being able to integrate

these equations to find the required xi(x′). For instance, if a solution is to exist it

must satisfy ∂2xi/∂xj
′
∂xk

′
= ∂2xi/∂xk

′
∂xj

′
, so no solution is possible if it should

happen that ∂k′Sj′
i ̸= ∂j′Sk′

i.

It turns out that the freedom to change coordinates is sufficient to arrange that

both gij = δij at any particular point, P , and that Γi
jk = 0 at the same point.

Such coordinates are called Gaussian normal coordinates at P . Although this can

be arranged at any particular point, it cannot in general be arranged simultaneously

at all points in an open region around a given point.

Flat space

If there exist a set of coordinates for which gij = δij within a entire region, R,

(such as is possible for a 2D plane in IR3, say) then this region is said to be flat. A

necessary and sufficient condition for this to be possible is that the following tensor:

Ri
jkl = ∂kΓ

i
jl − ∂lΓ

i
jk + Γi

kmΓ
m
jl − Γi

lmΓ
m
jk . (1.82)

must vanish, Ri
jkl = 0, everywhere in R. The tensor Ri

jkl is called the Riemann

curvature tensor. (For a proof of this see, for example, the text by Weinberg listed

in the bibliography.)
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Exercise 8: Use the transformation properties for Γi
jk derived in Exercise

6 to show that Ri
jkl transforms as a tensor, ensuring that it suffices

to show that the Riemann tensor vanishes in one coordinate system to

conclude that it must vanish in them all.

Exercise 9: Use its definition, eq. (1.82), to prove the following symme-

try properties of Rijkl := gimR
m

jkl:

Rijkl = Rklij = −Rjikl = −Rijlk , (1.83)

and

Rijkl +Riklj +Riljk = 0 . (1.84)

It is a theorem that Ri
jkl is the unique tensor that can be constructed only using

the metric and its first and second derivatives at a point. Two related tensors can

be built from the Riemann tensor by taking traces using the metric. These are the

Ricci tensor, Rij, and the Ricci scalar, R, defined by

Rij := Rk
ikj and R := gij Rij = gij Rk

ikj . (1.85)

Exercise 10: Use the Christoffel symbols computed in exercise 1.2 to

compute explicitly the Riemann tensor for a 2-sphere in spherical polar

coordinates. Show in this way that its only nonzero component (up to

symmetries) is

Rθ
ϕθϕ = sin2 θ , (1.86)

and so Rijkl = (gikgjl − gilgjk)/a
2, while Rij = (1/a2) gij and R = 2/a2 =

2K, where K is the Gaussian curvature.

2. Special Relativity and flat spacetime

Once it is recognized that space can be curved its geometrical properties fall into

the domain of experiments, that can ask whether it is curved and how this curvature

might manifest itself physically. And if spacetime geometry is a physical quantity,

one might also seek the physical laws that govern its properties. General Relativity

is the result to which such a search leads.

As a first step towards making the connection between gravity and a physical

theory of geometry, it is important to realize that it is not just the geometry of

three-dimensional space that is in play; rather it is the geometry of four-dimensional

spacetime, defined as the union of all possible events in space for all times. Four
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coordinates — three spatial coordinates, xi with i = 1, 2, 3, as well as time, x0 = t—

are required to specify positions of events in spacetime. These are collectively denoted

by xµ with Greek indices like µ, ν running from 0 to 3: xµ = {x0, xi} = {t, x1, x2, x3}.
Within such a picture, point particles can be regarded as sweeping out world

lines, xµ(u), through spacetime as time evolves. For instance, if we use time, t,

itself to parameterize such a world line, then a particle that sits motionless at the

fixed position r = a (or xi = ai, for constants ai) has world line xµ(t) = {t, ai}.
The world line of a particle moving at constant speed v might similarly be written

xµ(t) = {t, vit}, while that of a particle executing uniform circular motion in the

(x, y) plane would be xµ(t) = {t, a cos(ωt), a sin(ωt), 0}, and so on.

2.1 Minkowski spacetime

If gravity is to be regarded as the physics of curved spacetime, we might expect that

the absence of gravity should be describable as the physics of flat spacetime. This

section aims to show that this is true, inasmuch as the non-gravitational physics of

special relativity is efficiently expressed in terms of the geometry of flat spacetime.

Inertial observers and the Minkowski metric

From this point of view, special relativity can be regarded as describing the motion of

particles in a spacetime that is endowed with a metric, ds2 = gµν dx
µdxν , for which

coordinates can be found for which gνλ is a constant (and so for which the Christoffel

symbols and curvature vanish Γµ
νλ = Rµ

νλρ = 0). Observers whose measurements are

described by such coordinates are called inertial observers, and who are the observers

for which the standard postulates of special relativity apply:

1. Principle of Relativity: All laws of nature take the same form when written in

any inertial frame;

2. Invariance of the Speed of Light: All inertial observers measure precisely the

same numerical value, c = 299, 792, 458 m/s, for the speed of light in vacuum.

We therefore require these observers to use rectangular coordinates in space, xi =

{x, y, z}, and to move relative to one another by at most a constant velocity.

Exercise 11: Astronomers detect distant objects in the sky that appear

to move faster than light — how is this possible? Consider a very distant

object moving towards us at speed v at an angle θ to the line of sight.

Suppose the object sends us two light rays that depart at times t and t+dt,

and these are received at times t′ and t′ + dt′ (with all times measured

in our rest frame), during which time the object moves a distance dx =
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v sin θ dt transverse to the line of sight. If the distance to the object when

the first signal is emitted is D = c (t′ − t), show that the distance to the

object when the second ray is sent is D − dD where dD = c(dt− dt′) ≃
v cos θ dt, assuming v dt≪ D. Use this to show that the apparent lateral

speed of the object is

veff =
dx

dt′
=

(
dx

dt

)(
dt

dt′

)
≃ v sin θ

1− (v/c) cos θ
, (2.1)

which can satisfy veff > c if θ is close to zero and v is close to (but smaller

than) c.

Because all inertial observers measure the same value for c, it is worth defining

our unit of distance to be light-seconds — i.e. the distance travelled by light in 1

second — so that c = 1 and the speed of any particle moving more slowly than light

satisfies 0 ≤ v < 1. (Such units would not be useful if all inertial observers did not

agree on the speed of light.) These units are used throughout the rest of these notes,

and conversion of subsequent formulae to ordinary units is accomplished by inserting

whatever factors of c are required to give the expression the correct dimensions. (E.g.

for a result like v = 0.2 to have the dimensions of m/s, its right-hand-side must really

be 0.2 c. Similarly, for E an energy, p a momentum and m a mass, E = p becomes

E = p c and E = m becomes E = mc2.)

These observations guide us to choose the form taken for the metric to be one

for which all inertial observers agree. This suggests the constant metric agreed on

by inertial observers should be chosen to be the Minkowski metric, ηµν , defined by

ds2 = ηµν dx
µ dxν = −dt2 + dx2 + dy2 + dz2 ,

and so for rectangular coordinates {x0, x1, x2, x3} = {t, x, y, z}, we have

ηµν =


−1

1

1

1

 . (2.2)

Notice that this metric is not positive definite, unlike the metrics considered

when thinking about the geometry of three-dimensional space. But ds2 is positive

and agrees with our notion of distance in flat space if it is restricted to a purely spatial

interval, along which dt = 0. (The possibility that ds2 can be zero or negative is

the main reason why the geometry of spacetime differs from that of the geometry of

four-dimensional space.) If ds2 > 0 the interval is called spacelike, and will turn out

– 26 –



represent the a spatial distance along the interval for the particular inertial observers

who see dt = 0 along the interval.

By contrast, the situation ds2 = 0 describes the trajectory of a light ray. That is,

ds = 0 implies dt2 = dℓ2, where dℓ2 = dx2 +dy2 +dz2 measures the spatial distance

traversed. Clearly any such a trajectory satisfies dℓ/dt = 1, and so moves at the

speed of light (since c = 1). The requirement that all inertial observers agree on the

interval ds2 therefore includes as a special case the condition that all such observers

agree on the speed of light in vacuo. An interval for which ds2 = 0 is called a null

interval.

In the situation where ds2 = −dt2 + dℓ2 < 0, the interval corresponds to the

world line of a trajectory of a particle moving at less than the speed of light, since

v2 = (dℓ/dt)2 = 1+(ds/dt)2 < 1. In this case it is useful to define dτ =
√
−ds2, since

this represents the proper time elapsed by the observer moving along this trajectory

(for whom dℓ = 0). For this reason intervals for which ds2 < 0 are called timelike.

Lorentz transformations

The transformations of special relativity may now be defined as those which do not

change the Minkowski metric, eq. (2.2), since all such observers will agree on physical

distances and so also agree on physical laws that are expressed in terms of them.

The resulting transformations are given by a combination of translations,

xµ → xµ + aµ , (2.3)

and linear transformations,

xµ → Λµ
ν x

ν , (2.4)

where the constant matrices Λµ
ν must satisfy

ηαβΛ
α
µΛ

β
ν = ηµν . (2.5)

The group of transformations defined by eqs. (2.3) through (2.5) is called the Poincaré

group, while those defined by eqs. (2.4) and (2.5) alone are called the Lorentz group,

or the group O(3, 1).

Spatial rotations provide a special case, for which

Λµ
ν =

(
1

M i
j

)
, (2.6)

where i, j = 1, 2, 3 runs over purely spatial directions, and M i
j is an arbitrary 3× 3

orthogonal matrix: δijM
i
kM

j
l = δkl. The group of all such matrices is called O(3).
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For instance, for rotations about the z axis through an angle α we would have

(Mz)
i
j =

 cosα sinα

− sinα cosα

1

 . (2.7)

A second special case is given by a boost, which relates two inertial observers

who move at constant speed relative to one another. For instance if the motion is

along the x axis, then such a boost is described by

(Λx)
µ
ν =


cosh β sinh β

sinh β cosh β

1

1

 , (2.8)

and β is a parameter related (more about which below) to the relative speed of the

two observers who are related by the boost. Boosts along the y and z axes are

similarly given by

(Λy)
µ
ν =


cosh β sinh β

1

sinh β cosh β

1

 and (Λz)
µ
ν =


cosh β sinh β

1

1

sinh β cosh β

 . (2.9)

Exercise 12: Verify that the transformations (2.6) and (2.8) satisfy

condition (2.5).

2.2 Inertial particle motion

Newton’s first law states that a particle does not accelerate in the absence of external

forces, and so in special relativity the spacetime trajectory (or world-line) of such an

inertial particle (on which no forces act) is given by a straight line,

xµ(τ) = aµ + vµ f(λ) , (2.10)

where aµ and vµ are constant 4-vectors and λ is a parameter that labels the points

along the curve (and so for which the otherwise arbitrary function satisfies df/dλ >

0). For later purposes notice that any such a curve satisfies

d2xµ

dλ2
=

d2f

dλ2
vµ =

(
d2f/dλ2

df/dλ

)
dxµ

dλ
, (2.11)

and so can be interpreted as a geodesic in flat spacetime (c.f. eq. (1.72)).
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The interval measured along the trajectory is

ds2 = ηµν
dxµ

dλ

dxν

dλ
dλ2 = (v · v)

(
df

dλ

)2

dλ2 , (2.12)

so it follows that vµ must satisfy v · v = ηµν v
µvν < 0 for a timelike trajectory, in

which case the vector vµ is also said to be timelike. (By contrast, for motion at the

speed of light — such as for a photon — vµ would instead be null: v · v = 0.)

For motion slower than the speed of light we define the proper time, τ , as the

distance measured along the trajectory, and so ds2 = −dτ 2, and it is convenient to

use λ = τ as the parameter along the curve. In this case uµ := dxµ/dτ is called

the 4-velocity of the trajectory, and eq. (2.12) then implies u · u = −1. Writing its

components as

dxµ

dτ
= uµ =

(
dt

dτ
,
dx

dτ
,
dy

dτ
,
dz

dτ

)
(2.13)

=
dt

dτ

(
1,

dx

dt
,
dy

dt
,
dz

dt

)
, (2.14)

the condition u · u = −1 implies dt/dτ satisfies (dt/dτ)2(1 − v2) = 1, where the

velocity 3-vector, v, is defined to have components vi = dxi/dt. We read off from

this the time dilation that relates the proper time τ to the time t of the observer

with respect to which the trajectory has velocity v:

dt

dτ
:= γ =

1√
1− v2

. (2.15)

where the condition dt/dτ > 0 fixes the sign of the square root used in this expression.

We may now relate the parameter β appearing in a Lorentz boost to the speed,

v, of the inertial observers involved, and thereby verify that eq. (2.8) describes a

standard Lorentz transformation familiar from special relativity. To this end, suppose

Λµ
ν is the Lorentz boost which transforms from the frame of an observer at rest

(and so whose 4-velocity is uµ = (1, 0, 0, 0)) to the frame of an inertial observer

moving with speed v along the x axis (and so whose 4-velocity is uµ = (γ, γv, 0, 0)).

Requiring that the Lorentz transformation of eq. (2.8) is the one that relates these

two 4-velocities gives the parameter β in terms of the speed, v. That is, if
γ

γv

0

0

 =


cosh β sinh β

sinh β cosh β

1

1



1

0

0

0

 , (2.16)

then cosh β = γ and sinh β = γv, and so tanh β = v. Notice that the definition

γ = (1 − v2)−1/2 is then equivalent to the identity cosh2 β − sinh2 β = 1. β is

sometimes called the rapidity of the moving particle.
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Exercise 13: Prove the identity Λx(β1)Λx(β2) = Λx(β1 + β2) for the

composition of two boosts along the x axis, as in eq. (2.8), and use this

to show that the inverse of the matrix Λx(β) is Λ−1
x (β) = Λx(−β). Use

your result with the relation v/c = tanh β to derive the relativistic law

for adding velocities: if β = β1 + β2 then

v =
v1 + v2

1 + v1v2/c2
. (2.17)

Using this connection between β and v in the relation between the coordinates

in these two frames, xµ
′
= Λµ′

νx
ν , or

t′

x′

y′

z′

 =


cosh β sinh β

sinh β cosh β

1

1



t

x

y

z

 , (2.18)

leads (temporarily replacing the factors of c) to the familiar expressions

t′ =
t+ vx/c2√
1− v2/c2

, x′ =
x+ vt√
1− v2/c2

, (2.19)

together with y′ = y and z′ = z. The fact that these expressions imply that events

sharing a common value for t are not the same as those sharing a common value for

t′ — i.e. the relativity of simultaneity — that makes it much more efficient to think

in terms of spacetime, rather than space and time separately.

Exercise 14: Calculate the relation between the coordinates {t′, x′, y′, z′}
and {t, x, y, z} obtained by first performing a boost in the x direction with

speed v followed by a boost in the y direction with speed u.

Lorentz tensors

Physical quantities in different inertial frames in special relativity transform as ten-

sors with respect to Lorentz transformations

T µ′
1..µ

′
p
λ′
1..λ

′
q
= T ν1..νp

ρ1..ρq

(
Λµ′

1
ν1 · · ·Λµ′

p
νp

) (
Λρ1

λ′
1
· · ·Λρq

λ′
q

)
. (2.20)

As a result the Principle or Relativity is automatically satisfied if physical laws having

the schematic form of tensor = tensor, since the tensor transformation rule ensures

that if the law is true for any one frame, it must be true for them all.
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For instance, the instantaneous 4-momentum of a particle having rest-mass m

moving along a trajectory xµ(τ) transforms as a 4-velocity, that is defined in terms

of the 4-velocity, eq. (2.13), by

pµ = m
dxµ

dτ
= muµ . (2.21)

The components of pµ define the particle’s instantaneous energy, E = p0, and 3-

momentum, pi, and so (using the components for uµ found earlier):

p0 = E = mγ =
m√
1− v2

and pi = mγ vi =
mvi√
1− v2

. (2.22)

Notice that the condition ηµν(dx
µ/dτ)(dxν/dτ) = −1 implies ηµνp

µpν = pµp
µ =

−m2, which is equivalent to the relativistic energy-momentum relation

E2 = p2 +m2 . (2.23)

To describe photons we take the limit m → 0 and dτ → 0, so that pµ remains

fixed and well-defined. (The velocity dxµ/dλ is also well-defined, although it is no

longer possible to choose proper time, τ , as the parameter along the world line.) The

resulting 4-momentum satisfies ηµνp
µpν = pµp

µ = 0, and so E = |p|.
As an example of the utility of knowing that quantities like pµ and uµ transform

as 4-vectors under Lorentz transformations, consider the following proof that

E = −uµ pµ = −ηµν uµ pν , (2.24)

gives the energy of a particle with 4-momentum pµ as seen by an observer with 4-

velocity uµ. The proof starts by showing (by direct evaluation) that the result is

trivially true in the simple special case where the observer is at rest, in which case

uµ = {1, 0, 0, 0}. To obtain the result for a general observer it suffices to recognize

that the 4-vector transformation properties of uµ and pν ensure that the quantity

uµ p
µ is Lorentz invariant. That is, if xµ

′
= Λµ′

νx
ν is the Lorentz transformation

that takes us to the observer’s rest frame, then pν
′
= Λν′

λp
λ and uµ

′
= Λµ′

ρu
ρ, and

so

ηµ′ν′u
µ′
pν

′
= ηµ′ν′ Λ

µ′
ρu

ρ Λν′
λp

λ = ηρλu
ρpλ , (2.25)

which uses eq. (2.5). This ensures that all inertial observers must obtain the same

thing for uµp
µ, and so it suffices to show that E = −uµ pµ in the observer’s rest frame

to conclude it must be true for any frame.

2.3 Non-inertial motion

The geometry of flat space captures equally well the relativistic kinematics of particles

that are not moving at constant speed.
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Accelerated particles

For instance, consider an arbitrary trajectory, xµ(τ), that does not describe motion

at constant velocity, such as the following trajectory describing a particle that accel-

erates along the x axis from rest at x = 0, until its speed reaches v = vmax at which

point it then decelerates back to rest a distance ℓ away and then returns to x = 0,

again at rest:

xµ(t) =
{
t, x(t), y(t), z(t)

}
=

{
t, ℓ sin2

(
vmaxt

ℓ

)
, 0, 0

}
. (2.26)

Here the inertial observer’s time, t, is used to label points on the curve, with 0 ≤ t ≤
T = πℓ/vmax describing the entire round trip. The turning point at x = ℓ is achieved

at t = 1
2
T , and because the instantaneous particle speed seen by the inertial observer

is

v(t) =
dx

dt
= vmax sin

(
2vmaxt

ℓ

)
, (2.27)

the maximum speed on the outbound leg takes place at t = 1
4
T .

The proper time measured by a clock riding with the particle along such a

trajectory is

dτ 2 = −ds2 = −ηµν dxµ(t)dxν(t) =
[
1− v2 (t)

]
dt2 , (2.28)

and so the 4-velocity and 4-acceleration become

uµ =
dxµ

dτ
=

dt

dτ

dxµ

dt
=

1√
1− v2 (t)

{
1, v (t) , 0, 0

}
and aµ :=

d2xµ

dτ 2
=

dt

dτ

duµ

dt
=

dv/dt

[1− v2(t)]2

{
v(t), 1, 0, 0

}
, (2.29)

with
dv

dt
=

2v2max

ℓ
cos

(
2vmaxt

ℓ

)
. (2.30)

In relativistic Newtonian mechanics the force responsible for this motion is described

by a 4-vector, F µ = maµ. Notice that all inertial observers must agree on the proper

acceleration given by the Lorentz-invariant definition

a2 := ηµν a
µaν = aµa

µ =
1

[1− v2(t)]3

(
dv

dt

)2

. (2.31)

Exercise 15: Compute the proper time, 4-velocity, 4-momentum and

4-acceleration for the following trajectories: (a) constant proper acceler-

ation along the z axis, xµ(u) = {ℓ sinh(αu), 0, 0, ℓ cosh(αu)}, and (b) uni-

form circular motion in the x-y plane, xµ(u) = {t, d cos(ωt), d sin(ωt), 0}.
What is the physical interpretation of the parameters ℓ, α, d and ω used

in these trajectories?

– 32 –



Exercise 16: Suppose a family of light rays having frequency ω is sent

parallel to the x-y plane at an angle θ to the x axis, and so has 4-

momentum kµ = {ℏω⋆, ℏω⋆ cos θ, ℏω⋆ sin θ, 0}. Show that this satisfies

kµk
µ = 0, as it must if it is tangent to the trajectory of a light ray. Use

the relation E = ℏω and E = −ηµν uµkν to evaluate the frequency of

the photons that is measured by observers moving along the accelerated

trajectories in the previous exercise (Exercise 15).

Twin ‘paradox’

The Twin ‘Paradox’ compares the time elapsed for two identical clocks (or twins),

one of which travels along an accelerated trajectory as described above, while the

other remains at rest at x = 0. The time elapsed for the motionless clock is simply

the difference in t between the events when the two clocks separate and rejoin, and

so is ∆t = tf − ti = πℓ/vmax = T , while the time elapsed by the moving clock is

found by integrating eq. (2.28):

∆τ =

∫ T

0

dt
√
1− v2(t) =

∫ T

0

dt

√
1− v2max sin

2

(
2πt

T

)
=

2E(vmax)

π
, (2.32)

where E(v) denotes the Elliptic-E func-
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Figure 4: The ratio ∆τ/∆t of time elapsed

for the moving and stationary twins as a func-

tion of the moving twin’s maximum speed.

tion, defined by

E(v) :=

∫ 1

0

dx

√
1− vx2

1− x2
, (2.33)

and so which satisfies E(1) = 1. The

result for ∆τ/∆t — the elapsed proper

time for the moving twin as a fraction of

the time elapsed for the twin at rest —

is given as a function of vmax/c in Fig. 4.

The ‘paradox’ is that the moving twin

sees less time pass, but this is not really

a paradox at all since there is no rea-

son why clocks on inertial and acceler-

ated trajectories must agree with one an-

other. Indeed, the trajectory of the clock

at rest is a geodesic for the Minkowski

metric ηµν – it is after all a straight line and this metric is constant (and so flat).

But the negative sign in the time part of the Minkowski metric ensures that time-like

geodesics describe the maximum distance between two points in spacetime (whereas,

by contrast, geodesics in space give the minimum distance between two points). So
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we are guaranteed that all other accelerating clocks also record an elapsed time that

is smaller than the one of the clock at rest.

Exercise 17: Imagine two clocks that both perform uniform circular

motion of radius a in the x-y plane, but in opposite directions: xµ(u) =

{t, a cos(ωt),± a sin(ωt), 0}. Suppose these clocks are synchronized to

agree when they are coincident at x = a at t = 0. How much time

elapses until the next time the clocks are at x = a, as seen by each clock

as well as by the inertial observer whose time is labelled by t?

Noninertial observers

In special relativity the laws of nature are simpler as seen by inertial observers, whose

rectangular positions and times are related by Lorentz transformations xµ
′
= Λµ′

νx
ν ,

but look different for observers who do not move at constant speeds relative to inertial

observers. This section computes an example of this, and shows in the process that

Newton’s first law of motion in a non-inertial frame can nonetheless still be regarded

as stating that particles move along geodesics in the absence of external forces.

To see how this works, consider the particular case of an observer experiencing

uniform circular motion in the x-y plane who uses coordinates, xµ = {t, x, y, z}, in
terms of which an inertial observer’s coordinates, xµ

′
= {t, x′, y′, z}, can be written

x′ = x cos(Ω t)− y sin(Ω t) and y′ = x sin(Ω t) + y cos(Ω t) . (2.34)

Ω here represents the angular velocity of the uniform circular motion. Using this

relation we have

dx′ = dx cos(Ω t)− dy sin(Ω t)−
[
x sin(Ω t) + y cos(Ω t)

]
Ωdt

dy′ = dx sin(Ω t) + dy cos(Ωt) +
[
x cos(Ω t)− y sin(Ω t)

]
Ωdt , (2.35)

so the Lorentz-invariant element of distance becomes

ds2 = −dt2 + dx′
2
+ dy′

2
+ dz2

=
[
−1 + (x2 + y2)Ω2

]
dt2 + 2(x dy − y dx) Ω dt+ dx2 + dy2 + dz2 , (2.36)

corresponding to the metric
gtt gtx gty gtz

gxt gxx gxy gxz

gyt gyx gyy gyz

gzt gzx gzy gzz

 =


−1 + r2Ω2 −yΩ xΩ 0

−yΩ 1 0 0

xΩ 0 1 0

0 0 0 1

 , (2.37)
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where r2 = x2 + y2.

For this non-inertial observer, a particle whose position is fixed in space defines

a world line along which only t varies, so dx = dy = dz = 0 (corresponding to

a particle executing uniform circular motion from the point of view of the inertial

observer). Proper time along such a trajectory as measured with the non-inertial

observer’s metric is dτ 2 = −ds2 = −gtt dt2 = (1 − r2Ω2) dt2, in agreement with the

inertial observer’s result (given that the inertial observer attributes a speed v = rΩ

due to the uniform circular motion).

In the absence of forces the inertial observer would say that particle trajectories

are straight lines: xµ
′
= xµ

′

0 +uµ
′
τ for constant xµ

′

0 and uµ
′
; or d2xµ

′
/dτ 2 = 0. These

same trajectories do not have the same form for the non-inertial observer, since they

do not correspond to xµ = xµ0 + uµ τ or d2xµ/dτ 2 = 0.

But recall that d2xµ
′
/dτ 2 = 0 is the equation for a geodesic for the metric

gµ′ν′ = ηµ′ν′ , and that the condition for a geodesic can be written for a general

metric by
d2xµ

dτ 2
+ Γµ

νλ

dxν

dτ

dxλ

dτ
= 0 , (2.38)

which is a form that is equally valid in any coordinate system. We should therefore

expect that this equation describes motion in the absence of forces as seen by our

non-inertial, uniformly rotating observer. But then what is the significance of the

Christoffel symbols, Γµ
νλ, in the non-inertial frame?

To find out we compute the nonzero components of Γµ
νλ, recalling the definition

of the Christoffel symbols

Γµ
νλ =

1

2
gµρ
(
∂νgλρ + ∂λgνρ − ∂ρgνλ

)
. (2.39)

For the metric of interest the only nonzero metric derivatives are ∂xgtt = 2xΩ2,

∂ygtt = 2 yΩ2, ∂ygtx = ∂ygxt = −Ω, and ∂xgty = ∂xgyt = Ω, and the inverse metric is
gtt gtx gty gtz

gxt gxx gxy gxz

gyt gyx gyy gyz

gzt gzx gzy gzz

 =


−1 −yΩ xΩ 0

−yΩ 1− y2Ω2 xyΩ2 0

xΩ xyΩ2 1− x2Ω2 0

0 0 0 1

 , (2.40)

and so the nonzero Christoffel symbols (of the second kind) turn out to be

Γx
tt = −xΩ2 , Γy

tt = −yΩ2 , Γx
yt = Γx

ty = −Ω and Γy
xt = Γy

tx = Ω . (2.41)

With these expressions the equations for a geodesic become

d2t

dτ 2
=

d2z

dτ 2
= 0 (2.42)

– 35 –



and

d2x

dτ 2
− xΩ2

(
dt

dτ

)2

− 2Ω

(
dt

dτ

)(
dy

dτ

)
= 0

d2y

dτ 2
− yΩ2

(
dt

dτ

)2

+ 2Ω

(
dt

dτ

)(
dx

dτ

)
= 0 . (2.43)

The first two of these may be integrated to give

z = z0 + γ vz τ = z0 + vz t and t = γ τ , (2.44)

where z0, vz and γ are constants. Using these in the second two equations, and

changing variables using d/dτ = γ(d/dt), then gives

d2x

dt2
− xΩ2 − 2Ω

(
dy

dt

)
= 0

d2y

dt2
− yΩ2 + 2Ω

(
dx

dt

)
= 0 . (2.45)

Defining the angular momentum vector by w := Ω ez, these equations can be written

in vector form as
d2r

dt2
+w × (w × r) + 2w × v = 0 , (2.46)

where r := x ex + y ey + z ez and v := dr/dt.

Eqs. (2.45) have as their solutions

x = x′(t) cos(Ω t) + y′(t) sin(Ω t)

and y = −x′(t) sin(Ω t) + y′(t) cos(Ω t) . (2.47)

where x′(t) = x′0+vx t and y
′(t) = y0+vy t. The condition gµν(dx

µ/dτ)(dxν/dτ) = −1

then implies (as usual) γ = (1− v2)−1/2 where v2 = v2x + v2y + v2z .

We see that the Christoffel symbols provide precisely the ‘fictitious forces’ that

are required in order to ensure that the geodesics are straight lines, expressed in the

non-inertial coordinates. And experience with classical physics allows these fictitious

forces to be recognized as old friends; with the w × (w × r) term of eq. (2.46)

representing the centrifugal force and the velocity-dependent w × v term giving

the coriolis force associated with a rotating reference frame. The fact that Γµ
νλ do

not transform as the components of a tensor is consistent with the fact that these

fictitious forces can vanish in some frames — e.g. inertial ones — even if they do

not in others.

Exercise 18: Show that distances measured by non-inertial observers

with coordinates xµ = {ξ, χ, y, z} defined by t = χ sinh(aξ) and x =

χ cosh(aξ) (with χ > 0) are given by the Rindler metric

ds2 = −a2χ2dξ2 + dχ2 + dy2 + dz2 . (2.48)
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Show that observers whose world-lines are the curves along which only

ξ varies undergo constant proper acceleration with invariant magnitude

ηµν(du
µ/dτ)(duν/dτ) = 1/χ2. Show that the only nonzero Christoffel

symbols for this metric are Γχ
ξξ = a2χ and Γξ

χξ = Γξ
ξχ = 1/χ, and so show

that geodesics satisfy the equations d2y/dτ 2 = d2z/dτ 2 = 0 and

d2ξ

dτ 2
+

2

χ

dχ

dτ

dξ

dτ
= 0 and

d2χ

dτ 2
+ a2χ

(
dξ

dτ

)2

= 0 . (2.49)

Use these, and the identity dχ/dξ = χ̇/ξ̇ (where over-dots denote d/dτ),

to show that if ξ parameterizes the geodesics, then χ(ξ) satisfies

d2χ

dξ2
=
χ̈

ξ̇2
− χ̇ ξ̈

ξ̇3
= −a2χ+

2

χ

(
dχ

dξ

)2

, (2.50)

revealing the fictitious forces required to describe inertial motion in this

accelerated frame. Show that the curves χ(ξ) = ℓ e± aξ solve this equation.

2.4 Conserved quantities

A special role is played in physics by conserved quantities like electric charge, energy

and momentum, since these are all conserved and they all act as sources for known

forces of nature. As we shall see, energy and momentum are sources for gravity in

much the same way as electric charges and currents source electromagnetism. In order

to motivate how energy and momentum density is formulated within a relativistic

theory — as will be required in order to state in later sections how they act as

sources for gravity — it is convenient first to recall how other conserved quantities,

like electric charge density, are formulated.

Electric Current

If there is an observer who sees a nonzero density of electric charge, σ(x, t), then

anyone else who moves relative to this observer must see a nonzero electric current

density, j(x, t), in addition to seeing a charge density which is different due to the

Lorentz contraction of space in the direction of motion, and due to the change in the

relative motion of the moving charges. It follows that σ and j must transform into

one another under Lorentz transformations, and it turns out that they transform as

a 4-vector with components:

jµ =

(
j0 = σ

ji

)
, (2.51)

where ji represent the 3 spatial components of the current density vector, j. Being

a 4-vector means that it transforms under a Lorentz transformation as

jµ
′
= Λµ

ν j
ν , (2.52)
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and so in the specific case of a boost between inertial observers moving at relative

speed v, c.f. eqs. (2.8) and (2.19), this becomes

σ′ = j0
′
=
σ + v · j/c2√
1− v2/c2

, j′ =
j+ vσ√
1− v2/c2

, (2.53)

Conservation of electric charge may be expressed in terms of this 4-vector in a

manifestly Lorentz-invariant way, as

∂µ j
µ =

∂j0

∂t
+∇ · j = 0 . (2.54)

Since this is a scalar, if any observer finds the right-hand-side to vanish, then all

inertial observers must also find it to vanish. That this equation expresses local

charge conservation may be seen by integrating it over a volume V having boundary

∂V , and using Gauss’ theorem

0 =

∫
V

[
∂j0

∂t
+∇ · j

]
d3x =

d

dt

∫
V

σ d3x+

∫
∂V

n · j d2S , (2.55)

where d2S denotes an infinitesimal area element of the surface, whose outward-

pointing normal vector is n. Written this way it is clear that charge is conserved,

inasmuch as the rate of change of the total charge in any volume V is equal to the

net flux of charge carried by the current through the boundaries of V .

Electromagnetism

Since charges and currents are sources for electric, E, and magnetic, B, fields, these

must similarly transform into one another under Lorentz transformations. It turns

out that these six quantities transform as the components of an antisymmetric tensor,

Fµν = −Fνµ, according to
F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33

 =


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 , (2.56)

which labels the inertial coordinate in the usual way, xµ = {x0, x1, x2, x3} = {t, x, y, z}.

Exercise 19: Use the transformation properties under Lorentz transfor-

mations of a covariant tensor of rank 2 to compute how the components

of electric and magnetic fields, E and B, are related for observers who

move relative to one another with constant speed v along the x-axis.
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There are two types of fundamental laws in electromagnetism. One of these

expresses the forces felt by charges in the presence of electric and magnetic fields,

and states that a point charge of magnitude q moving with velocity v experiences a

Lorentz force of magnitude

F = q
(
E+ v ×B

)
. (2.57)

The second type of law in electromagnetism relates the properties of the electric

and magnetic fields to the distribution of charges and currents that source them.

These may be summarized as Maxwell’s equations:

∇× E+
∂B

∂t
= 0 , ∇ ·B = 0 (2.58)

and

∇×B− ∂E

∂t
= j , ∇ · E = σ . (2.59)

Since all inertial observers must agree on the laws of electromagnetism, it should

be possible to formulate these in terms of Lorentz tensors like Fµν and jµ. Indeed,

the two source-free Maxwell equation, eqs. (2.58), can be written as the combined

tensor equation

∂µFνλ + ∂νFλµ + ∂λFµν = 0 , (2.60)

and the two Maxwell equations with sources, eqs. (2.59), similarly can be written

∂νF
µν = jµ . (2.61)

Notice that the antisymmetry F µν = −F νµ implies ∂µ∂νF
µν vanishes identically,

showing that eq. (2.61) would be inconsistent if charge were not conserved, ∂µj
µ ̸= 0.

The Lorentz force, eq. (2.57), can also be grouped into a force 4-vector,

Fµ = qFµνu
ν , (2.62)

where uν denotes the 4-velocity of the point charge.

Finally, the source-free Maxwell equations, eqs. (2.58), are often solved by writing

the fields E and B in terms of an electric and magnetic potential, Φ and A, with

B = ∇×A and E = −∇Φ− ∂A

∂t
, (2.63)

and these two equations can be grouped into the single tensor equation

Fµν = ∂µAν − ∂νAµ , (2.64)

with the gauge potential 4-vector defined by Aµ = {A0, Ai} = {Φ, Ai}.

Exercise 20: Verify that eqs. (2.57), (2.58), (2.59) and (2.63) follow

from eqs. (2.62), (2.60), (2.61) and (2.64), together with the definitions

of Fµν , Aµ and jµ.
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Stress Energy

As the example of electric charge shows, we expect to be able to associate a current

4-vector with each conserved quantity. Since energy is conserved we might therefore

naively expect the energy density, ρ, to be combined under Lorentz transformations

with an energy flux, s, into a 4-vector sµ = {s0, si} = {ρ, si}. What makes this

expectation naive is the fact that the total energy, E =
∫
ρ d3x, unlike the total

electric charge, Q =
∫
σ d3x, is not itself Lorentz invariant, because it combines with

linear momentum, p, into the energy-momentum 4-vector, pµ = {E, pi}.
The proper statement is instead that the energy density, ρ, energy flux, sj,

momentum density, πi, and momentum flux (or stress), tij, all combine under Lorentz

transformations into a Stress-Energy tensor, T µν , where

T µν =

(
ρ sj

πi tij

)
. (2.65)

In terms of this tensor energy and momentum conservation are expressed by the

condition

∂νT
µν = 0 , (2.66)

since this states that the total change of energy and momentum within any volume

V is equal to the net flux of energy and momentum current through the boundaries

of V :

∂νT
0ν = 0 ⇒ dE

dt
=

∫
V

∂ρ

∂t
d3V = −

∫
∂V

sj nj d
2S (2.67)

∂νT
iν = 0 ⇒ dP i

dt
=

∫
V

∂πi

∂t
d3V = −

∫
∂V

tij nj d
2S . (2.68)

Furthermore, because of the equivalence between mass and energy in relativity, there

is no difference between an energy flux, si, and a momentum density, πi: that is,

energy on the move (i.e. a flux of energy) carries momentum, and so is equivalent

to a density of momentum. Since it is also true that the internal stress tensor can

always also be chosen to be symmetric, tij = tji, the total stress-energy tensor can

also be taken to be symmetric: T µν = T νµ.

Examples

At this point it is useful to have explicit forms for the conserved current and stress

energy for some simple systems.

Massive point particles:

The simplest system for whom the stress energy can be explicitly written down is

for a point particle. A point particle is completely characterized by its world line,
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xµ(τ), as well as the value of any conserved physical quantities it might have, such

as its rest-mass, m, or its electric charge, q.

The contribution of a massive charged particle to the conserved current is easiest

to evaluate in its rest frame, where it is motionless and so contributes no current at

all, j = 0, and its contribution to the charge density is

j0(r, t) = q δ3(r− y(t)) (rest frame) , (2.69)

where y(t) is the particle’s spatial trajectory. Here δ3(r) = δ(x)δ(y)δ(z) denotes

the 3-dimensional Dirac delta function, which can be regarded as a limiting case

as λ → 0 of the function (C/λ3) e−r2/λ2
, with the constant C chosen to ensure

that
∫
d3x δ3(r) = 1. The result is a quantity that is infinitely peaked about zero

argument, but with a normalization that diverges in such a way as to ensure constant

area under the curve. It has the property that∫
d3x f(r) δ(r− y) = f(y) , (2.70)

for arbitrary smooth functions, f .

The result for jµ in a general frame is then found simply by identifying a 4-vector

that agrees with this result in the rest frame. Any such a 4-vector must be unique,

since if two 4-vectors agree in one frame they must agree in them all. The result is

jµ(x) = q uµ δ3(x− y(τ)) , (2.71)

where xµ = yµ(τ) gives the components of the particle’s world-line, for which the

4-velocity, uµ(y(τ)) = dyµ/dτ , satisfies (as usual) uµu
µ = −1. The delta function

therefore gives zero contribution except at the particle’s world line. Using the com-

ponents uµ = γ(1,v), with γ = (1− v2)−1/2, this gives

j0 = qγ δ3(x− y(τ))

and j = qγ v δ3(x− y(τ)) . (2.72)

The stress energy for such a particle is found using the same arguments. In the

rest frame there is no internal stress or energy flow, so the only nonzero component

is the energy density,

T 00 = mδ3(r− x(τ)) (rest frame) . (2.73)

The unique result for the tensor T µν in a general reference frame is then given by

T µν(x) = muµ uν δ3(x− y(τ)) , (2.74)

– 41 –



which has components

T 00 = mγ2 δ3(x− y(τ))

T 0i = mγ2 vi δ3(x− y(τ)) (2.75)

and T ij = mγ2 vivj δ3(x− y(τ)) .

Dust

A more common energy source for gravitational problems is a macroscopic collection

of a great many – N , say – individual particles. If these particles do not interact with

one another their total current and stress energy is just the sum of the contribution

of each, summed over all particles present:

jµ =
N∑
k=1

qk u
µ
k δ

3(x− xk(τ)) and T µν =
N∑
k=1

mk u
µ
k u

ν
k δ

3(x− xk(τ)) . (2.76)

Most commonly, when the gravitational properties of such a system are of interest

it is over distances, L, that are much larger than the typical inter-particle spacing,

a: L≫ a. (Examples where this will prove to be true include the gravitational field

within a star or cloud of interstellar gas — for which the particles are gas molecules

or atoms — or for the overall shape of the universe as a whole — for which the

particles might be entire galaxies).

In this case only the average properties of the distribution of particles is relevant,

and it is unnecessary to carry around information concerning the position of each

separate particle. This can be made precise by identifying a region whose size, d,

is much larger than the typical inter-particle distance scale, yet still much smaller

than the scale, L, of gravitational interest: L ≫ d ≫ a. When such a region exists,

because d ≫ a it contains a large number of particles, and so has the property

that the statistical fluctuations (due to the exchange of individual particles with the

surrounding regions, say) about the mean of the energy and charge are very small.

However, because d ≪ L these mean properties can be well approximated as being

constant over each such region, although they can vary slowly from region to region.

In this case we can define the average frame of rest for a given region in terms

of the region’s average 4-velocity

Uµ(x) = C
N∑
k=1

uµk , (2.77)

where C is chosen to ensure that Uµ is normalized, UµU
µ = −1, and N denotes

the number of particles in R. The x-dependence of Uµ emphasizes that the precise
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average rest frame can vary slowly from region to region. The average rest frame for

R is the frame for which the spatial components vanish: U i = γvi = 0.

With this definition, the mean charge density, σ, and energy density, ρ, can be

defined for the average rest frame by

jµ(x) := σ(x)Uµ(x) and T µν(x) := ρ(x)Uµ(x)Uν(x) . (2.78)

In the limit where the particles all move non-relativistically these satisfy σ(x) ≃
q n(x) and ρ(x) ≃ mn(x), where n(x) = N (x)/V(x) is the macroscopic particle

density that reproduces
∫
V d

3x n(x) = N as would the microscopic result, nmicro(x) =∑
k δ

3(x − yk(τ)), when integrated over any spatial region of volume V containing

N particles. This is a less useful description for relativistic particles, since for these

the possibility of particle-antiparticle production and annihilation implies the total

number of particles is never strictly conserved.

A fluid made up of noninteracting massive particles of this type is known as

‘dust’, inasmuch as it represents a special case of a more general fluid for which the

pressure and viscosity terms are negligible.

Perfect fluids

The similarly simple but more realistic system for which the stress energy can be

explicitly written down is for a perfect fluid; defined as a system for which the average,

macroscopic conserved quantities are functions only of the local average fluid 4-

velocity, Uµ(x), and the local metric, ηµν (and not also their derivatives, say).3

Under this assumption the conserved current describing the conservation of their

total number is given by

jµ = σ Uµ =

(
γ σ

γ σ vi

)
, (2.79)

where the local rest-frame charge density, σ(x) = −Uµ j
µ has properties (like de-

pendence on temperature or other macroscopic variables) that depend on the details

of the microscopic properties of the particles involved. Regardless of these details,

conservation of the underlying charge requires jµ(x) must satisfy the conservation

condition: ∂µj
µ = 0.

Similarly, the most general symmetric tensor depending only on ηµν and Uµ(x)

(but not its derivatives) is

T µν = (ρ+ p)Uµ Uν + p ηµν =

(
γ2(ρ+ p v2) γ2(ρ+ p) vj

γ2(ρ+ p) vi γ2(ρ+ p) vivj + p δij

)
. (2.80)

3Inclusion of a dependence on derivatives into the macroscopic currents is what introduces

transport coefficients, like conductivities and viscosities, into the discussion.
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The interpretation of the coefficient functions ρ(x) is found by going to the rest

frame, which reveals ρ = T 00|rest is the rest-frame energy density. Similarly, in the

rest frame T ij|rest = p δij. But conservation of momentum for a region V within the

fluid, eq. (2.68), then reads

dP i

dt
=

∫
V

∂T i0

∂t
d3V = −

∫
∂V

T ij nj d
2S = −

∫
∂V

p ni d2S , (2.81)

which uses ∂νT
µν = 0, together with Stoke’s theorem in the form

∫
V
∂jT

ij d3V =∫
∂V
njT

ij d2S. This shows that each surface element exerts an inward-directed force

of magnitude p, along the line defined by the surface element’s normal, n. Conse-

quently p can be interpreted as the fluid’s pressure. In general the detailed properties

of both ρ(x) and p(x) can depend on what kind of particles are involved in the fluid,

and is often characterized by an equation of state, of the form p = p(ρ, T ), where T

is the fluid’s local rest-frame temperature.

3. Weak gravitational fields

We are now in a position to begin making the connection between gravitation and the

geometry of spacetime. To this end it is first worth pausing to formulate Newtonian

gravity in an explicitly field-theoretic manner.

3.1 Newtonian gravity

In the first encounter with Newtonian gravitation, one is normally taught that the

gravitational force acting on a point mass m1 situated at a position r1 due to the

presence of another point mass, m2, situated at r2, is

F12 =
Gm1m2

|r2 − r1|2
e12 , (3.1)

where e12 = (r2 − r1)/|r2 − r1| is the unit vector pointing from particle 1 to particle

2, and G = 6.673(10) × 10−11 N m2/kg2 is a universal constant known as Newton’s

constant of gravitation. The force due to a more complicated distribution of masses

is then found by summing eq. (3.1) over all of the particles that are present.

The principle of equivalence

Using eq. (3.1) in Newton’s 2nd Law of motion gives the acceleration of particle

number 1:

a1 =
F12

m1

=
Gm2

|r2 − r1|2
e12 , (3.2)

and similarly for particle 2. This has the remarkable property of being completely

independent of the value of m1. This property, which assumes that a particle’s
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inertial mass appearing in Newton’s second law — F = m a — is the same as its

gravitational mass, appearing in eq. (3.1). As applied to a constant gravitational

field, such as arises to good approximation at the Earth’s surface, this implies the

well-known fact that all objects near the Earth’s surface accelerate towards it with

a universal acceleration,
d2r

dt2
= g , (3.3)

with magnitude g = GM⊕/R
2
⊕ ≃ 9.8 m/s2, regardless of how massive they are.4

The best present test of the mass-independence of eq. (3.2) come from precision

measurements of the distance to the Moon that became possible once laser reflectors

were left on its surface by astronauts in the late 1960s. These show that the difference

between the Moon and the Earth’s average acceleration towards the Sun is [1]

∆a

a
=

|aE − aM |
1
2
(aE + aM)

= (−1± 1.4)× 10−13 , (3.4)

which is consistent with zero with a precision of one part in 1013.

Measurements such as these provide the experimental cornerstone for under-

standing gravity theoretically, since they provide guidance about how to modify

Newton’s theory to be consistent with relativity. In particular, the great accuracy

with which a falling particle’s acceleration is known to be independent of its mass

suggests it be elevated to a principle whose validity is not restricted to its being a

consequence of Newton’s Laws.

The resulting principle is called the Principle of Equivalence because it makes

a constant gravitational force, as in eq. (3.3), appear very much like the fictitious

centrifugal and coriolis forces encountered earlier in eq. (2.46), since both produce

accelerations that are completely independent of the moving particle’s mass). A con-

stant gravitational force would in this sense be equivalent to the fictitious constant

force associated with being in a non-inertial frame undergoing constant accelera-

tion. Conversely, it is the observers in a freely falling frame that are the inertial

observers that experience Newton’s 2nd Law of motion in a constant gravitational

field (as is graphically experienced by astronauts who appear to float freely within

their spacecraft, as they all move in orbit around the Earth).

The gravitational field

A more useful way to think about Newtonian gravity for the purposes of generalizing

to relativity is in terms of fields, rather than forces. To this end one defines the

gravitational potential, Φ(r, t), throughout all space, whose strength is determined

4...provided all non-gravitational complications, like air resistance, are negligible.
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by the field equation

∇2Φ = 4πGµ , (3.5)

where ∇2 = ∂2x + ∂2y + ∂2z and µ(r, t) denotes the local density of mass, per unit

volume. Once Φ(r, t) is determined by solving this equation, the gravitational force

acting on any mass, m, located at a point, r, is found using the relation

F = −m∇Φ(r, t) . (3.6)

To see that eqs. (3.5) and (3.6) reproduce eq. (3.1) one first solves eq. (3.5) using

µ(r, t) = m2 δ
3(r− r2(t)) to determine the gravitational potential set up by a point

mass, m2, situated at position r = r2(t). The solution that vanishes at spatial infinity

is

Φ(r, t) = − Gm2

|r− r2(t)|
, (3.7)

and so applying eq. (3.6) to this for a point mass, m = m1, situated at r = r1 then

gives eq. (3.1).

Because Newton’s law of gravity is a conservative force, it can be derived from

a potential energy. For a collection of N otherwise noninteracting particles moving

under their mutual gravitation the total conserved energy in Newtonian physics is

(up to an infinite, but position-independent, constant)

E =
1

2

N∑
k=1

mk

[
v2k + Φ(rk)

]
, (3.8)

where, as usual, v2k = vk · vk. For the special case of two particles, this may be

written

E =
MV 2

2
+
mred v

2

2
− Gm1m2

|r|
, (3.9)

whereM = m1+m2 is the total mass, V is the magnitude of the velocity of the center

of mass, V = dR/dt with R = (m1r1 +m2r2)/M . The quantity mred = m1m2/M

defines the reduced mass and r = r1 − r2 is the relative position of the two particles,

whose velocity v = dr/dt has magnitude v. The relative position and center of mass

position are convenient variables because they separately evolve under the equations

of motion
d2R

dt2
= 0 and

d2r

dt2
= −GM

|r|2
er , (3.10)

where er = r/|r| is the unit vector parallel to r.

The solutions to these equations describe both bound orbits and unbound scat-

tering solutions, and an important property of the bound orbits is that their internal
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kinetic and potential energies are similar in size. Consequently, the non-relativistic

approximation (required for such a Newtonian analysis) is valid if

v2 ≃ GM

r
≪ 1 . (3.11)

Putting back the factors of c, the criterion for the validity of a Newtonian description

becomes v2/c2 ≃ GM/rc2 ≪ 1. The size of GM/Rc2 at the surface of the Sun and

Earth is listed in the following Table, and show why a non-relativistic Newtonian

approximation works so well for applications in the Solar System.

M (kg) R (m) GM/R c2

Earth (⊕) 5.97× 1024 6.38× 106 6.95× 10−10

Sun (⊙) 1.99× 1030 6.96× 108 2.12× 10−6

Table 1:

The size of non-Newtonian effects near the surface of the Earth and Sun.

Exercise 21: For a bound (elliptical) orbit of a particle in the gravi-

tational field of a large central mass M , use Newton’s Law in the form

ma = −(GMm/r2) er (where er is the outward pointing unit vector in the

radial direction) to prove ⟨v2⟩ = ⟨GM/r⟩, where ⟨· · · ⟩ := (1/T )
∫
dt(· · · )

denotes the time-average of a given quantity over one orbit (where T is

the orbital period). Use this to compute the ratio of the average kinetic

and potential energy of the particle, K = 1
2
mv2 and U = −GMm/r,

over an orbit, and show that ⟨K⟩ = − 1
2
⟨U⟩.

Consistency with relativity

There are several ways to see that the above Newtonian story is inconsistent with

special relativity. One is to notice that eq. (3.7) depends on time, t, only through

the specification of the instantaneous position, r2(t), of the source particle. This

means that the force exerted on other particles, eq. (3.6), changes instantaneously

as the source particle changes its position. Information about the source’s position

therefore travels faster than light to simultaneously tell all other particles that they

should fall towards the source particle’s new position.

But special relativity states that what is simultaneous for one inertial observer

is not simultaneous for all others, and so this same force rule cannot possibly hold

for all such observers. This violates the Principle of Relativity. This problem is

related to relativity’s proscription against things moving faster than light, which the

Newtonian force law also violates.

This particular problem arises because eq. (3.5) treats space differently from time,

and a naive way to fix it would be to replace the Laplacian operator, ∇2, appearing
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in this equation by the Lorentz-invariant d’Alembertian operator, □ = ∇2 − ∂2t , to

get the following guess (called Nördström gravity):

□Φ = ηµν ∂µ∂νΦ = ∂µ∂µΦ =

(
− 1

c2
∂2Φ

∂t2
+∇2Φ

)
= 4πGµ(x) . (3.12)

A fully relativistic theory would also have to identify a Lorentz-invariant notion

of mass density, like perhaps the rest-frame energy density, ρ(x)/c2, to use on the

right-hand side.

This kind of proposal has the nice feature that changes to the forces seen by other

masses do not change instantaneously, with the news of changes in source position

instead being carried by waves in the field Φ (analogous to electromagnetic waves in

the electromagnetic field) that travel at the speed of light. It must be rejected as a

successful theory of gravity, however, because its predictions contradict a number of

experimental facts, including tests like eq. (3.4), or predictions for the gravitational

bending of light rays (to be discussed below).

A clue as to how to proceed comes from recognizing that the famous equation

E = mc2 implies energy and mass are equivalent to one another in relativity, and so

we should be seeking an equation like eq. (3.12), but with the entire conserved stress

energy on the right-hand side:

□hµν =
4πG

c2
Tµν , (3.13)

in much the same way as it is the entire conserved 4-current, jµ, that appears on the

right-hand side in Maxwell’s equations, eqs. (2.61). This indicates we should seek

some sort of symmetric tensor field, hµν , to describe gravity, rather than a single

scalar field like Φ. Einstein’s insight was to see that it is the metric tensor, gµν , that

is the field we seek, although eq. (3.13) is only in this case an approximation to the

right field equations for gravity.

3.2 Gravity as geometry

To make the case that it is the spacetime metric, gµν(x), that describes gravity we

next investigate in detail spacetime geometry in a spherically symmetric system, such

as should apply outside of a spherically symmetric matter distribution like the Sun

or Earth.

Spherically Symmetric Geometries

The first step is to identify what restrictions the metric must satisfy in order to be

spherically symmetric. For the present purposes, take spherical symmetry to mean

the existence of a symmetry acting on the three spatial coordinates, xi, of the form
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given in eq. (2.6): xi →M i
j x

j, whereM is an orthogonal matrix (δij M
i
kM

j
l = δkl).

This is to be a symmetry in the sense that it leaves the metric completely unchanged.

The implications for the metric can be found by constructing the most general

invariant quadratic line element, ds2, that can be built from the vectors xi and dxi,

and from the scalars, t and dt. Given the three rotationally invariant combinations

δij x
ixj = x · x ≡ r2 , δij x

idxj = x · dx , δij dx
idxj = dx · dx , (3.14)

the most general invariant form is

ds2 = −A dt2 +B dt(x · dx) + C (x · dx)2 +D dx · dx , (3.15)

where the coefficients A = A(r, t) through D = D(r, t) are arbitrary functions of the

invariants r and t.

Given the dependence on r, it is convenient to work in polar coordinates, (r, θ, ϕ),

defined as usual by x1 = r sin θ cosϕ, x2 = r sin θ sinϕ and x3 = r cos θ, in which case

x · dx = r dr and dx · dx = dr2 + r2(dθ2 + sin2 θ dϕ2) . (3.16)

In these coordinates the most general invariant line element is then

ds2 = −Ã dt2 + B̃ dtdr + C̃ dr2 + D̃ r2 (dθ2 + sin2 θ dϕ2) , (3.17)

where Ã = A, B̃ = rB, C̃ = r2C +D and D̃ = D.

We are still free to redefine the invariant coordinates r and t to further simplify

the form of this metric. A convenient choice is to redefine r → r̂ = rD̃1/2, which is

possible provided D̃ ≥ 0. This ensures the last term of eq. (3.17) becomes r̂2(dθ2 +

sin2 θ dϕ2). Physically, this means that r̂ plays the role usually associated with

‘radius’, because the sphere obtained by varying θ and ϕ at fixed r̂ and t has area

4πr̂2, and circumference 2πr̂ when these are computed using the proper length ds.

Although this choice also mixes up the coefficients of dt2, dtdr and dr2 in ds2, this

can be absorbed into appropriate redefinitions of the unknown coefficients Ã through

C̃, leaving

ds2 = −Â dt2 + B̂ dtdr̂ + Ĉ dr̂2 + r̂2 (dθ2 + sin2 θ dϕ2) . (3.18)

Finally, we may remove the cross term dtdr by redefining the time coordinate to

t = F (t̂, r̂), for which dt = dt̂ ∂t̂F +dr̂ ∂r̂F . This makes the cross term in ds2 become

[−2Â∂r̂F + B̂]∂t̂F dt̂dr̂, which can be eliminated by choosing F (r̂) as a solution to

the linear partial differential equation −2Â∂r̂F + B̂ = 0.

Once this has been done we have the most general form possible for a spherically

symmetric metric. Dropping the ‘ ˆ ’ everywhere, it is:

ds2 = −e2a(r,t) dt2 + e2b(r,t) dr2 + r2 (dθ2 + sin2 θ dϕ2) , (3.19)
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where the remaining unknown coefficient functions are written as exponentials in

order to simplify some expressions that come later.

The coordinates used to put the metric into the form eq. (3.19) are called

Schwarzschild coordinates, and are defined by the condition that it is r2 that pre-

multiplies the angular terms. An alternative definition of coordinates can instead be

defined by the condition that the metric has the alternative isotropic form

ds2 = −e2ã(ϱ,t) dt2 + e2b̃(ϱ,t)
[
dϱ2 + ϱ2 (dθ2 + sin2 θ dϕ2)

]
= −e2ã(ϱ,t) dt2 + e2b̃(ϱ,t)

[
dx2 + dy2 + dz2

]
, (3.20)

whose convenience relies on the metric within the square brackets being the metric

of flat 3-dimensional space.

Weak Gravitational Fields

To describe weak gravitational fields outside of a spherical source we further sup-

pose that these functions are close to those for a flat geometry (written in spherical

coordinates): ds2 ≃ −dt2 + dr2 + r2(dθ2 + sin2 θ dϕ2). That is, if we write

e2a(r,t) := 1 + 2Φ(r, t) and e2b(r,t) := 1 + 2Ψ(r, t) , (3.21)

then the Newtonian limit should correspond to the case where the functions Φ and Ψ

are small: Φ,Ψ ≪ 1. More precisely, because the Newtonian description of two-body

bound orbits implies v2 ≃ GM/r (c.f. the discussion around eq. (3.11)), where v is

the relative speed and M = m1 +m2, we assume Φ ≃ Ψ ≃ O(v2) ≃ O(GM/r) ≪ 1.

Geodesics for slowly moving particles

To see what the physical implications of such a metric might be, we must know

how it affects the trajectories of particles. To this end — inspired by the example

of flat spacetime — we make the additional assumption that in the absence of all

non-gravitational forces particles simply follow the geodesics of the metric.

This implies that particle motion maximizes the proper time

τAB =

∫
B

A

dt

√√√√(1 + 2Φ)− (1 + 2Ψ)

(
dr

dt

)2

− r2

[(
dθ

dt

)2

− sin2 θ

(
dϕ

dt

)2
]

≈ (tB − tA) +
1

2

∫
B

A

dt

[
2Φ−

(
dx

dt

)2

−
(
dy

dt

)2

−
(
dz

dt

)2
]
, (3.22)

where we use t as the parameter along the curve. The approximate equality: (a)

expands the square root, keeping terms only up to O(v2) — and so in particular

neglects the product Ψ(dr/dt)2 ≃ O(v4); and (b) changes to rectangular coordinates:
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(r, θ, ϕ) → (x, y, z). Assuming Φ is independent of t, and asking eq. (3.22) to be

stationary with respect to small variations in the trajectories r(t) then leads to the

following geodesic equation:
d2r

dt2
+∇Φ = 0 , (3.23)

which may be recognized as Newton’s equations for particles interacting with gravity

provided we regard Φ as being the Newtonian gravitational potential. In particular

this implies

Φ ≃ −GM
r

+O

[(
GM

r

)2
]
, (3.24)

at a radial position, r, above a weakly-gravitating, spherically symmetric source.

This shows that everything we know about orbits in Newtonian physics can be

captured by the postulate that gravity is associated with the curvature of spacetime,

with Newton’s first law modified to state that particles travel along geodesics in the

absence of non-gravitational forces. What is particularly noteworthy is that within

this framework the equivalence principle arises automatically: because gravity is

associated with motion through a geometry, the acceleration experienced by a moving

particle is independent of its mass (for precisely the same reason that the same is

true for fictitious forces like the coriolis force).

Exercise 22: Starting from the metric ds2 = −(1+2Φ) dt2+dx2+dy2+

dz2, and assuming Φ is small enough that higher powers like Φ2 can be

neglected, show that the only nonzero Christoffel symbols are Γt
tt = ∂tΦ,

Γi
tt = ∂iΦ and Γt

ti = Γt
it = ∂iΦ. Use these results in the geodesic equation

to show that geodesics, xµ(w), satisfy

ẗ+ ṫ2 ∂tΦ + 2 ṫẋk∂kΦ = 0 and ẍi + δij∂jΦ ṫ2 = 0 , (3.25)

where over-dots denote d/dw. Use these, with the identity dxi/dt = ẋi/ṫ,

to derive
d2r

dt2
− dr

dt
∂tΦ− 2

dr

dt

(
dr

dt
· ∇Φ

)
+∇Φ = 0 , (3.26)

and so also eq. (3.23) in the non-relativistic limit where ∂tΦ = 0 and

products like ∂kΦ (dxk/dt) can be neglected. (As usual, r here denotes

the vector xiei, where ex, ey and ez are the unit vectors in the three

Cartesian coordinate directions.)

Gravitational redshift

Since the trajectories of Newtonian gravity are reproduced as the geodesics of a metric

that depends on the gravitational potential, and since the geodesics are defined as
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the curves that maximize the proper time between two events, it must be true that

gravitational fields cause time to run differently for observers sitting within them.

To see this quantitatively, consider the world-lines of an observer who hovers

(perhaps using rockets) at a fixed distance above a gravitating source: xµ(τ) =

{t(τ), r⋆, θ⋆, ϕ⋆}, where (r⋆, θ⋆, ϕ⋆) labels the fixed spatial position of the observer.

Any such an observer’s 4-velocity is given by uµ = dxµ/dτ = {dt/dτ, 0, 0, 0}, where
dt/dτ can be computed in terms of the gravitational potential by using the condition

gµν u
µuν = gtt(dt/dτ)

2 = −1, and so using gtt = −(1 + 2Φ) we find

dτ

dt
=

√
−gtt =

√
1 + 2Φ ≃ 1 + Φ +O(Φ2) . (3.27)

and so, to linear order in Φ, the difference between the rates of two clocks at different

radii, rA and rB, becomes(
dτ

dt

)
B

−
(
dτ

dt

)
A

≃ Φ(rB)− Φ(rA) . (3.28)

As expected, this states that clocks run at different speeds when situated in a grav-

itational field.

Exercise 23: For a constant gravitational field pointed along the z axis

the Newtonian potential can be written as Φ = gz, where g is the uni-

versal acceleration experienced by falling objects. Eq. (3.28) states that

two clocks separated by a height h = ∆z run with rates that differ by

an amount gh, with the higher of the two clocks running faster. Verify

that this result also follows from special relativity and the principle of

equivalence by considering two observers who accelerate in the positive

z direction along the trajectories zA(t) =
1
2
g t2 and zB(t) = h + 1

2
g t2 in

the absence of a gravitational field, by comparing the times of departure

and arrival of two light rays sent from observer A to observer B.

As applied to observers outside of a spherical, weakly gravitating source, for

which Φ = −GM/r these become

dτ

dt
≃ 1− GM

r
+O

[(
GM

r

)2
]
, (3.29)

and so in particular dτ = dt for clocks that are infinitely far away (r → ∞). This

provides the physical interpretation for the coordinate t, which is seen as the time

measured by an infinitely distant observer. Eq. (3.29) then shows how time runs

more and more slowly the closer one hovers over the gravitating source. In particular,
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reinstating the factors of c, motionless clocks at the top of a building on the surface

of the Earth run faster than those on the ground floor by an amount

∆

(
dτ

dt

)
≃ GM⊕h

R2
⊕c

2
≃ gh

c2
≃ 1.1× 10−15

(
h

10m

)
, (3.30)

for a building of height h ≪ R⊕. Here g = GM⊕/R
2
⊕ ≃ 9.8 m/sec2 denotes the

acceleration due to gravity at the Earth’s surface. This difference in the clock’s rate

accumulates over time, adding up to a difference of 9.5× 10−11 sec (about a tenth of

a nanosecond) every day between clocks situated on the two floors. Time differences

this large can be measured using accurate atomic clocks, verifying the prediction of

eq. (3.30).

Closely related to the slowing of time in a gravitational field is the red-shifting of

light as it climbs out of a gravitational potential well (or its blue-shifting as it falls in).

Although this is described in more detail below, once the geodesics describing light

propagation are determined, the main result also follows from the above discussion of

gravitational time dilation. This is possible because of the connection between photon

energy and frequency required by quantum mechanics, E = ℏω, since frequencies may

be directly determined by time measurements (such as measurements of the period

T = 2π/ω).

Keeping in mind that t measures time as seen by observers at infinity, eq. (3.29)

shows that the frequency, ω(r), of a photon measured by a motionless observer at

radius r, differs from the frequency, ω∞, the same photon would be measured to have

at r → ∞ by

ω(r)

ω∞
=

T∞
T (r)

=
dt

dτ
=

1√
1 + 2Φ(r)

≃ 1 +
GM

r
+O

[(
GM

r

)2
]
. (3.31)

Physically, the decrease (or red-shift) in frequency seen by observers at successively

larger radii corresponds to the photon’s energy loss due to its having to climb out of

the gravitational potential well. (The only difference between photons and massive

particles climbing out of such a well is that for photons this energy loss does not

imply a corresponding reduction of speed.)

3.3 Relativistic effects in the Solar System

It is very useful to explore the implications of weak gravity in more detail since this

is the regime of real interest for most applications in near-Earth orbit, or within

the Solar System. But it is also useful to go beyond the strict Newtonian limit

since many measurements are sufficiently sensitive to detect the deviations between

relativistic gravity and Newton’s laws. We do so here in a way that is reasonably

model independent, by not restricting to the specific metric that we shall later find
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is predicted by Einstein’s field equations. The utility of being this general is that it

allows a quantitative statement as to the accuracy with which observations support

the predictions of General Relativity.

Parameterized Post-Newtonian (PPN) Approximation

Our starting point is the metric, eq. (3.19), which we assume also to be static (i.e. t

independent), and so write as

ds2 = −e2a(r) dt2 + e2b(r) dr2 + r2 (dθ2 + sin2 θ dϕ2)

= −
[
1 + 2Φ(r)

]
dt2 +

[
1 + 2Ψ(r)

]
dr2 + r2 (dθ2 + sin2 θ dϕ2) . (3.32)

Unlike in previous sections we do not stop at the Newtonian approximation for Φ

and Ψ and instead write

Φ(r) = −GM
r

+ (β − γ)

(
GM

r

)2

+ · · · , and Ψ(r) = γ

(
GM

r

)
+ · · · , (3.33)

where β and γ are dimensionless quantities that will differ for different theories of

gravity. As we shall see in detail below, in General Relativity the exact spherical

solution to Einstein’s equations gives

e2a(r) = 1 + 2Φ(r) = e−2b(r) =
[
1 + 2Ψ(r)

]−1

= 1− 2GM

r
, (3.34)

and so predicts

β = γ = 1 (General Relativity) . (3.35)

Most of the experimental tests of General Relativity can be summarized as con-

straints on the range for β and γ that are allowed by observations, some of the most

important of which are described in the next sections.

General properties of geodesics

Since the observational tests all involve the motion of particles or light rays within

the geometry, the first step is to identify and solve the geodesic equations. We start

with some general properties of geodesics for any geometry, before specializing to the

spherically symmetric case.

The equation of motion which defines the trajectory, xµ(τ), of a freely-falling

particle is the geodesic equation

d2xµ

dτ 2
+ Γµ

νλ[x(τ)]

(
dxν

dτ

)(
dxλ

dτ

)
= 0 , (3.36)

where for time-like geodesics τ is the proper time measured along the trajectory.

There are several first integrals of these equations that may be obtained on general

grounds.
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To find the first integral of this type, take the inner product of eq. (3.36) with

the velocity 4-vector, dxµ/dτ , and use eq. (2.39) to simplify the result:

0 = gµν

(
dxµ

dτ

)[
d2xν

dτ 2
+ Γν

αβ

(
dxα

dτ

)(
dxβ

dτ

)]
= gµν

(
dxµ

dτ

)(
d2xν

dτ 2

)
+

1

2
∂αgµβ

(
dxµ

dτ

)(
dxα

dτ

)(
dxβ

dτ

)
=

1

2

d

dτ

[
gµν

(
dxµ

dτ

)(
dxν

dτ

)]
. (3.37)

The last line uses that gµν [x(τ)] is itself evaluated along the trajectory, and so must

be implicitly differentiated.

This shows that the quantity gµν ẋ
µẋν is a constant along a geodesic (where

ẋµ = dxµ/dτ) and so in particular its sign does not change. As a result it follows

that if a particle initially starts out moving at the local speed of light, gµν ẋ
µẋν = 0,

then this is always true. Similarly, if a particle initially moves more slowly than light,

gµν ẋ
µẋν < 0, then this is also always true.

Another first integral of the geodesic equations is immediate if the metric should

happen to have an isometry. That is, if there are directions in the geometry along

which the metric does not change. Recall that the metric transforms as a tensor,

under a coordinate change, so gµ′ν′(x
′) = gαβ(x) (∂x

α/∂xµ
′
)(∂xβ/∂xν

′
). Specializing

to an infinitesimal transformation, xµ = xµ
′
+ ξµ(x′), gives ∂xµ/∂xα

′ ≃ δµα + ∂αξ
µ

and so the transformed metric becomes gµ′ν′ ≃ gµν + δgµν , with

δgµν = ξλ∂λgµν + ∂µξ
λgλν + ∂νξ

λgµλ . (3.38)

This transformation is called an isometry for those ξµ for which eq. (3.38) vanishes,

and if such a ξµ(x) exists it is called a Killing vector field. In the time-independent

and spherically symmetric applications of present interest there are four such direc-

tions, corresponding to arbitrary shifts in t, and to the three independent rotations

of 3-dimensional space (including in particular constant shifts of ϕ). The simplest

Killing vectors are those corresponding respectively to the constant shifts in the co-

ordinates t and ϕ, for which ξµ(t) = {1, 0, 0, 0} or ξµ(ϕ) = {0, 0, 0, 1} (in the coordinates

xµ = {t, r, θ, ϕ}), since for these ∂µξ
ν = 0, and the fact that the metric does not

depend on this coordinate implies ξµ(t)∂µgνλ = ∂tgνλ = 0 and ξµ(ϕ)∂µgνλ = ∂ϕgνλ = 0.

To see why isometries help integrate the geodesic equations, multiply eq. (3.36)
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through by ξµ = gµν ξ
ν , to get

0 = gµν ξ
µ

[
d2xν

dτ 2
+ Γν

αβ

(
dxα

dτ

)(
dxβ

dτ

)]
= gµν ξ

µ

(
d2xν

dτ 2

)
+ ∂αgµβ ξ

µ

(
dxα

dτ

)(
dxβ

dτ

)
− 1

2
ξµ∂µgαβ

(
dxα

dτ

)(
dxβ

dτ

)
=

d

dτ

[
gµν ξ

µ

(
dxν

dτ

)]
− 1

2
δgαβ

(
dxα

dτ

)(
dxβ

dτ

)
. (3.39)

Clearly, for any ξµ for which δgαβ = 0 the geodesic equation implies the quantity

Q = gµν ξ
µ dxν

dτ
, (3.40)

is a constant along the geodesic. That is, there is a conserved quantity for a geodesic

corresponding to each symmetry of the metric.

Geodesics in static spherically symmetric spacetimes

In terms of the metric functions a(r) and b(r) the nonzero components of the Christof-

fel symbols turn out to be,

Γr
tt = e2(a−b) ∂ra , Γt

tr = ∂ra , Γr
rr = ∂rb

Γr
θθ = −r e−2b , Γr

ϕϕ = −r sin2 θ e−2b , Γθ
rθ =

1

r
(3.41)

Γϕ
rϕ =

1

r
, Γθ

ϕϕ = − sin θ cos θ , Γϕ
θϕ = cot θ .

and so the geodesic equations become

d2t

dτ 2
+ 2 ∂ra

(
dt

dτ

)(
dr

dτ

)
= 0

d2θ

dτ 2
− sin θ cos θ

(
dϕ

dτ

)2

+
2

r

(
dr

dτ

)(
dθ

dτ

)
= 0 (3.42)

d2ϕ

dτ 2
+ 2 cot θ

(
dr

dτ

)(
dϕ

dτ

)
+

2

r

(
dr

dτ

)(
dϕ

dτ

)
= 0 ,

and

d2r

dτ 2
+e2(a−b) ∂ra

(
dt

dτ

)2

+∂rb

(
dr

dτ

)2

−re−2b

[(
dθ

dτ

)2

+ sin2 θ

(
dϕ

dτ

)2
]
= 0 . (3.43)

One of the above equations can be traded for the first integral corresponding to

the condition that gµν(dx
µ/dτ)(dxν/dτ) = −1 (or zero, for a null geodesic) along

the geodesic, which implies

−e2a
(
dt

dτ

)2

+ e2b
(
dr

dτ

)2

+ r2

[(
dθ

dτ

)2

+ sin2 θ

(
dϕ

dτ

)2
]
= −1 (or 0) . (3.44)
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The conserved quantity, E , associated with the symmetry corresponding to shifts

in t is found by multiplying the t geodesic equation by gtt = −e2a and integrating,

leading to

E = −gµν ξµ(t)
dxν

dτ
= e2a

(
dt

dτ

)
= (1 + 2Φ)

(
dt

dτ

)
, (3.45)

being a constant along the geodesic. The corresponding conserved quantity, L, asso-

ciated with shifting ϕ is similarly found by multiplying the ϕ geodesic equation by

gϕϕ = r2 sin2 θ and integrating, implying that the angular momentum

L = gµν ξ
µ
(ϕ)

dxν

dτ
= r2 sin2 θ

(
dϕ

dτ

)
, (3.46)

is also constant along any geodesic.

The resulting equations can be further simplified by using the observation that

motion in a spherically symmetric gravitational field lies completely within a plane.5

This allows us the freedom to choose the orientation of the coordinate axes so that

the relevant plane is described by θ(τ) = π
2
, for all τ . (Notice that this choice solves

the geodesic equation for θ, eq. (3.42), as claimed.) With this simplifying choice, we

may use eqs. (3.45) and (3.46) to eliminate dt/dτ and dϕ/dτ from eq. (3.44), leading

to the following first-order equation governing the radial motion of a geodesic

−E2 e−2a + e2b
(
dr

dτ

)2

+
L2

r2
= −ζ , (3.47)

where ζ = 1 for a time-like geodesic and ζ = 0 for a null geodesic. Alternatively, this

may be written (
dr

dτ

)2

+Weff(r) = 0 , (3.48)

which has the form E = 0 for the energy of one-dimensional motion in the presence

of an effective potential

Weff(r) =

(
L2

r2
+ ζ

)
e−2b(r) − E2 e−2[a(r)+b(r)]

=
1

1 + 2Ψ

(
L2

r2
+ ζ − E2

1 + 2Φ

)
. (3.49)

The advantage of writing the equation in this form is the intuition it provides about

the kinds of orbits that are possible (once the functions a(r) and b(r) — or Φ(r) and

Ψ(r) — are specified).

5The fact that the motion lies in a plane ultimately can be traced to the existence of the two

isometries to do with rotations that do not correspond simply to shifts in ϕ.
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Gravitational redshift

We are now in a position to directly verify the earlier expression for the redshift

(or energy loss) of a light ray as seen by motionless observers as it climbs away

from a gravitational source. To this end suppose a light ray is sent radially outward

from an observer at (r, θ, ϕ) = (rA, θ⋆, ϕ⋆) to another observer at position (r, θ, ϕ) =

(rB, θ⋆, ϕ⋆). To compute the energy of this light ray as seen by these observers we

must compute both their 4-velocity, uµ, and the 4-momentum of the outgoing light

ray, pµ, and evaluate E = −gµν uµpν .
The 4-velocity of an observer sitting at fixed spatial position, (r, θ, ϕ), is easiest

to compute since it must point purely in the time direction: uµ = {ut, 0, 0, 0}. The

condition gµνu
µuν = gtt(u

t)2 = −1 then implies

ut(r) =
1√

−gtt(r)
= e−a(r) =

1√
1 + 2Φ(r)

. (3.50)

The trajectory of the light ray, xµ(w), is a radially out-going null geodesic for

the given metric, for which the equations of the previous section can be applied,

specialized to the case of radial motion: dθ/dτ = dϕ/dτ = 0. In particular, the

condition gµν(dx
µ/dw)(dxν/dw) = 0, eq. (3.44), in this case implies

0 = −e2a(r)
(

dt

dw

)2

+ e2b(r)
(
dr

dw

)2

= − (1 + 2Φ)

(
dt

dw

)2

+ (1 + 2Ψ)

(
dr

dw

)2

,

(3.51)

and so the trajectory of the light ray satisfies

dr/dw

dt/dw
=

dr

dt
= ± ea−b = ±

√
1 + 2Φ

1 + 2Ψ
, (3.52)

where the sign depends on whether the light ray is in-going or out-going. Similarly,

eq. (3.45) implies that

E = e2a
(

dt

dw

)
= (1 + 2Φ)

(
dt

dw

)
, (3.53)

is constant along the outgoing null geodesic. The tangent vector to the light ray’s

world-line then is

dxµ

dw
=

{
dt

dw
,
dr

dw
, 0, 0

}
=

E
1 + 2Φ

{
1,±

√
1 + 2Φ

1 + 2Ψ
, 0, 0

}
, (3.54)

in terms of which the photon’s 4-momentum may be written pµ(w) = k dxµ/dw for

some constant k.
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We may now compute the energy of the photon seen by the stationary observers

at fixed position, which is given by

E(r) = −gµν uµpν = −gtt utpt =
kE√

1 + 2Φ(r)
. (3.55)

In particular, since Φ → 0 as r → ∞ it follows that kE = E∞ can be interpreted as

the photon’s energy as seen by observers at rest very far from the gravitating source.

In this case, the energy seen by observers at rest at general r is

E(r)

E∞
=

1√
1 + 2Φ(r)

≃ 1 +
GM

r
+

(
3

2
− β + γ

)(
GM

r

)2

+ · · · , (3.56)

which agrees with the result, eq. (3.31), of the previous section.

Deflection of light by the Sun

The equation governing the ra-

Figure 5: The geometry of light deflection by a

gravitating body, showing the impact parameter,

b, and deflection angle, δϕ.

dial motion for a more general light

ray in a spherically symmetric grav-

itational field is eq. (3.48), together

with eq. (3.49) specialized to ζ = 0:

Weff(r) =
1

1 + 2Ψ

(
L2

r2
− E2

1 + 2Φ

)
.

(3.57)

These describe trajectories that typ-

ically escape to infinity, particularly

in the weak field limit, since light

rays move so swiftly they are diffi-

cult to bind into orbits. The point

of closest approach to the gravitat-

ing source of such a ray corresponds to the place where dr/dτ = 0, and so — from

eq. (3.48) — occurs at r = r⋆, where Weff(r⋆) = 0. That is,

b2 :=
L2

E2
=

r2⋆
1 + 2Φ(r⋆)

≃ r2⋆ + 2GMr⋆ + 2(GM)2(2− β + γ) +O
[
(GM)3

r⋆

]
. (3.58)

If Φ = 0 then r⋆ = b, and since the geodesics are straight lines in this limit, b is

revealed as the impact parameter: the point of closest approach of the straight line

obtained by extrapolating the asymptotic trajectory far from the gravitating source.
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The radial coordinate of closest approach for the full trajectory is instead smaller

than b, approximately given by

r⋆ ≃ b−GM +O
[
(GM)2

b

]
, (3.59)

when b ≫ GM . This is a good approximation within the solar system, since then

b ≥ R⊙, and Table 1 shows that GM⊙/R⊙ ≃ 10−6.

The spatial shape of the trajectory in space, r(ϕ), is found by using eqs. (3.46)

and (3.48) to compute dr/dϕ = (dr/dτ)/(dϕ/dτ), leading to(
dr

dϕ

)2

+

(
r2

L

)2

Weff(r) =

(
dr

dϕ

)2

+
r2

1 + 2Ψ

[
1− 1

1 + 2Φ

(
r2

b2

)]
= 0 . (3.60)

Very far from the gravitating source Φ,Ψ → 0 and so this reduces to

dr

dϕ
≃ ±

(r
b

)√
r2 − b2 , (3.61)

where the sign corresponds to which angular direction the light ray travels relative

to the gravitating source. This has as solutions b = r cos(ϕ − ϕ⋆) (upper sign) or

b = r sin(ϕ− ϕ⋆) (lower sign). These are the equations of a straight line, as must be

so in the absence of gravity. This form confirms that b is the impact parameter of

the asymptotic trajectory.

The measured quantity when a light ray is deflected by a gravitating source is the

deflection, δϕ, between the asymptotic lines defined by the incident and departing

rays. This is computed by inverting the expression for dr/dϕ to obtain dϕ/dr, using

eq. (3.60), and integrating the result from the initial asymptotically distant region to

the final one. Since the scattering is symmetric about the point of closest approach,

the total change, ∆ϕ, over the whole trajectory is twice the result integrated from

r = r⋆ to r = ∞, leading to

∆ϕ = 2

∫ ∞

r⋆

dr

(
dϕ

dr

)
= 2b

∫ ∞

r⋆

dr

r

√
(1 + 2Φ)(1 + 2Ψ)

r2 − b2(1 + 2Φ)
. (3.62)

Changing variables to x = r/r⋆, using the leading approximations Φ ≃ −GM/r,

Ψ ≃ γ GM/r, r⋆ ≃ b−GM , and expanding to linear order in GM/b, this becomes

∆ϕ = 2

∫ ∞

1

dx

x

√
(1 + 2Φ)(1 + 2Ψ)

(xr⋆/b)2 − 1− 2Φ

= 2

∫ ∞

1

dx

x
√
x2 − 1

[
1 +

GM

bx

(
γ +

x2

x+ 1

)]
+O

[(
GM

b

)2
]

(3.63)

= π + 2(γ + 1)

(
GM

b

)
+O

[(
GM

b

)2
]
.
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The desired scattering angle subtracts the result in the absence of gravity, δϕ =

∆ϕ− π, and so (restoring factors of c)

δϕ =
γ + 1

2

(
4GM

b c2

)
+O

[(
GM

b c2

)2
]

(radians) . (3.64)

In particular, for General Relativity we have γ = 1, so applying eq. (3.64) to tra-

jectories that just graze the Sun — i.e. for which M = M⊙ and b = R⊙ — gives

δϕ ≃ 1.75 seconds of arc. (An arc-second is defined to be 1/3600 of a degree.)

Exercise 24: Compute the deflection angle in Newtonian gravity for a

particle whose trajectory is bent by gravity as it passes a second particle,

as a function of its impact parameter, b. Specialize the result to the

case where the particle’s speed is v = c and show that Newton would

have predicted a result that is half as large as Einstein’s prediction of

δϕ ≃ 4GM/b c2. Here M = m1 +m2 is the total mass of the two-particle

system.

This effect was first observed in 1919, by searching for the deflection of starlight

as it passes very close to the Sun during a total solar eclipse. The deflection is then

observable as an apparent change in the position of the stars seen near the Sun during

the eclipse as compared with their relative positions when the Sun is elsewhere in

the sky. Because the light rays are bent towards the Sun, during the eclipse their

apparent position as seen from Earth is displaced away from the Sun, by an amount

that falls off with their angular separation from the Sun.

Modern measurements instead perform this measurement using very long base-

line radio telescopes to observe astrophysical radio sources when these are near the

Sun. The use of long baseline interferometry provides much improved angular resolu-

tion, as well as the advantage that the Sun is not as brilliant a foreground obstruction

in radio wavelengths as it is in visible light. The main complications arise from the

presence of a plasma of ionized particles in the solar corona near the Sun, whose

presence provides an index of refraction for the radio waves and so can bend their

trajectories. Unlike the relativistic effect, the influence of the solar corona is fre-

quency dependent, however, and so can be disentangled by making observations at

more than one frequency. The resulting constraint on the PPN parameter γ is

γ = 1.007± 0.009 , (3.65)

and so agrees well with the prediction γ = 1 of General Relativity.
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Shapiro time delay

A second observable related to the

Figure 6: The geometry of time delay mea-

surements, showing the impact parameter, d,

point of closest approach, r⋆, and the dis-

tances to the Earth, rE = r⊕ and Mars rM .

trajectories of light rays in the presence

of gravity is associated with the change

in transit time for light rays that travel

very close to the solar surface [2]. This

can be measured by sending signals to

other planets (such as to space probes

orbiting Mars or on the Martian surface)

and back and measuring the result as a

function of the planetary position as it

passes through superior conjunction (i.e.

when it is on the opposite side of the Sun

from the Earth).

Recall that it takes light about 8

minutes to reach the Earth from the Sun,

and it takes a radio signal about 40 min-

utes to make the round trip across the

740 million km from Earth to Mars at its most distant. Since the Earth’s orbital

speed is roughly 30 km/s, during this time the Earth only moves through about

70,000 km, largely at right angles to the line of sight to Mars. As a result we can

treat the Earth and Mars to be at rest for the purposes of the calculation.

Suppose the instantaneous Sun-Earth distance is denoted r⊕, and the same for

Mars is rM , and if the radial position of the radio signal’s closest approach to the

Sun is r⋆. In the absence of gravity the time taken for the round-trip passage of a

signal from Earth to Mars (see Figure 6) is

∆t0 = 2
(√

r2M − d2 +
√
r2⊕ − d2

)
, (3.66)

where d is the distance from the Sun of the nearest point on the straight line connect-

ing Mars to the Earth. Each square root of the form
√
r2 − d2 gives the light travel

time along the straight-line trajectory to r from r = d, and the factor of 2 appears

because we seek the round-trip time. Notice that, unlike for the impact parameter b

in the calculation for the deflection of light, the quantity d satisfies d < r⋆, because

the relevant straight-line trajectory is the one passing directly from Earth to Mars,

and not the one tangent to the asymptotic light ray at infinite distance.

With gravity present, the radius of closest approach is found by asking where

dr/dτ = 0 along the geodesic trajectory, leading to eq. (3.58), which statesWeff(r⋆) =

0, and so r⋆ = b−GM + · · · , where b = L/E .
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The time elapsed (as seen by a distant motionless observer) during the radio

signal’s trip is found by integrating dt/dr = (dt/dτ)/(dr/dτ), using eqs. (3.48) and

(3.45). That is, (
dr

dt

)2

+

(
1 + 2Φ

E

)2

Weff(r) = 0 , (3.67)

and so the round-trip time evolved becomes ∆t = 2[T (r⋆, rM) + T (r⋆, r⊕)], with

T (r⋆, rx) =

∫ rx

r⋆

dr

(
dt

dr

)
=

∫ rx

r⋆

dr

√
1 + 2Ψ

1 + 2Φ

[
1− b2

r2
(1 + 2Φ)

]−1/2

. (3.68)

Writing r = x r⋆ and expanding to leading order in GM/r⋆ then gives

T (r⋆, rx) = r⋆

∫ rx/r⋆

1

dx

√
1 + 2Ψ

1 + 2Φ

[
1− b2

x2r2⋆
(1 + 2Φ)

]−1/2

(3.69)

= r⋆

∫ rx/r⋆

1

dx√
x2 − 1

[
x+

GM

r⋆

(
1 + γ +

1

x+ 1

)]
+O

[(
GM

r⋆

)2
]

≃
√
r2x − r2⋆ +GM

{
(1 + γ) cosh−1

(
rx
r⋆

)
+ tanh

[
1

2
cosh−1

(
rx
r⋆

)]}
.

These expressions may be simplified using cosh−1 x = ln
(
x+

√
x2 − 1

)
and tanh

(
1
2
z
)
=

(ez − 1)/(ez + 1) and so

tanh

(
1

2
cosh−1 x

)
=
x− 1 +

√
x2 − 1

x+ 1 +
√
x2 − 1

=

√
x− 1

x+ 1
, (3.70)

to get (with c’s re-instated) ∆t = 2[T (r⋆, rM) + T (r⋆, r⊕)], with

cT (r⋆, rx) ≃
√
r2x − r2⋆ +

GM

c2

[
(1 + γ) ln

(
rx +

√
r2x − r2⋆
r⋆

)
+

√
rx − r⋆
rx + r⋆

]
, (3.71)

up to terms of order (GM)2/r⋆c
4.

In the applications of interest to the solar system this may be simplified using

rx ≫ r⋆ to drop all terms suppressed by (r⋆/rx)
2, whose accuracy is controlled by

(R⊙/r⊕)
2 ≃ 2× 10−5, an amount about 10 times larger than GM⊙/R⊙. In this case

the total time delay becomes

∆t ≃ ∆t0 +

(
1 + γ

2

)
4GM

c3
ln

(
4 rMr⊕
r2⋆

)
. (3.72)

This neglects the product (r⋆/r⊕)
2(GM/r⋆), which means that the difference between

d and r⋆ can be neglected in the first term, allowing it to be written as the transit

time, ∆t0, found in the absence of gravity, eq. (3.66).
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The size of this effect for signals sent to Mars during superior conjunction is

about 250 µsec out of a total round-trip travel time of about 40 minutes. Although

this represents only a change of one part in 107, it can be measured precisely due

to the great stability of atomic clocks, which can be accurate to a part in 1012. The

orbits of the planets are also known to sufficient precision to make their positions

known to an accuracy of about a kilometre, meaning that the timing effect is also not

swamped by the distance uncertainty. The biggest measurement errors are associated

with the effects of propagation through the ions of the solar corona, as was the case

for measurements of the solar deflection of light. The resulting precision obtained

for the PPN parameter γ from the Viking Mars Mission is [3]

γ = 1.000± 0.002 . (3.73)

More recent measurements of the same effect for signals sent to the Cassini probe at

Saturn have improved this accuracy to [4]

γ − 1 = (−1.3± 5.2)× 10−5 , (3.74)

again in good agreement with the prediction γ = 1 of General Relativity.

Orbital precession

Another classic test of General Relativity within the solar system concerns the orbits

of planets and satellites rather than the motion of light rays. In this case the relevant

equations are those for a time-like geodesic, rather than a null one, and so the radial

dependence is given by eqs. (3.48) and (3.49), with ζ = 1 rather than zero, and so(
dr

dτ

)2

+Weff(r) = 0 , (3.75)

with

Weff(r) =
1

1 + 2Ψ

(
L2

r2
+ 1− E2

1 + 2Φ

)
, (3.76)

with conservation of energy and momentum given by eqs. (3.45) and (3.46),

E = (1 + 2Φ)

(
dt

dτ

)
and L = r2

(
dϕ

dτ

)
. (3.77)

The Newtonian Limit

It is useful to have in mind the properties of the Newtonian orbits before investigating

their relativistic corrections.
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Recall that for orbits, the Newto-

108

r
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0
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Figure 7: A plot of the Newtonian effective

potential against r.

nian limit of these equations corresponds

to Φ = −GM/r = O(v2), and dt/dτ =

1 + O(v2) and so E = 1 + ε with ε =

O(v2). In this case Ψ = O(v2) only con-

tributes at O(v4) and so can be com-

pletely neglected, leaving eq. (3.75) in

the familiar form from the Newtonian

Kepler problem,

1

2

(
dr

dτ

)2

+
L2

2 r2
+ Φ(r) = ε . (3.78)

In particular we see that L = r2(dϕ/dτ)

is the usual specific angular momentum,

while ε plays the role of the total Newtonian energy. The effective potential appearing

here, Veff(r) = (L2/2r2)−GM/r, is plotted in Fig. 7, which displays the divergence

Veff → +∞ as r → 0 when L ̸= 0, thereby showing how angular momentum excludes

an orbiting particle from approaching too close to r → 0. For r → ∞ the limit

instead is Veff → 0 from below, showing that orbits with ε ≥ 0 escape to infinity

while those with ε < 0 describe bound orbits.

The bound orbits are confined to lie within a finite range of radii, r− ≤ r ≤ r+,

whose endpoints are determined by the conditions dr/dτ = 0. Eq. (3.78) allows these

to be determined in terms of the conserved quantities L and ε, since they must be

roots of
L2

2 r2
− GM

r
= ε . (3.79)

The smaller of the two roots, r−, corresponds to the point of closest approach to the

Sun, and is called its perihelion. Aphelion6 defines the point on the orbit furthest

from the Sun, given by the larger of the two roots, r = r+. Solving eq. (3.79) gives

the explicit expressions

1

r±
=
GM ∓

√
(GM)2 − 2L2|ε|
L2

, (3.80)

or, equivalently,

r± =
GM ±

√
(GM)2 − 2L2|ε|
2|ε|

. (3.81)

6For orbits about the Earth the corresponding points are instead called perigee and apogee, and

for orbits about other stars the terms are periastron and apastron.
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The explicit shape, r(ϕ), of the bound orbits in the Newtonian case is found by

combining eqs. (3.78) and (3.77) to obtain

1

2

(
dr

dϕ

)2

=
1

2

(
dr/dτ

dϕ/dτ

)2

=

(
r2

L

)2(
ε+

GM

r
− L2

2 r2

)
. (3.82)

This can be explicitly integrated by changing variables to u = 1/r, giving solutions

u = A + B cosϕ where A and B are constants. These describe bound orbits that

are ellipses, with the constants A and B related to their semi-major axis a and

eccentricity 0 ≤ e < 1. In terms of a and e:

r(ϕ) =
a(1− e2)

1 + e cosϕ
. (3.83)

This shows that the points closest to and furthest from the Sun are given by r± =

a(1±e). Comparing this with the expressions for r± in terms of L and ε allows these

conserved quantities to be given in terms of a and e by

L2 = GMa(1− e2) and ε = −GM
2a

, (3.84)

and so L2/(2 |ε|) = a2(1− e2) = r+r− and r+ + r− = 2 a = GM/|ε|.
There are two different ways to define the period of the orbit, both of which

happen to give the same result in the Newtonian limit. One definition, Pr, is defined

in terms of the radial motion as the time taken to move between successive perihe-

lia. This can be found by recognizing that dt/dτ ≃ 1 in the Newtonian limit, and

integrating eq. (3.78)

Pr = 2

∫ r+

r−

dr

(
dt

dr

)
= 2

∫ r+

r−

dr

[
2 ε+

2GM

r
− L2

r2

]−1/2

=
2√
2 |ε|

∫ r+

r−

rdr√
(r+ − r)(r − r−)

=
π(r+ + r−)√

2 |ε|
, (3.85)

and so (
Pr

2π

)2

=
(GM)2

(2 |ε|)3
=

a3

GM
, (3.86)

in agreement with Newton’s modification of Kepler’s Third Law.

A second way to define the orbital period is in terms of the angular motion, as

the time, Pϕ, required to sweep out 2π radians:

Pϕ =

∫ 2π

0

dϕ

(
dt

dϕ

)
=

∫ 2π

0

dϕ

(
r2

L

)
=

2 a2(1− e2)2

L

∫ π

0

dϕ

(1 + e cosϕ)2

=
2 a2(1− e2)2

L

[
π

(1− e2)3/2

]
= Pr . (3.87)
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Because these two notions of period agree with one another, the Newtonian orbit

passes through precisely the same points every time ϕ cycles through 2π radians,

and so is said to be closed.

More generally this is not the case in relativistic systems, and any mismatch

Pr ̸= Pϕ implies the orbit precesses, with successive perihelions occurring at different

angular positions, displaced by the perihelion shift, δϕprec := ∆ϕ− 2π, with

∆ϕ := 2

∫ r+

r−

dr

(
dϕ

dr

)
. (3.88)

For the Newtonian orbits δϕprec = 0, because

∆ϕ = L

∫ r+

r−

dr

r
√

2GMr − 2 |ε|r2 − L2
=

L√
2 |ε|

∫ r+

r−

dr

r
√
(r+ − r)(r − r−)

=
√
a2(1− e2)

(
2π

√
r+r−

)
= 2π , (3.89)

as expected, since Pr = Pϕ.

Relativistic Precession

We may now see how the leading relativistic corrections change these Newtonian re-

sults. The main observable effect from the point of view of testing General Relativity

is the violation of the relation Pr = Pϕ that relativistic effects induce, leading to a

nonzero prediction for the orbital precession angle, δϕprec.

To this end we recompute eq. (3.88) by going back to the full expressions,

eqs. (3.75) and (3.77), for the orbital shape, r(ϕ). These give(
du

dϕ

)2

=
1

r4

(
dr

dϕ

)2

= − 1

L2(1 + 2Ψ)

(
L2

r2
+ 1− E2

1 + 2Φ

)
, (3.90)

where u := 1/r. Expanding this out to next-to-leading order in powers of GM/r =

GMu and E = 1 + ε gives(
du

dϕ

)2

≃ 1

L2

[(
−L2u2 + 2GMu+ 2 ε

)
(1− 2γ GMu)

+2(2 + γ − β)(GMu)2 + ε2 + 4 εGMu
]
. (3.91)

The relativistic correction terms have several effects. First, they change the

position of the zeroes of the right-hand side of eq. (3.91), to u± = u0± + δu±, where

δu± ≃
(2 + γ − β)(GMu0±)

2 + 1
2
ε2 + 2 ε (GMu0±)

L2u0± −GM

=
(2 + γ − β)(GMu0±)

2 + 1
2
ε2 + 2 ε (GMu0±)

±
√
(GM)2 + 2L2ε

≃ ±
(
GM

a2e

)[
2 + γ − β

(1± e)2
+

1

8
− 1

1± e

]
, (3.92)
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in which the second line uses eq. (3.80) to simplify the denominator, and the third

line expresses L, ε and u0± in terms of a and e using the equations for the Newtonian

orbits.

The angle ∆ϕ then becomes

Figure 8: The precession of

an elliptical orbit, such as is

caused by deviations from the

inverse-square force law.

∆ϕ = 2L

∫ u−

u+

du√
Au3 +Bu2 + Cu+D

(3.93)

≃ 2π − L

∫ u−

u+

du

[
δAu3 + δB u2 + δC u+ δD

(B0u2 + C0u+D0)3/2

]
,

where

B0 = −L2 , C0 = 2GM and D0 = 2 ε , (3.94)

while

δA = 2γGML2 , δB = 2(2− γ − β)(GM)2 ,

δC = 4(1− γ) εGM and δD = ε2 . (3.95)

The integral in the second line of eq. (3.93) is subtle

to evaluate because it diverges as u → u0±. Although δu+ > 0 and δu− < 0, so

the range of integration does not include u0±, it is nonetheless true that this near-

divergence complicates the expansion of the integral in powers of GM/a. Such an

evaluation gives (restoring factors of c)

δϕprec = ∆ϕ− 2π =

(
2 + 2γ − β

3

)
6π

(1− e2)

(
GM

a c2

)
. (3.96)

Exercise 25: Verify that eq. (3.96) follows from eq. (3.93), as claimed.

Astronomy has a long history of precise observations of planetary orbits, and

most orbits are observed to precess. However there are several complication to be

addressed before these can be compared with the prediction, eq. (3.96). First of all,

Newton’s Law only predicts strictly elliptical orbits for a planet orbiting the Sun in

the absence of the gravitational pull of all of the other planets, and in the approxi-

mation that the Sun is perfectly spherical. Deviations from these two idealizations

perturb the orbits, typically causing them to precess. The calculated contribution of

these more mundane perturbations must be subtracted from any observed precession

before any relativistic effects can be identified.

Deviations of this type from the predictions of Newtonian mechanics were iden-

tified very early, and were historically used to predict the existence of some of the

outer planets before their actual discovery. By the turn of the 20th century all such
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planetary effects had been accounted for, and only one observation remained in dis-

agreement with predictions: a small anomalous precession in the orbit of Mercury.

This is measured to precess — relative to the vernal equinox (i.e. the place in the

sky where the Sun crosses the celestial equator in the spring as seen from the Earth)

— by a very small amount: 5599.7 arc-seconds per century. For comparison, the

amount expected within Newtonian gravity is given in the first three rows of the

following table, which sum to the Newtonian prediction of 5557.0 arc-sec/century.

Source Amount (arcsec/century)

Earth’s spin precession 5025.6

Other planets 531.4

Solar oblateness 0.03

Relativity 42.98± 0.04

Total 5600.0

The difference between the observations and the Newtonian prediction, 43 arc-

sec/century, is larger than the theoretical and observational errors, and its interpre-

tation remained a puzzle, until the discovery of General Relativity. Remarkably, the

contribution of eq. (3.96) for β = γ = 1 is precisely the amount required to bring

theory into agreement with observations. This was one of the clinchers for Einstein

and others in the early days of General Relativity. Given the bounds on γ coming

from the deflection of light and the Shapiro time delay, the agreement of predictions

with the orbit of Mercury gives the following limit on β:

β = 1.000± 0.003 . (3.97)

There is an analogous relativistic precession of the orbits of other planets, and

some asteroids, and although the orbits of the remaining innermost planets are so

close to circular that their precession is hard to measure, all extant observations

agree well with the predictions. The comparison for the innermost planets and the

asteroid Icarus is given in the following table [5].

Object GR prediction (arcsec/century) Observation (arcsec/century)

Mercury 43.0 43.1± 0.05

Venus 8.6 8.4± 4.8

Earth 3.8 5.0± 1.2

Icarus 10.3 9.8± 0.8
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4. Field equations for curved space

The content of general relativity has been summarized (by John Wheeler) as the

statements that “Spacetime tells Matter how to move” and “Matter tells Spacetime

how to curve”.

The previous section has explored the implication of generalizing Newton’s First

Law to the assumption that particles move on geodesics in the absence of any non-

gravitational forces. This is how spacetime tells matter to move. The remainder

of this section describes the field equations, which is how matter makes spacetime

curve. These equations are necessary for predicting which metric should be relevant

to describe the gravitational field in any given situation.

4.1 Gravity as curvature

The first step towards formulating the field equations is to identify how they should

depend on the metric. To this end we seek a quantity that expresses precisely what

is different about a gravitating geometry. Whatever this quantity is, it should be

a tensor so that whatever the distinction is, all observers will agree on it (much as

they all agree on what it means to be a geodesic).

Freely falling observers

The principle of equivalence states that a freely-falling observer in a gravitational

field finds the local laws of physics are the same as those given in special relativity.

These observers are those whose coordinates are such that gµν = ηµν and Γµ
νλ = 0

at the relevant point, and so geodesics correspond to the condition d2xµ/dτ 2 = 0.

Mathematically, it is always possible to find such an observer at any point, and the

coordinates of these observers are called Gaussian normal coordinates.

In general it is not possible to find a similar class of observers simultaneously for

all of the points throughout an entire region of spacetime, and according to Einstein

the failure to be able to do so is the signature of the existence of a gravitational field.

We therefore seek a tensor that can be used to distinguish a metric that describes

a gravitational field, from one which is simply Minkowski space written in a bizarre

set of coordinates.

Since the issue is whether or not Γµ
νλ can be made to vanish throughout an

entire region, even though this is always possible at a given point, the obstruction

is to do with the ability to choose coordinates that set derivatives, ∂ρΓ
µ
νλ, to zero at

a given point, as well Γµ
νλ itself. We therefore expect the tensor which expresses the

obstruction to involve derivatives of the Christoffel symbols, and so second derivatives

of the metric.
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The tensor that provides the obstruction to making the Christoffel symbols van-

ish throughout a region is the natural generalization to spacetime of the curvature,

encountered in earlier sections when describing the differential geometry of space.

That is, the existence of observers for which Γµ
νλ = 0 throughout some region can

be shown to be equivalent to the vanishing of the Riemann curvature tensor, Rµ
νλρ,

throughout the same region, where

Rµ
νλρ = ∂λΓ

µ
νρ + Γµ

λσΓ
σ
νρ − (λ↔ ρ) . (4.1)

Recalling that the Christoffel symbols are defined by

Γµ
νλ =

1

2
gµρ
(
∂νgλρ + ∂λgνρ − ∂ρgνλ

)
, (4.2)

it is clear that the Riemann tensor involves second derivatives of the metric tensor.

Because Rµ
νλρ transforms as a tensor, if it vanishes in any set of coordinates, it

must also vanish for all others. This means that although the laws of nature can be

made into those of special relativity simply by transforming to an appropriate freely-

falling frame), this does not mean that all the effects of gravity are removed in such

a frame. This cannot be true, since the curvature tensor, Rµ
νλρ, cannot be similarly

removed simply by performing a coordinate transformation. Einstein’s point with the

principle of equivalence was not that gravity is purely a fictitious frame-dependent

thing, but rather that it is the tidal forces of gravity that are present for all observers,

and it is the curvature of spacetime that encodes these tidal effects.

4.2 Einstein’s field equations

We may now state the field equation that expresses how sources of mass and energy

give rise to gravitational fields, that generalizes the Newtonian field equation for the

gravitational potential, Φ:

∇2Φ = 4πGµ , (4.3)

where µ is the local mass density. We’ve seen that the Newtonian potential, Φ, is

naturally expressed as a component of the metric, gµν , and since eq. (4.3) involves

second derivatives of Φ it is natural to seek a generalization with the curvature tensor

appearing on the left-hand side.

Einstein proposed that the spacetime curvature tensor, Rµ
νλρ, is related to the

local distribution, Tµν , of stress-energy by the following field equations:

Rµν −
1

2
Rgµν =

8πG

c2
Tµν , (4.4)

where Tµν is the stress-energy tensor that describes the conserved energy and mo-

mentum of matter, Rµν = Rλ
µλν is the spacetime’s Ricci tensor and R = gµνRµν is

its Ricci scalar. The left-hand-side of this equation is the most general one which

satisfies the following three conditions:
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1. It transforms as a symmetric tensor (as does Tµν);

2. It involves exactly two derivatives of gµν (which is the relativistic generalization

of the Newtonian potential Φ, because gtt ≈ −1 − 2Φ in the non-relativistic

limit); and

3. It is covariantly conserved inasmuch as: ∇µ
(
Rµν − 1

2
Rgµν

)
= 0.

In the above ∇µ denotes the covariant derivative, defined so that ∇µTµ... =

gµν∇µTν..., and

∇µT
α1...

β1... = ∂µT
α1...

β1... + Γα1
µρT

ρ...
β1... + · · · − Γρ

µβ1
Tα1...

ρ... − · · · . (4.5)

It is defined in this way in order to have the following properties: ∇µTν...λ transforms

as a tensor under coordinate changes if Tν...λ does, and for a freely-falling observer

(for whom Γµ
νλ = 0 at a particular point) it reduces to a regular partial derivative:

∂µTν...λ. Given these properties, the third condition listed above is motivated by the

generalization to curved space,

∇µT
µν = ∂µT

µν + Γµ
µαT

αν + Γν
µαT

µα = 0 , (4.6)

of the conservation of stress-energy, eq. (2.66). Notice that because it is a tensor

equation, if ∇µT
µν vanishes for any observer it must vanish for all observers. But

energy conservation requires ∇µT
µν = 0 because eq. (4.6) reduces to eq. (2.66) for a

freely falling observer, for whom Γµ
νλ vanishes at a particular point.

Two comments are in order about Requirement 2, that the left-hand side involve

only two derivatives:

1. Requirement 2 should not be regarded as being fundamental. Rather, keep-

ing in mind that our observational knowledge of gravity is largely confined to

comparatively weak gravitational fields, it should be regarded as the leading

contribution in an expansion of the left-hand side in powers of the curvature.

As such it expresses our ignorance about strong curvatures, and we should

expect any inferences drawn from General Relativity to be suspect when the

curvatures become sufficiently large. How large? This is not known, but we

should beware whenever any dimensionless measure of curvature (like GgµνRµν

or G2RµνλρR
µνλρ) should become large.

2. Requirement 2 states that the left-hand side should contain precisely two

derivatives of the metric, but if this equation is to be regarded as being a

derivative expansion one should really keep all terms having up to two deriva-

tives. In fact there is one possible term involving no derivatives at all, and this
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should be expected to dominate if derivatives are small. Including this term

revises eq. (4.4) to

Rµν −
1

2
Rgµν + λ gµν = 8πGTµν , (4.7)

where the constant λ is known as the ‘cosmological term’. At present there is

evidence from cosmology that λ is actually nonzero, but very small compared

with the contribution of the right-hand side of eq. (4.7) in all applications apart

from cosmology. For simplicity we ignore this term in the following sections,

but return to it in the later discussion of cosmology.

Taking the trace of eq. (4.4) implies R = −8πGT , where T = gµνTµν is the

trace of the stress tensor. Using this in eq. (4.4) gives the Einstein equations in their

trace-reversed form:

Rµν = 8πG
(
Tµν −

1

2
Tgµν

)
. (4.8)

In particular, a vacuum spacetime is one for which no matter is present, and so

Tµν = 0. Eq. (4.8) implies any such spacetime is Ricci flat: Rµν = 0.

Exercise 26: Use the definitions to compute the Ricci scalar for an n-

dimensional space whose metric is gµν = e2ϕ ηµν , where ϕ(x) is a scalar

function and ηµν is the usual flat Minkowski metric. Show that it is given

by

R = −2(n− 1)∂2ϕ− (n− 1)(n− 2)(∂ϕ)2 , (4.9)

where ∂2ϕ := ηµν∂µ∂νϕ and (∂ϕ)2 := ηµν∂µϕ ∂νϕ.

4.3 Rotationally invariant solutions

This section now derives some of the solutions to Einstein’s equations which describe

the geometries outside of symmetric gravitating sources, such as stars, planets or

black holes.

Birkhoff’s Theorem: Spherical symmetry implies static

Consider first the geometry outside of a spherical distribution of matter. It is assumed

that there is no matter outside of the distribution, and so Tµν = 0 in the region

of interest. The goal of this section is to identify the most general solution to the

vacuum Einstein equations which is spherically symmetric. We do so without making

the additional assumption of time-independence.

We saw earlier that it is always possible to choose coordinates in a spherically

symmetric geometry so that the metric takes the form of eq. (3.19). The metric

cannot be simplified further using only symmetries and coordinate choices, so the
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functions a(r, t) and b(r, t) must be determined by solving Einstein’s field equations

for the vacuum: Rµν = 0. To this end the next step is to specialize Einstein’s

equations to the special case of the metric given in eq. (3.19).

Plugging into the definitions the nonzero components of the Christoffel symbols

become:

Γt
tt = ∂ta , Γt

tr = ∂ra , Γt
rr = e2(b−a) ∂tb

Γr
tt = e2(a−b) ∂ra , Γr

tr = ∂tb , Γr
rr = ∂rb (4.10)

Γr
θθ = −r e−2b , Γr

ϕϕ = −r sin2 θ e−2b , Γθ
rθ =

1

r

Γϕ
rϕ =

1

r
, Γθ

ϕϕ = − sin θ cos θ , Γϕ
θϕ = cot θ .

Exercise 27: Verify that eqs. (4.10) follow from a direct application of

the definition of Γµ
νλ to the metric of eq. (3.19), as claimed.

Using these components of the Christoffel symbols in the definition of the Rie-

mann tensor then leads to the following nonzero components:

Rt
rtr = e2(b−a)

[
∂2t b+ (∂tb)

2 − ∂ta ∂tb
]
− ∂2ra− (∂ra)

2 + ∂ra ∂rb ,

Rt
θtθ = −r e−2b∂ra , Rt

ϕtϕ = −r e−2b sin2 θ ∂ra ,

Rt
θrθ = −r e−2a∂tb , Rt

ϕrϕ = −r e−2a sin2 θ ∂tb , (4.11)

Rr
θrθ = r e−2b∂rb , Rr

ϕrϕ = r e−2b sin2 θ ∂rb ,

Rθ
ϕθϕ = (1− e−2b) sin2 θ .

Finally, taking the trace of this to obtain the Ricci tensor leads to

Rtt = ∂2t b+ (∂tb)
2 − ∂ta ∂tb+ e2(a−b)

[
∂2ra+ (∂ra)

2 − ∂ra ∂rb+
2∂ra

r

]
Rrr = −∂2ra− (∂ra)

2 + ∂ra ∂rb+
2∂rb

r
+ e2(b−a)

[
∂2t b+ (∂tb)

2 − ∂ta ∂tb
]
(4.12)

Rtr =
2∂tb

r
, Rθθ = 1 + e−2b

[
r(∂rb− ∂ra)− 1

]
, Rϕϕ = Rθθ sin

2 θ .

Exercise 28: Verify that eqs. (4.11) and (4.12) follow from a direct appli-

cation of the definitions, using the components of Γµ
νλ given in eq. (4.10),

as claimed.

The goal is to use the five equations found by setting Rµν = 0 to solve for the

two unknown functions a(r, t) and b(r, t). Although this seems like it should be an

over-determined problem (too many equations for the number of unknowns), it is not

for two reasons. The first reason is the spherical symmetry of the problem (which
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is also what reduced the metric to two independent functions). For example the

conditions Rθθ = 0 and Rϕϕ = 0 are not independent conditions, and this is a generic

consequence of spherical symmetry. However, the remaining four equations still do

not over-determine a and b because of the Bianchi identity, ∇µ
(
Rµν − 1

2
Rgµν

)
= 0,

implies that they are not all independent.

Birkhoff’s Theorem

The simplest equation to solve is Rtr = 0, which implies b = b(r) is t-independent.

Differentiating Rθθ = 0 with respect to t and using ∂tb = 0, then implies the further

condition ∂t∂ra = 0, whose general solution is a(r, t) = f(r) + g(t), for arbitrary

functions f and g. This makes the time component of the metric become −e2adt2 =
−e2f(r)[eg(t)dt]2, which shows that the function g(t) can be removed by redefining the

t coordinate from t to t′, with dt′ = eg(t)dt. Once this has been done it follows that

the remaining metric functions are independent of time: a = a(r) and b = b(r):

ds2 = −e2a(r)dt2 + e2b(r)dr2 + r2(dθ2 + sin2 θ dϕ2) . (4.13)

This result is important, so it has a name: Birkhoff’s theorem. It states that the

assumption of spherical symmetry is sufficient in itself to ensure that the geometry is

also time-independent. A metric like eq. 4.13, for which coordinates exist for which

all components of gµν are independent of t and there are no terms linear7 in dt, is

called static. If the metric can only be made t-independent in coordinates for which

dt dxi cross-terms exist, then the metric is instead called stationary.

The Schwarzschild Solution

Given the t-independence of a and b, the components of the Ricci tensor simplify to

Rtt = e2(a−b)

[
∂2ra+ (∂ra)

2 − ∂ra ∂rb+
2∂ra

r

]
Rrr = −∂2ra− (∂ra)

2 + ∂ra ∂rb+
2∂rb

r

Rθθ = 1 + e−2b
[
r(∂rb− ∂ra)− 1

]
, Rϕϕ = Rθθ sin

2 θ . (4.14)

A simple equation is obtained by taking the combination Rtte
2(b−a) + Rrr = 0,

which gives
2

r

(
∂ra+ ∂rb

)
= 0 . (4.15)

This implies a + b = k, where k is an r-independent constant. The constant k can

be set to zero without loss of generality simply by rescaling the time coordinate

t→ e−kt, leaving the result a(r) = −b(r). Using this in Rθθ = 0 implies

e2a
(
2r∂ra+ 1

)
= ∂r

(
re2a

)
= 1 , (4.16)

7More precisely, for which the vector in the time direction is ‘hypersurface orthogonal’.
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whose solution is

e2a = 1− rs
r
, (4.17)

where the integration constant, rs, has dimensions of length, and is called the

Schwarzschild radius. As is easily checked, no further information is obtained from

setting to zero any of the other components of Rµν given in eq. (4.14).

The value of the integration constant, rs, can be found by examining the large-r

limit, for which the metric approaches the metric for flat space (written in polar

coordinates): ds2 → −dt2+dr2+ r2(dθ2+sin2 θ dϕ2). A metric having this property

is said to be asymptotically flat. Since the flatness of the metric at large r implies the

gravitational field is weak there, the Newtonian limit applies and so gtt ≈ −1− 2Φ,

where Φ = −GM/r is the Newtonian potential for a spherical source having mass8 M .

Comparing this with the large-r limit of gtt = −e2a = −1+rs/r gives (re-introducing

the factors of c),

rs =
2GM

c2
. (4.18)

The final result is the Schwarzschild geometry

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) , (4.19)

whose weak-field limit (r ≫ rs) is obtained by expanding in powers of rs/r, and gives

the Parameterized Post-Newtonian form, e2a = −[1−2GM/r+(β−γ)(GM/r)2+· · · ]
and eb = 1 + γ(GM/r) + · · · , with β = γ = 1, as was discussed in earlier sections.

Notice that rs is very small for ordinary astrophysical objects. For instance

using the solar mass, M⊙ = 2 × 1033 g, leads to rs = 3 km. For such objects the

geometry of eq. (4.19) becomes inappropriate once one reaches the ‘edge’ of the sun,

r = R⊙ = 700, 000 km, inside of which Tµν no longer vanishes. Because of this the

entire exterior of the star is effectively in the weak-field limit r > R⊙ ≫ rs.

5. Compact stars and Black Holes

This section explores some of the physical consequences of the spherically symmetric

solutions obtained in the previous section, going beyond the limit of weak gravita-

tional fields considered earlier.

Geodesics

Given the metric, the motion of freely falling observers can be found by integrating

the geodesic equations, eq. (3.36). This relies on having explicit expressions for the

8There are a number of definitions of mass in GR, and defining M in this way is equivalent to

using that of Arnowitt, Deser and Misner (ADM) in this case.
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Christoffel symbols for the Schwarzschild geometry, which are given by specializing

eqs. (4.10) to the case e−2b = e2a = 1− rs/r:

Γt
tr = −Γr

rr =
rs

2r(r − rs)
Γr
tt =

rs(r − rs)

2r3

Γr
θθ = −(r − rs) , Γr

ϕϕ = −(r − rs) sin
2 θ

Γθ
rθ = Γϕ

rϕ =
1

r
, Γθ

ϕϕ = − sin θ cos θ , Γϕ
θϕ = cot θ . (5.1)

Using these gives the geodesics as solutions, xµ(τ) = [t(τ), r(τ), θ(τ), ϕ(τ)], to the

following equations:

d2t

dτ 2
+

[
rs

r(r − rs)

]
dr

dτ

dt

dτ
= 0

d2r

dτ 2
+

[
rs(r − rs)

2r3

](
dt

dτ

)2

−
[

rs
2r(r − rs)

](
dr

dτ

)2

−(r − rs)

[(
dθ

dτ

)2

+ sin2 θ

(
dϕ

dτ

)2
]
= 0 (5.2)

d2θ

dτ 2
+

2

r

dθ

dτ

dr

dτ
− sin θ cos θ

(
dϕ

dτ

)2

= 0

d2ϕ

dτ 2
+

2

r

dϕ

dτ

dr

dτ
+ 2 cot θ

dθ

dτ

dϕ

dτ
= 0 .

5.1 Orbits

As discussed earlier, solving these equations themselves is in general a mess. However

because of the symmetries of the geometry there are a number of conservation laws,

which help obtain solutions. Spherical symmetry ensures the conservation of angular

momentum, and the conservation of the direction of angular momentum requires the

trajectory to be restricted to a plane in space. We are free to choose our coordinates

so that this plane corresponds to θ = π/2, and it is clear that θ(τ) = π/2 is indeed a

solution to the third of eqs. (5.2). Using this result, the conservation of the magnitude

of angular momentum can then be seen by multiplying the last of eqs. (5.2) by r2,

to give (d/dτ)[r2(dϕ/dτ)] = 0. This leads to the first integral

r2
dϕ

dτ
= L (5.3)

where L is a constant.

Time-translation invariance similarly leads to energy conservation, whose form

is found by multiplying the first of eqs. (5.2) by (1 − rs/r), to get (d/dτ)[(1 −
rs/r)(dt/dτ)] = 0. Integrating then gives the first integral(

1− rs
r

) dt

dτ
= E , (5.4)
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where E is a constant. Furthermore, eq. (3.37) shows that it is also always true that

ζ = −gµν
dxµ

dτ

dxµ

dτ

=
(
1− rs

r

)( dt

dτ

)2

−
(
1− rs

r

)−1
(
dr

dτ

)2

−r2
[(

dθ

dτ

)2

+ sin2 θ

(
dϕ

dτ

)2
]
, (5.5)

is also conserved along any geodesic. For timelike geodesics we usually choose τ to be

proper time along the trajectory, in which case ζ = 1. For null geodesics describing

the propagation of light we must instead choose ζ = 0. This last equation may be

simplified by using the three conservation laws given above, allowing the derivatives

dt/dτ , dθ/dτ and dϕ/dτ to be eliminated in favour of the constants L and E , giving
the following first-order equation to be solved for dr/dτ :

ζ =
(
1− rs

r

)−1

E2 −
(
1− rs

r

)−1
(
dr

dτ

)2

− L2

r2
. (5.6)

In principle one solves this equation for r(τ), and after plugging the result into

eqs. (5.3) and (5.4), integrates these to obtain ϕ(τ) and t(τ).

This last equation can be put into a form with which one can become emotionally

involved, by multiplying through by 1
2
(1− rs/r):

1

2

(
dr

dτ

)2

+ V (r) = E , (5.7)

where

V (r) =
1

2

(
1− 2GM

r

)(
L2

r2
+ ζ

)
=

[
L2

2r2
− ζGM

r

]
− L2GM

r3
+
ζ

2

and E =
E2

2
. (5.8)

What is attractive about eq. (5.7) is that it has the form of the energy equation in

elementary mechanics for one-dimensional motion in a potential, V (r), for a particle

having energy E . This is attractive because there is considerable intuition about the

properties of the solutions based on the shape of the potential.

Orbits of massive particles

Consider first the timelike geodesics which describe the world-lines of massive parti-

cles moving slower than the speed of light, corresponding to the choice ζ = 1 in the
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above expressions. It is useful to contrast the relativistic result with what happens

for orbits in the Newtonian limit. To this end notice that the effective potential

governing the radial motion of orbits in the Newtonian limit is given by the square

bracket in the second equality for V (r): that is Vc(r) = (L2/2r2)−GM/r.

To infer the qualitative properties of orbits in the Newtonian limit notice that

Vc(r) → +∞ as r → 0 and Vc(r) → 0 from below as r → ∞. This implies Vc(r) must

have a minimum for some intermediate value, r = rc, which differentiation shows lies

at r = rc ≡ L2/GM . Furthermore, r is time independent at this minimum provided

that the ‘energy’ satisfies E = Vc(rc), and so r = rc gives the position of the circular

orbits for a given L. Since this is a minimum of Vc, circular orbits are stable for any

L and orbits which start near r = rc will oscillate about this point. The period of

this radial oscillation is given by ω2
r = V ′′

c (rc), and so ωr = (GM)2/L3. On the other

hand, for circular orbits the angular frequency of the orbit’s angular motion is given

by ωϕ = (dϕ/dτ) = L/r2c = (GM)2/L3. This result ωr = ωϕ is related to these orbits

being ellipses having a fixed orientation in space, since the time between successive

closest approaches (perihelia) is the same as the time taken to circumnavigate the

orbit once.

How does all this change in the relativistic case? In this case V (r) → −∞ as

r → 0 and V (r) → 1
2
from below as r → ∞. Differentiating V shows that V ′(r)

vanishes when

r = rc± ≡ L

rs

[
L±

(
L2 − 3 r2s

)1/2]
. (5.9)

We see from this that if L <
√
3 rs then V (r) has no real minima or maxima, and so

no circular orbits are possible at all. Orbits then come in two classes: those coming

in from infinity, which have E ≥ 1
2
, or E2 ≥ 1; and those which cannot escape from

the gravitational source, having E < 1
2
, or E2 < 1. In both cases, once r begins to

decrease it necessarily reaches r = 0 (and so at some point either reaches r = rs or

crashes into the source’s surface).

If, on the other hand, L >
√
3 rs, then V (r) has a local minimum at r = rc+

and a maximum at r = rc−. This shows that stable orbits occur at r = rc+, and

the radius of these orbits grows as L does. The smallest stable orbit occurs when

L =
√
3 rs, and occurs at rmin = 3 rs = 6GM . On the other hand, for L ≫ rs the

radius of the stable orbit becomes rc+ → L2/GM , which agrees with the Newtonian

result (as we should expect because GM/rc = (GM)2/L2 = (rs/2L)
2 ≪ 1). Orbits

which start near such circular orbits will oscillate about this radius, with frequency

ω2
r = V ′′(rc) =

3L2

r4c
− 2GM

r3c
− 12L2GM

r5c
. (5.10)

Since this does not agree with the frequency of the angular motion, defined by ωϕ =

(dϕ/dτ) = L/r2c , the motion describes the precessing ellipses seen in earlier lectures.
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Exercise 29: Compute ωϕ for a stable circular orbit as a function of L

and GM and compare it to the frequency, ωr, of small radial oscillations

about the same circular orbit, computed using eq. (5.10). From these

calculate the precession angle, δϕprec, that accumulates per period for

nearly circular elliptical orbits in Schwarzschild spacetime. Does your

result agree with the small-eccentricity limit of the post-Newtonian result

found earlier in eq. (3.96)?

Circular orbits are also possible at r = rc−, which decreases with increasing L.

However because this is a maximum of V (r) these orbits are unstable, and small

perturbations from them cause the trajectory to veer into the source or to escape

out to infinity. In particular, the outermost of these circular orbits occurs for the

smallest possible L, corresponding to rc− → 6GM as L →
√
3 rs (which coincides

with rc+ in this limit). The smallest possible unstable circular orbit instead occurs

as L→ ∞, which corresponds to rc− → 3
2
rs = 3GM .

Exercise 30: Show that circular orbits in Schwarzschild spacetime ex-

actly satisfy Kepler’s 3rd Law: Ω2 = GM/r3, where Ω = dϕ/dt =

(dϕ/dτ)/(dt/dτ).

Orbits of light rays

The trajectories for massless particles (like photons, gravitons and possibly some

neutrinos) are found in an identical fashion, using instead ζ = 0, as appropriate for

null geodesics. In this case the potential V (r) degenerates to

V (r) =
L2

2r2

(
1− 2GM

r

)
, (5.11)

for which V ′ vanishes at the L-independent value r = rc ≡ 3
2
rs = 3GM . Since

V (r) → −∞ as r → 0 and V (r) → 0+ as r → ∞, V has a maximum at r = rc.

This shows that there is only one possible circular orbit for a light ray, and this

is unstable — occurring at r = 3GM . Furthermore, since V (rc) = 1
6
[L/(3GM)]2,

photons which approach from infinity do not get closer than r = 3GM provided

their ‘energy’ satisfies E < V (rc), or |E| < L/(3
√
3GM). Trajectories having |E|

larger than this necessarily reach r < 3
2
rs.

5.2 Radial geodesics

We have seen that orbits exist for which test particles can move to arbitrarily small

r, and this means that we may have to take seriously the potential singularities of

the metric at r = 0 and r = rs. (More about these singularities in the next section.)
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Since for any given E the orbits which penetrate to small r have small L it is useful to

study in more detail radially-directed geodesics corresponding to particles which fall

directly in (or climb directly out) of the gravitational potential. For simplicity it is

also useful to follow the fastest-moving particles, and so specialize to null geodesics.

If we focus on the shape of these geodesics in the (r, t) plane, it is convenient not

to separately find r(τ) and t(τ), and to instead directly use the condition

ds2 = 0 = −(1− rs/r) dt
2 + (1− rs/r)

−1dr2 , (5.12)

to get
dr

dt
= ±

(
1− rs

r

)
. (5.13)

This integrates to give the curves r∗(r) = ±t, where the upper (lower) sign cor-

responds to outward-going (in-falling) geodesics. Since the tortoise coordinate, r∗,

defined by

r∗ = r + rs ln

∣∣∣∣ rrs − 1

∣∣∣∣ , (5.14)

approaches r for large r, these trajectories get closer and closer to the flat-space

geodesics, r = ±t, as r → ∞. Notice also that r∗ → −∞ as r → rs.

Suppose we now examine what happens to an in-falling light ray, for which r∗ =

−t. At asymptotically late times, t→ ∞, r∗ approaches −∞ and so r asymptotically

approaches rs from above. Even though we found that orbits are not energetically

precluded from reaching r = 0, the above result makes it seem as if an infinite

amount of time is required to reach the Schwarzschild radius. And this is indeed

true, although it is important in relativity to specify more precisely whose time the

coordinate t keeps track of.

Imagine therefore filling spacetime with observers who hover at a fixed radius

and angle in the Schwarzschild gravitational field. (Since these are not geodesics,

these observers would have to use rockets to accelerate and keep from falling in the

ambient gravitational field.) Only the coordinate t varies along the world-line of such

an observer, but the proper time as measured by one of these observers is given by

dτ 2 = −ds2 =
(
1− rs

r

)
dt2 , (5.15)

and so dτ = (1 − rs/r)
1/2 dt. In general this differs from dt because of the gravita-

tional redshift associated with each observer’s position, and so t represents the time

measured only by the asymptotic observer at r → ∞.

The result above therefore shows that as seen by an observer at infinity, an in-

falling light ray takes an infinite amount of time to reach r = rs. It does not show

that this takes an infinite amount of time as measured by the in-falling observers
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themselves. This can be determined by returning to our geodesic expression, eq. (5.7),

in the case L = 0:
dr

dτ
= ±

[
E2 − ζ

(
1− rs

r

)]1/2
. (5.16)

For in-falling null geodesics we choose ζ = 0, and so r = r0−E(τ − τ0), showing that

r = rs is reached in a finite parameter interval along the null geodesic. A similar

conclusion can be drawn for in-falling timelike geodesics, for which ζ = 1. This is

most simply done by choosing the special case E = 1, for which dr/dτ = −
√
rs/r,

and so r ∝ τ 2/3.

We conclude that in-falling observers pass r = rs in a finite amount of their own

time. Paradoxically, this is not inconsistent with the infinite amount of time taken

as seen by the observer from infinity. To understand this suppose that the in-falling

astronaut were to send regularly spaced signals out to the observer at infinity during

the trip. Because of the gravitational redshift, these signals arrive at infinity spaced

further apart than they were on their emission, with this redshift becoming infinite

as the astronaut reaches r = rs.

5.3 Singularities of the solution

Because coordinates can be chosen arbitrarily in General Relativity, it is always

important to check that they mean what they are assumed to mean. This is usually

done by using the metric to compute physical distances, such as when we chose the

radial coordinate earlier to be the radius or area of the spheres at fixed r and t.

However, because the metric itself is only found after solving the field equations, it

may be that the coordinates do not end up having all of the properties they were

assumed to have when they were chosen. For this reason it is always important to

check the properties of the metric which results, to see what it implies about the

properties of various coordinate surfaces.

The first thing to check is that the metric is well-defined: i.e. that its components

are finite and the metric is invertible. (Invertibility is important because if gµν is

not invertible then the infinitesimal coordinate displacements, dxµ, are not linearly

independent and so do not span all of the possible directions in the space.) Inspection

of the Schwarzschild metric, eq. (4.19), shows that there are two places which might

be problems: r = 0 and r = rs. Clearly neither of these is of real interest for most

astrophysical objects, for which the solution does not apply down to such small radii.

Curvature singularity: r = 0

The geometry near r = 0 is counter-intuitive because for all 0 < r < rs it is grr which

is negative, while gtt is positive. This means that in this region it is r, and not t,

that is the time coordinate!
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r = 0 seems problematic, because the components of the metric and curvature

tensors all diverge at this point. This need not represent a physical problem in itself,

however, because the components of a tensor are different in different coordinate

systems, and it could just be that our coordinates are poorly chosen near r = 0. For

instance, even starting with the flat metric ds2 = −dt2+dx2+dy2+dz2 can lead to

divergent metric components after performing the coordinate change x = 1/(w− 3),

since dx = −dw/(w−3)2 implies there are metric components which diverge as w → 3

or vanish as w → ∞. In this case this is a sign that the coordinate transformation

x→ w is singular (because x or w diverges).

Is this what is happening for the Schwarzschild solution at r = 0? If so there

would exist an inspired change of coordinates which would remove the singularities

in the metric and curvature as r → 0. A sufficient condition for such a change

of coordinates not to exist is if there is a scalar quantity which diverges, since a

scalar takes the same value in all coordinate systems. Examples of scalars might

be R, RµνR
µν or the eigenvalues, λa, of the matrix Rµ

ν . (These last are scalars

because the covariance of the eigenvalue equation Rµ
νv

ν
a = λav

µ
a requires λa to be a

scalar. Notice the same would not be true for the eigenvalues of the matrix Rµν !)

Unfortunately, none of those listed helps for the Schwarzschild geometry, because

this satisfies Rµν = 0 by construction. However, there is a scalar that diverges at

r = 0:

RµνλρR
µνλρ =

12 r2s
r6

, (5.17)

and this shows that r = 0 really is a curvature singularity, and not merely a coordinate

singularity.

Given that we believe Einstein’s equations are likely to be weak-curvature ex-

pansions of something more fundamental, we should be wary of taking too seriously

the properties of the Schwarzschild solution very near r = 0.

Coordinate singularity: r = rs = 2GM

What about the singularity seen in eq. (4.19) as r → rs? Is this also a curvature

singularity? It is the purpose of this section to argue that this is a coordinate

singularity, which merely expresses the breakdown of the Schwarzschild coordinates

for r ≤ rs. An indication that this is possible comes from the fact that nothing

particular seems to happen to in-falling observers as they reach rs.

This suggests dropping the coordinates r and t and instead trying coordinates

which are adapted to in-falling and out-going radial light rays. To this end consider

the new coordinates u and v, defined in terms of the tortoise coordinate, r∗, of

eq. (5.14):

u = t− r∗ v = t+ r∗ . (5.18)
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Radially in-falling light rays are described in these coordinates by constant v, while

radially out-going light rays travel along the lines of constant u.

The idea is to trade t, the Schwarzschild time variable, for either u or v. For in-

stance, Eddington-Finkelstein coordinates are defined by using the coordinates (v, r),

in terms of which the Schwarzschild metric becomes

ds2 = −
(
1− rs

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdϕ2) , (5.19)

and so gvv = −(1 − rs/r), grv = gvr = 1 and grr = 0. It is clear that none of the

metric components diverge anymore as r → rs, although some do pass through zero

there. However, zero values for metric elements are not in themselves a problem —

after all, there were plenty of zeros in the diagonal Schwarzschild metric for r ̸= rs —

provided that the metric remains invertible. However the determinant of the above

metric is g ≡ det gµν = −r4 sin2 θ, which is independent of GM and so takes the

same value as it does in flat space. This shows that the vanishing of det g when r

or sin θ vanish is just a reflection of the breakdown of spherical polar coordinates at

r = 0, or at θ = 0 and θ = π for nonzero r.

5.4 Black Holes and Event Horizons

Since the metric can be made nonsingular at r = rs simply by performing a change of

coordinates, there is nothing intrinsically singular about the Schwarzschild geometry

at r = rs. It is just that the Schwarzschild coordinates, (t, r, θ, ϕ), themselves break

down at this point. Now that we have coordinates that do not break down, what

then is the interpretation of the surface r = rs?

To see this consider again the trajectories of in-falling and out-going light rays.

In Eddington-Finkelstein coordinates the condition ds = 0 implies these satisfy

ds2 = 0 = dv
[
2dr −

(
1− rs

r

)
dv
]
, (5.20)

and so dv/dr = 0 for in-falling light rays, and dv/dr = 2(1 − rs/r)
−1 for out-going

light rays. Notice that for the outgoing rays, this means that dr/dv is positive only if

r > rs, but dr/dv < 0 when r < rs. This shows that r always decreases when r < rs,

even for the outgoing light ray! At r = rs, the outgoing ray satisfies dr/dv = 0, and

so the ray simply ‘hovers’ at r = rs. That is to say, the surface r = rs is a null

surface, spanned by null geodesics.

These arguments show that the surface r = rs serves as the point of no return,

inasmuch as no light signal emitted at r < rs can escape to r > rs. The same is

also true for timelike geodesics, as might have been expected since these particles

necessarily move more slowly than do light rays. The existence of such a surface

also makes sense from the following point of view. If the escape speed, vesc, were

– 84 –



computed as a function of r using Newtonian physics, it would be defined as that

speed that gets the object to infinity with precisely zero kinetic energy, and so would

satisfy
mv2esc
2

− GMm

r
= 0 , (5.21)

and so v2esc = 2GM/r. The radius at which vesc = c would then be rs = 2GM/c2,

in agreement with the Schwarzschild radius. (There is no reason why the numerical

factors of the Newtonian calculation should agree exactly with the relativistic calcu-

lation, but it is nonetheless a happy accident that they do.) What is new to special

relativity is the proscription of motion with v > c, which completely precludes the

ability for anything to escape from r < rs.

A surface such as this, which divides spacetime into regions between which signals

cannot be sent due to the speed of light being the maximum speed, is called an event

horizon. The surface r = rs is an event horizon for the Schwarzschild geometry. The

region with r < rs is called a black hole, since it is something from which nothing,

not even light, can classically escape.

Validity of the approximations

If gravitational effects are so dramatic as to divide spacetime into two regions like

this, one might ask whether the curvatures are too large to trust our use of Einstein’s

equations to predict them. It is worth keeping in mind when doing so that we have

three scales in the problem, namely G, M and r, and so there are two independent

dimensionless ratios which we can form from them. These are GM/r and G/r2 (in

our units with ℏ = c = 1). It turns out that each of these controls a different kind

of approximation.

• Relativistic Effects: We have already seen that the first of these, 2GM/rc2 ∼
rs/r (once the factors of c are restored), controls the importance of relativistic

effects, and the fact that this is O(1) when r ∼ rs shows that relativistic effects

are crucial to understanding the properties of the event horizon.

• Quantum effects: Our treatment of gravity has been purely classical, and it

turns out that the relative size of quantum corrections to our treatment are

of order G/r2 — or ℏG/c3r2 once ℏ and c are restored (notice the tell-tale ℏ,
the signature of quantum effects). The classical approximation is typically a

good one provided that this ratio is small. Since the unit of length — the

Planck length — associated with G is very small, ℓp = (ℏG/c3)1/2 ∼ 10−33 cm,

the condition G/r2 = (ℓp/r)
2 ≪ 1 is not a very strong restriction for any r of

astrophysical interest!
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• Weak curvature: Recall that Einstein’s equations are motivated as being the

weak-curvature approximation to some possibly more fundamental theory, and

so corrections to these equations might be expected to arise that are of order

GR, where R is any invariant notion of the local curvature. (For example,

one might think of GR being the square root of the invariant G2RµνλρR
µνλρ

for the Schwarzschild geometry.) But inspection of the Riemann tensor for

Schwarzschild shows that in order of magnitude the components of Rµνλρ are

of order GM/r3 and so GR ∼ G2M/r3 ∼ (G/r2)(rs/r), which shows how

curvature corrections to Einstein’s equations are related to the size of quantum

corrections.

The above arguments indicate that the effects of quantum gravity near the event

horizon, when r = rs, should be of order

δs =
ℏG
c3r2s

=
ℓ2p
r2s

=
ℏc

4GM2
=

M2
p

4M2
, (5.22)

and this gets smaller the larger M is. The quantity Mp =
√
ℏc/G = 2.18 × 10−8

kg is called the Planck mass, and its size shows that δs ≪ 1 for the black holes of

astrophysics, for which M > M⊙ ≃ 1.99 × 1030 kg. Given that the interpretation

of astrophysical objects as black holes is based purely on the classical predictions of

general relativity, one might have worried that this interpretation might be under-

mined by unknown quantum gravity effects. The fact that δs ≪ 1 for such black

holes shows that this worry is likely to be groundless.

Quantum effects would be important, however, for very light black holes, such

as if their mass were as small as that of an elementary particle like a proton, whose

mass is mp ≃ 1.67 × 10−27 kg. We should not trust any classical inferences about

the gravitational field of a proton at radii as small as its Schwarzschild radius, and

so have no reason to believe these should behave gravitationally as classical black

holes.

5.5 Quantum effects near Black Holes

What about black holes with masses in between these two extremes? For a black

hole with M ≃ 10−3 kg (i.e. 1 gram) we have δs ≃ 10−10, ensuring that it is

massive enough that the classical approximation would be very good, even at the

Schwarzschild radius. On the other hand, although quantum effects are small for such

a black hole, they need not be completely negligible. Are there any novel quantum

phenomena that might arise?
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Particle Production

The first quantum property of a black hole that can arise in this way as a small

quantum correction in a controlled semiclassical approximation was found in the

1970 s by Stephen Hawking. He discovered that black holes need not be strictly

black, since quantum effects can make them radiate elementary particles.

The effect he discovered for black holes is a special case of a more general quan-

tum phenomenon: the spontaneous production of particles by an external field. This

kind of effect had been predicted theoretically decades earlier by Julian Schwinger,

who predicted that a sufficiently strong electric field would create electrons and

positrons out of the vacuum.

It is instructive to see how particle production like this works energetically. Be-

cause of the randomness of quantum mechanics the vacuum of empty space is better

imagined as a frothing soup of particles and antiparticles that are forever trying

to emerge as real particles. (In quantum mechanics, whatever is not forbidden is

compulsory.) They normally cannot emerge, however, because their appearance is

forbidden by conservation laws. For instance, electrons cannot emerge from the

vacuum alone without violating conservation of electric charge, since each electron

carries charge q = −e, where e = 1.60 × 10−19 Coulomb. But since positrons carry

the opposite charge, charge conservation cannot forbid the joint emergence of an

electron-positron pair. But it is energy conservation that keeps such pairs from

emerging all the time from the vacuum around us, because such an emergence would

require the production of sufficient energy to account for their masses, E = 2mc2.

Although there is a sense that the Uncertainty Principle allows quantum fluctuations

to violate energy conservation, they can only do so very briefly and in the long term

energy conservation is inviolate.

The situation changes in the presence of an electric field, E, because the energy of

a pair of oppositely charged particles is a function of their separation. Such particles

can lower their energy by separating because their opposite charges make them feel

forces in opposite directions due to the electric field. It is the work done by these

forces that lowers their energy, and if their total energy (including their mass) can be

lowered to zero in this way then energy conservation can no longer forbid their being

produced spontaneously from the vacuum. The energy (including the rest mass) of

an electron-positron pair (held at rest) a distance x apart in a constant electric field

turns out to be

E = 2mc2 − e|E|x , (5.23)

and so this can vanish (just like for the vacuum), once x > 2mc2/e|E|.
Using the quantum probability of having the electrons emerge a distance x apart

from the vacuum, p(x) ∼ e−2mcx/ℏ, implies the probability for producing electron-
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positron pairs by an electric field is given by

p ∼ exp

(
−4m2c3

e|E|ℏ

)
. (5.24)

Notice that the exponential dependence makes this probability extremely small unless

e|E| >∼ 4m2c3/ℏ, which is why electrons don’t pop out of the vacuum all the time

in the presence of the stray electric fields that arise in day-to-day life. The kinds of

fields that are required can exist very near very heavy nuclei (having more protons

than the heaviest naturally occuring nuclei), once all of their screening electrons have

been stripped off.

Hawking Radiation

Hawking’s observation was that a similar phenomenon can happen in the gravita-

tional field produced by a black hole. As particles and antiparticles pop in and out

of the fermenting froth of the vacuum near the Schwarzschild radius, r = rs, one

member of a pair can fall into the black hole and so be unable to recombine with its

erstwhile partner. And the energy that is released by having this member fall into

the hole can be sufficient to carry its surviving partner far enough away from the

black hole that it can escape. The resulting prediction is that a black hole should

emit a constant stream of elementary particles, now called the Hawking radiation.

To see why sufficient energy is liberated, consider a particle having 4-momentum

pµ = mvµ, where m is the particle rest-mass and vµ = dxµ/dτ is its 4-velocity,

moving along a radial trajectory, r = r(t), in a Schwarzschild geometry. Since

v · v = gµνv
µvν = −(1− rs/r)(dt/dτ)

2 + (1− rs/r)
−1(dr/dτ)2 = −1, we have

vµ =


γ

γ v

0

0

 , (5.25)

where v = dr/dt and

γ =

[(
1− rs

r

)
− v2

(1− rs/r)

]−1/2

. (5.26)

Notice that the requirement that dt/dτ = γ be real requires v2 ≤ (1− rs/r)
2, which

approaches zero as r → rs. This limit arises because v is defined using the asymptotic

time t, and reflects the breakdown of this coordinate near r = rs due to the infinite

redshift that exists between this coordinate and the proper time for freely-falling

observers in this limit.
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Recall that the quantity that is conserved along the trajectory of a particle as it

falls in (or climbs out) of the black hole is

E = −gtt
dt

dτ
=
(
1− rs

r

) pt
m

= γ
(
1− rs

r

)
, (5.27)

and so is the quantity of interest for deciding whether one of a particle-antiparticle

pair can escape to infinity. This is an energy inasmuch as it agrees at r → ∞ with

the energy, E = −u · p = −gµνuµpν = −gtt utpt, of the particle as seen by a static

observer hovering at fixed radius whose 4-velocity, uµ, is ut = [1− rs/r]
−1/2 and

ui = 0.

Since E → 1 as r → ∞, the obstacle to having a particle escape to infinity is

that E for the escaping particle must get to unity whereas the sum E1 + E2 for the

particle-antiparticle pair starts at zero (same as in the absence of the pair) and is

conserved as they move along their respective geodesics. In order to have E1 = 1 for

the particle, say, its partner must be able to tunnel to a region for which E2 = −1.

The remarkable thing is that eq. (5.27) shows that this is possible, provided r < rs

because E < 0 in this region. Furthermore, E = −1 can be reached if r gets close

enough to r = 0.

Particle production can therefore occur provided the particle-antiparticle pair

can tunnel to a separation of order r ≃ rs, since one particle must remain outside

the event horizon (in order to escape) while the other must get deep enough inside

to ensure that it reaches an area for which E ≤ −1. Using the quantum amplitude,

ψ ≃ e−mr, for the amplitude for a pair of mass m to separate by a distance r leads

one to expect a particle production rate that is suppressed by a power of e−mrs .

It happens that a more precise calculation does give this result, and the dis-

tribution of particles that are released in this way closely resembles what would be

expected for the radiation from a hot body, ∝ exp(−m/TH), with the temperature

given by

kBTH =
ℏc
4πrs

=
ℏc3

8πGM
, (5.28)

where kB = 1.38×10−23 Joule/Kelvin is Boltzmann’s constant, which tells how much

energy is associated with a given temperature. TH is called the black hole’s Hawking

temperature, TH ∝ 1/rs. Numerically, for a solar-mass astrophysical black hole with

M =M⊙, this predicts the completely negligible temperature TH ≃ 10−8 Kelvin.

For thermal emission into radiation the surface brightness (energy loss rate per

unit area), f , is completely characterized by the temperature, with f = αBNrT
4,

where Nr counts the number of species of particles in the radiation and αB =

π2k4B/(60ℏ3c2) = 5.67× 10−8 Watts/(metre)2(Kelvin)4 is the Stefan-Boltzmann con-

stant. The total rate of energy loss that is produced in this way far from the black
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hole whose surface area is 4πr2s is then of order

dE

dt
≃ −4παBNrT

4
Hr

2
s = −Nr

(
M⊙

M

)2

9.00× 10−29 Watts . (5.29)

Although this is negligible for any astrophysical system, for a black hole with M = 1

gram, it is 1066 times bigger than for a solar mass, implying a whopping power release

of 1038 Watts! Since the black hole energy is given by its mass, the above equation

can be read as implying dM/dt ∝ −M−2, which can be integrated to infer how M

varies with time. The result is a monotonically decreasing function that ultimately

reaches zero, describing the black hole’s evaporation.

Because the radiation rate grows as M falls, for relatively small black holes the

energy loss due to Hawking radiation can be appreciable. And the more energy

that is lost, the smaller becomes the mass of the black hole, making the Hawking

temperature (and so also the radiation rate) larger. This is the recipe for a runaway

evaporation, wherein the radiation becomes faster and faster, ultimately becoming

explosive once the black hole mass gets down to the vicinity of the Planck mass,

Mp ≃ 2×10−8 kg. The time taken for the evaporation of such a black hole turns out

to be

τev =
5120πG2M3

ℏc4
=

(
M

M⊙

)3

6.62× 1074 seconds . (5.30)

This is much larger than the age of the universe (1010 years, or 3 × 1017 seconds)

in the case of a solar-mass black hole, but is in the ballpark of 10−25 seconds for a

one-gram black hole.

Hawking radiation is one of the few cases where a quantum effect can be reliably

computed in a gravitating environment, and it carries many surprises. It tells us

that very small black holes are unlikely to exist, since they are likely to evaporate

very quickly and explosively. It also turns out that the similarity between black holes

and thermal systems appears to be very deep, with 1/4 of the area of the black hole

event horizon (in Planck units) playing the role of its entropy

S =
πr2s
ℓ2p

=
4πGM2

ℏc
, (5.31)

called the Bekenstein-Hawking entropy. The classical evolution of the black hole

then combines precisely with the thermodynamic evolution of any surrounding hot

particles to ensure the validity of the three laws of Thermodynamics (including the

inevitability of the increase of total entropy), in a deep way that even now remains

poorly understood.
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5.6 Rotating Black Holes

The Schwarzschild solution described to this point describes the unique gravita-

tional field outside of any spherically symmetric source (including a black hole). But

because such a source carries no angular momentum, it cannot describe the gravita-

tional field exterior to a rotating source, or the field external to a black hole formed

by the collapse of initially rotating matter.

Rotating black holes are instead described by what is called the Kerr metric,9

which is axially symmetric rather than spherically symmetric. The Kerr metric can

be explicitly written using Boyer-Lindquist coordinates, {t, r, θ, ϕ}, where 0 < θ < π

and 0 < ϕ < 2π are periodic angular variables (as for spherical polar coordinates),

while both t and r can take arbitrarily large values. It is given by

ds2 = −
(
1− 2GMr

ρ2

)
dt2 − 2GMar sin2 θ

ρ2

(
dt dϕ+ dϕ dt

)
+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[(
r2 + a2

)2 − a2∆ sin2 θ
]
dϕ2 (5.32)

= −∆

ρ2

[
dt− a sin2 θ dϕ

]2
+

sin2 θ

ρ2

[
(r2 + a2)dϕ− a dt

]2
+
ρ2

∆
dr2 + ρ2dθ2 ,

where a and GM are positive real parameters with dimensions of length while ρ(r, θ)

and ∆(r) are functions, given explicitly by

∆ := r2 − 2GMr + a2 , (5.33)

and

ρ2 := r2 + a2 cos2 θ . (5.34)

As is straightforward (but tedious) to verify, the Ricci tensor constructed from

this metric vanishes — Rµν = 0 — so it satisfies the vacuum Einstein equations.

Other useful quantities are the metric’s determinant, g = det gµν , whose square root

is √
−g = ρ2 sin θ = (r2 + a2 cos2 θ) sin θ , (5.35)

and the inverse metric, which has nonzero components

−gtt = (r2 + a2)2 − a2∆sin2 θ

∆ρ2
, gtϕ =

2GMar

∆ρ2
(5.36)

and

grr =
∆

ρ2
, gθθ =

1

ρ2
and gϕϕ =

(r − 2GM)r + a2 cos2 θ

∆sin2 θρ2
. (5.37)

9Both Schwarzschild and Kerr solutions to Einstein’s equations are named after their discoverers.
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For r ≫ a and r ≫ GM these functions become ρ ≃ r and ∆ ≃ r2 − 2GMr and

so the metric becomes

ds2 ≃ −
(
1− 2GM

r

)
dt2 − 2GMa sin2 θ

r

(
dt dϕ+ dϕ dt

)
(5.38)

+

(
1 +

2GM

r

)
dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
,

up to terms that are subdominant by two powers of 1/r. This asymptotes to

Minkowski space in spherical polar coordinates as r → ∞, showing that this ge-

ometry is asymptotically flat at large r.

Keeping terms of order 1/r shows g00 ≃ −1 + 2GM/r and so the Newtonian

potential seen by very distant observers is Φ = −GM/r, as appropriate for an object

of mass M (where G, as usual, denotes Newton’s gravitational constant). This

interpretation of M as the black hole mass is also supported by taking the a → 0

limit for arbitrary r, in which case (5.32) becomes the Schwarzschild metric, with

rs = 2GM .

The dependence on θ implies the metric (5.32) has less symmetry than does the

Schwarzschild metric, making it not spherically symmetric. It is symmetric under

the independent constant shifts of the coordinates t and ϕ, however, showing that it

is both time-translation invariant — i.e. ‘stationary’ — and invariant under rotations

for which θ remains fixed. For the asymptotically flat geometry at large r, shifts of

ϕ with fixed θ correspond to rotations about only the z-axis.

As usual there is a conserved angular momentum associated with this rotational

invariance, but because the invariance is only about the z-axis, there is only a single

conserved quantity, J , instead of a vector’s-worth of quantities, J. This conserved

angular momentum works out to be related to a by

J =Ma , (5.39)

so the a→ 0 limit corresponds to turning off the geometry’s angular momentum (in

which limit we saw above the geometry becomes Schwarzschild).

The presence of the dt dϕ + dϕ dt term implies the Kerr geometry is (unlike

the Schwarzschild geometry) not ‘static’ — i.e. not invariant under time-reversal,

for which t → −t — even though the geometry is stationary.10 The absence of

time-reversal invariance is also what would be expected for nonzero J because time-

reversal also changes the sign of J , and indeed the Kerr solution remains invariant

under t→ −t if at the same time we take a→ −a.
10Strictly speaking, a geometry is stationary when it has a time-like Killing vector field, ξµ — see

the discussion around eq. (3.38) — and it is static if this vector field is ‘hypersurface orthogonal’,

i.e. perpendicular to surfaces of constant t.
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In the limit M → 0 with a fixed, the metric (5.32) becomes

ds2 = −dt2 +
r2 + a2 cos2 θ

r2 + a2
dr2 +

(
r2 + a2 cos2 θ

)
dθ2 +

(
r2 + a2

)
sin2 θ dϕ2 . (5.40)

This is again flat space but written in ellipsoidal coordinates, related to cartesian

coordinates by

x =
√
r2 + a2 sin θ cosϕ , y =

√
r2 + a2 sin θ sinϕ , z = r cos θ . (5.41)

Surfaces of constant r in these coordinates are ellipsoids that satisfy

x2 + y2

r2 + a2
+
z2

r2
= 1 . (5.42)

As r → 0 these ellipsoids degenerate down to a circular disk, x2 + y2 ≤ a2, at

z = 0, whose centre corresponds to cos θ = 1 and whose boundary at x2 + y2 = a2

corresponds to cos θ = 0.

Event horizons and Ergosphere

The Kerr geometry describes the spacetime surrounding a spinning black hole, and

it is a black hole inasmuch as there is a region of the spacetime from which it is

impossible to escape to spatial infinity. The boundary of this region defines an

‘event horizon’ through which the flow of test particles is purely a one-way trip.

To explore the physically significant surfaces like this, consider various families of

observers moving within this spacetime.

The first class of observers to consider are those who simply ‘hover’ at fixed r,

θ and ϕ. These are the observers who remain at rest with stationary observers at

infinity, relative to whose clocks the hovering observers experience time-dilation (or

redshift). The 4-velocity, uµ, of any such a hovering observer points purely in the t

direction and must be time-like or null, so that gµνu
µuν = gtt(u

t)2 ≤ 0. Increments

of proper time, dτ , for such an observer are given by

dτ 2 =

(
1− 2GMr

ρ2

)
dt2 . (5.43)

Such observers are only possible when 2GMr < ρ2 = r2 + a2 cos2 θ and so

r > GM +
√

(GM)2 − a2 cos2 θ , (5.44)

and for radii smaller than this all timelike observers must also move in the direction

of the black hole’s rotation. For the equator (for which θ = π
2
and so cos θ = 0) this

amounts to r > 2GM — just like the corresponding condition for Schwarzschild.

It occurs for smaller radii than this at higher latitudes, with hovering observers
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allowed for r > r+ := GM +
√

(GM)2 − a2 at the poles (for which cos θ = ±1).

Eq. (5.44) defines the exterior of the ‘ergosphere’, defined as the region within which

it is impossible to simply hover at fixed r, θ and ϕ.

Consider next a photon that moves in the equatorial plane (cos θ = 0) initially

with no radial velocity. Such a photon instantaneously has a 4-momentum pointing

purely in the ϕ and t directions, and so satisfies gttdt
2+gtϕ(dt dϕ+dϕ dt)+gϕϕdϕ

2 = 0,

and so

dϕ

dt
= − gtϕ

gϕϕ
±

√(
gtϕ
gϕϕ

)2

− gtt
gϕϕ

. (5.45)

Evaluating this right at the boundary of the ergosphere (which for θ = π
2
corresponds

to r = 2GM) implies gtt = 0 and so

dϕ

dt
= 0 or

dϕ

dt
= −2

(
gtϕ
gϕϕ

)
=

a

2(GM)2 + a2
. (5.46)

These show that a photon moving in a retrograde sense relative to the black hole

rotation has zero transverse speed when at the edge of the ergosphere. A massive

particle not moving radially at this radius moves more slowly than a photon and so

must be carried along by the rotation within the ergosphere. By contrast, motion

in the same sense as the black hole rotation has nonzero speed, suggesting that the

edge of the ergosphere is unlikely also to define the event horizon in the equatorial

plane.11

This disagreement between the position of the event horizon and the boundary

of the ergosphere arises because Kerr is stationary but not static. To identify the

position of the event horizon consider the trajectory r(t) of a radially out-going light

ray. This satisfies ds2 = 0 and so r(t) must satisfy

dr

dt
=

√
∆

ρ2

(
1− 2GMr

ρ2

)
. (5.47)

The radial position, r, no longer increases with increasing t once the right-hand side

of this equation vanishes. This either occurs when 2GMr = ρ2 = r2 + a2 cos2 θ or

when ∆ = r2 − 2GMr + a2 = 0.

The problem at 2GMr ≤ ρ2 proves to be more about the breakdown of the

ability to use the coordinate t to parameterize time along a timelike curve inside

the ergosphere. Instead it is radii for which ∆(r) = 0 that turn out to correspond

to event horizons for the Kerr metric, corresponding to where grr = 1/grr vanishes.

This implies the event horizons occur as surfaces of constant r, at the specific values

r = r± := GM ±
√

(GM)2 − a2 . (5.48)

11Recall for a Schwarzschild black hole a photon cannot have tangential components to momentum

right at the horizon, r = 2GM .
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External observers only access information from outside the outermost of the two

event horizons — i.e. the one at r = r+. Precisely as for the Schwarzschild geometry,

the apparent singularity of the metric at r± is only an artifact of the breakdown

there of the coordinates {t, r, θ, ϕ}.
Notice that the external horizon becomes the Schwarzschild horizon r+ → 2GM

as a → 0, and also corresponds to the boundary of the ergosphere (for all θ) in this

limit. The ergosphere touches the outer horizon only at the poles, but elsewhere (for

all cos2 θ < 1) is strictly exterior to the outer horizon.

Both the boundary of the ergosphere and the event horizons are only real for all

θ if a ≤ GM , in which case the black-hole angular momentum satisfies the upper

bound

J =Ma ≤ GM2 . (5.49)

This is believed to be a physical condition for black holes because geometries with

a > GM turn out to have regions of infinite curvature that are not masked by event

horizons (what are called ‘naked singularities’), that are unstable and are believed

to be unphysical.

6. Other astrophysical applications

The universe is a violent place, containing many examples of matter situated in very

extreme environments. Many of the most violent of these involve black holes located

in galactic centres whose masses are many millions of times the mass of our Sun.

These release enormous amounts of energy as material falls into the black hole, in

amounts that can only be understood within a relativistic framework.

Furthermore more sophisticated surveying techniques are now mapping out larger

and larger regions of the universe, allowing a more detailed understanding of how

much matter is out there, where it is, and how it interacts with its surroundings.

Since most of this material turns out to be dark, there is a high premium for un-

derstanding how it gravitates, since this provides the only observational handle on

knowing where it is.

Many of these studies rely heavily on General Relativity, and some are accurate

enough to provide precision tests of the theory that are similar in spirit to those

performed in the solar system. This section summarizes a few of these.

6.1 Stellar interiors

For an astrophysical object like a star the properties of the event horizon are irrel-

evant, because the Schwarzschild geometry only applies down to the star’s radius,

R⋆, below which we must re-solve Einstein’s equations in the presence of matter,
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Tµν ̸= 0. To illustrate how this works, this section finds this interior geometry us-

ing a simple model of the physics of the star. The absence of stable orbits in the

Schwarzschild solution too close to r = rs should make one expect that stars should

not be able to stave off gravitational collapse if they become too dense, R⋆ ∼ rs, and

this expectation is borne out in detail in the analysis below.

If the star is spherically symmetric then the arguments made earlier show that

it is always possible to choose coordinates so that the metric has the form

ds2 = −e2adt2 + e2bdr2 + r2(dθ2 + sin2 θdϕ2) , (6.1)

where we may take a = a(r) and b = b(r) if the star’s interior is time-independent.

The goal is to solve for these functions using the field equations,

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν , (6.2)

given a simple choice for Tµν . To this end we require the components of the Einstein

tensor, Gµν , which can be found using eqs. (4.12):

Gtt =
e2(a−b)

r2
(
2r∂rb− 1 + e2b

)
, Grr =

1

r2
(
2r∂ra+ 1− e2b

)
,

Gθθ = r2e−2b

[
∂2ra+ (∂ra)

2 − ∂ra ∂rb+
1

r
(∂ra− ∂rb)

]
(6.3)

and Gϕϕ = Gθθ sin
2 θ.

For the stress energy, we take the stellar interior to be a perfect fluid that is

characterized by an energy density, ρ, and pressure, p, which are related by some

sort of equation of state, p = p(ρ, S), where S is the fluid’s entropy. Any such a fluid

must have a local rest frame, whose 4-velocity is denoted by uµ(x), where as usual

gµνu
µuν = −1.

To determine the stress tensor for such a fluid, we appeal to the principle of

equivalence. First consider the limit of flat space for which we would like Ttt = ρ

and Tij = p δij in the fluid’s rest frame (for which uµ = (1, 0, 0, 0)). This implies Tµν ,

written in terms of uµ, ρ and p, must be defined by

Tµν = (ρ+ p)uµuν + p gµν , (6.4)

where gµν = ηµν in flat space. The principle of equivalence says that this same ex-

pression should also hold in the presence of a gravitational field, since it is a generally

covariant expression that agrees with the flat-space result of special relativity in the

special frame for which gµν = ηµν .

Evaluating eq. (6.4) using the metric, eq. (6.1) leads to the following components

for Tµν :

Ttt = e2aρ , Trr = e2bp , Tθθ = r2p , (6.5)
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and Tϕϕ = Tθθ sin
2 θ. The expression of energy conservation for this metric, ∇µTµν =

0, then implies

(ρ+ p)
da

dr
= − dp

dr
. (6.6)

Using eqs. (6.5) in the Einstein equations leads to three independent expressions:

e−2b

r2
(
2r∂rb− 1 + e2b

)
= 8πGρ (tt equation)

e−2b

r2
(
2r∂ra+ 1− e2b

)
= 8πGp (rr equation) (6.7)

r2e−2b

[
∂2ra+ (∂ra)

2 − ∂ra ∂rb+
1

r
(∂ra− ∂rb)

]
= 8πGp (θθ equation) .

Since the (tt) equation does not involve a(r), it can be put into a more physically

intuitive form by performing a change of variables from b(r) to

m(r) =
r

2G

(
1− e−2b

)
, (6.8)

for which e2b = [1−2Gm(r)/r]−1. In terms of this variable the (tt) equation becomes

dm

dr
= 4πr2 ρ , (6.9)

which integrates to give

m(r) = 4π

∫ r

0

dr̂ r̂2ρ(r̂) . (6.10)

If the boundary of the star is taken to be r = R⋆, then for r > R⋆ the geometry

is given by the Schwarzschild metric. Continuity of the metric across r = R⋆ then

requires the function m(r) must satisfy the boundary condition m(R⋆) = M , where

M is the mass of the star. That is,

M = 4π

∫ R⋆

0

dr̂ r̂2ρ(r̂) . (6.11)

This last equation almost (but not quite) says that m(r) is the integral of the energy

density out to radius r, and so that M is the integral of this energy density over

the entire volume of the star. The qualification ‘almost’ is required here because

the integral of the energy density would really have been weighted by the covari-

ant measure of volume which involves the determinant of the entire spatial metric,√
det gij = ebr2 sin θ dr dθ dϕ, and so the integrated energy is really given by

Mtot = 4π

∫ R⋆

0

dr̂ eb(r̂)r̂2ρ(r̂) = 4π

∫ R⋆

0

dr̂
r̂2ρ(r̂)

[1− 2Gm(r̂)/r̂]1/2
> M . (6.12)
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This shows that Mtot is better thought of as the energy the star would have if it

were distributed to infinity and so had no gravitational field, making the difference

Mtot −M the star’s gravitational binding energy.

Trading b(r) for m(r) in the (rr) equation then gives the following result for

a(r):
da

dr
=
Gm(r) + 4πGr3p

r[r − 2Gm(r)]
. (6.13)

Rather than trying to simplify this using the (θθ) equation, it is simpler instead to

use conservation of energy, eq. (7.70), to trade da/dr for dp/dr, to get

dp

dr
= −(ρ+ p)[Gm(r) + 4πGr3p]

r[r − 2Gm(r)]
. (6.14)

This equation, called the Tolman-Oppenheimer-Volkoff equation, expresses how

the pressure profile in the star’s interior must adjust in order to balance the gravi-

tational force required to support the star’s outer layers, and provides the condition

of hydrostatic equilibrium for the interior of the star. In particular, so long as p and

ρ are both positive and r > 2Gm(r), eq. (6.14) implies dp/dr < 0 and so the pres-

sure profile decreases monotonically with radius within the star, taking its maximum

value at the star’s centre at r = 0.

Notice that in the Newtonian limit we may take p≪ ρ, since the energy density

is dominated by the rest mass of the atoms in the star, as well as r ≫ 2Gm(r),

allowing eq. (6.14) to be approximated by the more familiar form

dp

dr
= −Gm(r)ρ

r2
. (6.15)

This equation simply states that the pressure gradient adjusts to ensure that the

net force acting on any particular fluid element vanishes. To see this, consider a

small fluid element that extends from r to r + dr with cross-sectional area A. Since

pressure is force per unit area, the radial component of the net fluid force acting on

this element is

dFp = p(r)A− p(r + dr)A ≃ −dp

dr
A dr . (6.16)

Eq. (6.15) simply states that this force must balance the gravitational attraction

between the matter in the fluid element (whose mass is ρA dr) and the matter that

lies interior to it in the star (whose mass is m(r)) and so whose radial component is

dFg = −Gm(r)ρA

r2
dr . (6.17)

Implications for stellar phenomenology

In general, hydrostatic equilibrium relates dp/dr to ρ and m (which is itself related

to ρ), and this can be integrated to obtain explicit profiles, p(r) and ρ(r), once an
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equation of state is given, like p = p(ρ, S) where S is the entropy density of the fluid.

For example, for a perfect fluid one might use p = κρT where κ is a constant related

to the mass per particle of the atoms making up the fluid and T is the local fluid

temperature (and so is related to its entropy).

Once such an equation of state is known p can be eliminated (in principle) in

terms of ρ, as can m using eq. (6.10), allowing eq. (6.14) to be regarded as an

equation involving ρ only. This can be integrated, typically numerically, to give the

profile ρ(r) from which the equation of state then gives p(r), while m(r) and a(r) are

obtained from eqs. (6.10) and (6.13). Of course this process can become complicated

in detail if the changes in pressure and density trigger phase changes in the stellar

material, or in the dominant mechanism for energy transfer within the star, but the

logic still remains the same in such cases provided one is careful to use the proper

new expression relating p and ρ in the relevant areas.

The upshot is that an assumed equation of state leads to a prediction for all

three of these profiles that depends on a single integration constant, usually taken

to be the value of the energy density at the stellar centre: ρ⋆ = ρ(r = 0). What

is important is that this means that the two external properties of a star — its

mass M and radius R⋆ — must be related to one another because both of these can

be calculated once ρ⋆ is known. The stellar radius is calculable because it may be

defined as the radius r = R⋆ where p(R⋆) = 0. The mass is then found by using

eq. (6.10) at r = R⋆. Because these two variables are both predicted from the one

integration constant one expects to find a relation M =M(R⋆) that relates all stars

that share the same equation of state.

The importance of this observation is that both M and R⋆ can often be deter-

mined by observations. For instance, the mass can often be found by observing how

other objects orbit around the given star. Although such orbits exist for a surpris-

ingly large number of stars, since just under half of stars are found in binary systems

with pairs of (or more than two) stars orbiting one another, in practice the two stars

are usually required to eclipse one another (from the Earth’s point of view) in order

to obtain the stellar mass. This is because it is Kepler’s third law that gives the

mass in terms of the orbital period and semi-major axis, but the semi-major axis can

only be determined if the orientation of the stellar orbit relative to the line of sight

is known.

The radius, on the other hand, is more easily observable because it typically

controls the star’s overall luminosity, L, defined as its rate of energy emission. This

depends on R⋆ because stars emit energy thermally and so do so with a flux — i.e.

rate per unit surface area — that is characterized purely by their surface temperature:

f = f(T ) = σT 4, where σ is a known constant. Since this temperature can be
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measured from the spectrum of radiation the star emits, as can the total luminosity,

L = 4πf R2
⋆, from the total observed brightness of the star (once its distance from

the Earth is known), the radius R⋆ can be inferred from observations.

In the event, 90% of stars are

Figure 9: A Hertzsprung-Russell (HR) diagram

showing the correlation between stellar luminosity

and temperature.

dominantly made up of hydrogen,

and provide the pressure gradients

required to stave off gravitational col-

lapse by fusing hydrogen into helium

in their cores. Consequently they

share the same equation of state, and

so their pressure, density and tem-

perature profiles are all calculable

in terms of their central density, ρ⋆.

They should be expected to fall along

a single curveM(R⋆) if their masses

and radii are plotted in the M −R⋆

plane. Astronomers really test this

prediction by instead plotting their luminosity against their temperature, and look-

ing for a correlation between L and T since these are the two quantities that are

the most easily observable. And they indeed find that most stars — known as main

sequence stars — do fall along a curve when plotted in the L− T plane (known as a

Hertzsprung-Russell diagram).

When mass can be measured it is also observed to be correlated with luminosity

when main sequence stars are plotted in theM−L plane. Because the energy source

in stars ultimately comes from nuclear reactions, small increases in mass lead to

fairly small increases in the central temperature, but this leads to a large change

in luminosity. Observationally one finds the strong variation L ∝ M3.5, with more

massive stars being much more luminous.

For ordinary stars the balance between pressure and gravity is perilously achieved,

because it relies on the pressures associated with the energy release due to nuclear

fusion which becomes possible at the high pressures found in stellar cores. This is

perilous because it can only work so long as there is nuclear fuel to burn in this way,

and so ends once this fuel is depleted. Furthermore, since the main sequence lifetime

is of order τ ∝M/L the observed mass-luminosity correlation shows that τ ∝M−2.5,

and so more massive stars have a much shorter lifetime than do lighter ones.

At some point either a new, more stable, source of pressure must be found to

balance gravity if a permanent object is to be formed, or gravity wins – leading to a

runaway gravitational collapse.
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An incompressible star

To see in more detail what the options are for balancing gravity with various forms

of pressure it is instructive to specialize to the very simple case of an incompressible

fluid, ρ = ρ⋆ for all p. This represents the extreme case where the stellar material

resists changing its density regardless of how high the pressures get. It also has the

advantage of allowing explicit solutions which illustrate the behaviour in the more

general case.

Suppose, then, that we assume the incompressible density profile

ρ(r) =

{
ρ⋆ if r < R⋆

0 if r > R⋆

, (6.18)

which is characterized by the two parameters ρ⋆ and R⋆. In this case we may directly

integrate to obtain m(r), leading to

m(r) =

{
4πρ⋆r

3/3 if r < R⋆

4πρ⋆R
3
⋆/3 =M if r > R⋆

, (6.19)

which last relation allows one to trade R⋆ and M as independent parameters. Simi-

larly, the pressure profile found by integrating (6.14) becomes

p(r) = ρ⋆

[
R⋆

√
R⋆ − rs −

√
R3

⋆ − rsr2√
R3

⋆ − rsr2 − 3R⋆

√
R⋆ − rs

]
if r < R⋆ , (6.20)

where, as usual, rs = 2GM . Notice that the pressure goes to zero at r = R⋆:

p(R⋆) = 0, as expected by hydrostatic equilibrium for the stellar surface.

Similarly, integrating eq. (6.13) gives the metric component, gtt = −e2a:

ea(r) =
3

2

(
1− rs

R⋆

)1/2

− 1

2

(
1− rsr

2

R3
⋆

)1/2

if r < R⋆ . (6.21)

Notice that this implies e2a(R⋆) = 1 − rs/R⋆, as required by continuity with the

exterior Schwarzschild solution.

The pressure equation, eq. (6.20), says something really interesting. Recall that

it implies the pressure goes to zero at the stellar surface, p(R⋆) = 0, and then grows

monotonically as one moves into the interior (i.e. for decreasing r), as is required

by hydrostatic equilibrium. The maximum pressure reached is at the stellar center,

and is given by

pmax = p(0) = ρ⋆

[ √
R⋆ − rs −

√
R⋆√

R⋆ − 3
√
R⋆ − rs

]
. (6.22)

Notice in particular that if we increaseM (and so also rs) for fixed R⋆, then p(0) → ∞
once rs = 8

9
R⋆, or Mmax = 4

9
(R⋆/G). This states that once the star becomes too
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dense it is completely impossible to support it against gravitational collapse. A

similar conclusion is reached using more realistic equations of state, but for these it

is also true that Mmax ≤ 4
9
(R⋆/G), a result known as Buchdahl’s theorem. This is

as one might have expected: an incompressible fluid supports the maximum mass

possible.

If M should be larger than Mmax for any given equation of state then there is no

static solution possible, and the star collapses. It continues to collapse, either until

the equation of state modifies so that M becomes smaller than the new Mmax, or

until the entire star12 falls below r = rs, forming a black hole.

For real astrophysical objects several kinds of equations of state are known to

produce objects that are stable against gravitational collapse, each typically working

for a specific range of masses. These include planets (for which gravity is balanced

by material stresses); white dwarf stars (for which gravity is balanced by electron

degeneracy pressure); and neutron stars (for which gravity is balanced by neutron

degeneracy pressure). These can remain stable indefinitely, unless additional matter

is added to them in such a way as to push them over the limit of stability. (For

instance, some supernovae arise when white dwarfs are pushed over their limits in

this way as they accrete matter within binary star systems.)

6.2 Gravitational lensing

Since we can now see objects that are

Figure 10: A photograph of gravita-

tional lensing (the arc-like shapes) of

distant galaxies by a foreground galaxy

cluster.

very distant in the Universe, we should ex-

pect to find a reasonably large number of

coincidences with distant galaxies appearing

to lie very close to the same line of sight as

nearer galaxies in the foreground. Because of

this we expect the widespread occurrence of

gravitational lensing, wherein light from very

distant galaxies is deflected by the gravita-

tional field of a foreground mass. This kind

of lensing has in fact been seen many times,

such as the strong lensing that is shown in

fig. 10, where the arcs are lensed images of a

distant galaxy distorted by a large cluster of

galaxies in the foreground. But other exam-

ples of lensing have also been seen, including

the micro-lensing of stars in our galaxy (and in nearby galaxies) by other stars that

pass along the intervening line of sight, and the weak lensing that slightly distorts

the shape of a great many galaxies across the sky.
12In real stellar collapse changes in the equation of state cause much of the initial star to be

explosivly ejected, with only a fraction of the initial mass collapsing to form a black hole.

– 102 –



This section describes the basics of such lensing events. One should keep in mind

that lensing phenomena are typically not used to test GR, because comparatively

little is known about the properties of the foreground masses that are doing the

lensing. Because of this it is difficult to have precise predictions with which to

compare the observations. What is done instead is to use the observed lensing to

infer the distribution of foreground matter, under the assumption that GR provides

a good description of the lensing physics. It is arguments such as these that point to

the widespread existence throughout the Universe of an unknown form of matter —

called Dark Matter — whose presence is only inferred from its gravitational effects.

Lensing Basics

The starting point for the story is the basic observation, derived in section 3.3, that

General Relativity predicts that light rays passing close to a spherical gravitational

source are deflected through an angle

α ≃ 4GM

b
=

2 rs
b
, (6.23)

where M is the source’s mass and b is the impact parameter of the passing light ray.

The goal is to re-express this angle in

Figure 11: A diagram of the geometry

of a lensing event.

terms of those that are more suited to what

is actually measured when a lensing event

is seen. In particular, rather than knowing

the deflection angle, α, it is more useful to

know the angular position, θ, of the image,

I, relative to the angular position, β, of the

source, S, as seen from by the observer, O.

The figure, fig. 11, shows how these are re-

lated. A great help when using this figure

to solve for θ is the early recognition that

for most events the distances involved are

enormous and the deflection angles are con-

sequently very small. Because of this we can

idealize the change of direction of the light

ray as being completely localized at a single

instant when it passes by the plane of the

lens’ position in the sky, and we can liberally use the approximation sinx ≃ x for

x≪ 1.

Inspection of the top of the figure shows that the angles α, β and θ are related

by

θ DS = β DS + αDLS , (6.24)
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and so dividing through by DS and eliminating α using eq. (6.23), with b ≃ ξ ≃ θ DL

then gives

θ = β +
θ2E
θ
, (6.25)

where the Einstein angle, θE, is defined in terms of the distances in the problem by

θE =

√
2 rsDLS

DSDL

. (6.26)

Solving eq. (6.25) for θ gives the desired solutions, θ = θ±, for the angular

positions of the two perceived images (one on each side of the lens in the plane

defined by the observer source and lens), with

θ± =
1

2

(
β ±

√
β2 + 4θ2E

)
. (6.27)

In the degenerate situation that the lens lies directly in front of the source — i.e.

if β = 0, and so the observer, lens and source do not define a plane — then the

observed image would be an Einstein ring that surrounds the lens, whose angular

radius is θ = θE.

To get an idea of how big this ring is, suppose the source and lens are as distant

from each other as the lens is from us, DLS ≃ DL := D and so DS ≃ 2D. Then if13

D ≃ 1 Mpc and the lens has a mass M ≃ 108M⊙, its Schwarzschild radius would be

rs ≃ 3× 1011 m and so θE ≃
√
rs/2D ≃ 2× 10−6 radians, or 0.5 seconds of arc.

When the source and lens are instead only slightly off-set this ring degenerates

into two arcs, much like those seen in fig. 10, and these are relatively easy to recognize.

There are also several ways to check that two candidate objects in the sky are really

multiple, lensed images of the same source. One is to compare their spectra, which

should be identical for two images of the same source because (unlike for lenses in

the lab) the bending of light by gravity is the same for all wavelengths. The other

is to watch for correlations in any time-dependence in the intensity of the received

light, since any fluctuations in the intensity of one must be repeated for the other

— possibly after a delay due to any difference in the path length along the two light

trajectories. Time-lags of this sort are observed for pairs of gravitationally lensed

images, with changes in one image followed by changes in the other, often several

weeks later.

But lensing events are not always so easy to identify, since the lenses are often

too dark to see and the images needn’t be so strongly distorted if the lens and source

are not aligned sufficiently closely. Alternatively, for some objects the angle θE can

be too small to be resolved. It turns out that there are nonetheless sometimes useful

ways for searching for lensing that do not rely on directly detecting the independent

images of a particular source.

13Mpc denotes a megaparsec, or 106 parsecs, which is a commonly used distance unit in extra-

galactic astronomy. A parsec is an astronomical measure of distance, defined to be one AU per

arc-second, where an astronomical unit (AU) is the mean Earth-Sun distance. This makes a parsec

about 3.262 light years, or 3.086× 1016 m, which is roughly the distance to the nearest stars. So 1

Mpc ≃ 3× 1022 m. – 104 –



Weak Lensing
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Figure 12: A plot of θ+ (upper red) and θ−

(lower blue) vs β, in units of θE.

When looking at a field of view filled

with distant galaxies, evidence, even for

relatively weak lensing, can be found us-

ing statistical methods even if it is hope-

less to find multiple images of individual

galaxies. This evidence relies on statisti-

cally identifying the distortion that lens-

ing produces on a galaxy’s shape.

To quantify this distortion imagine

describing the sky using angular coordi-

nates that are centered on the position

of the foreground object that is respon-

sible for the lensing. In this case, as before, we use θ to describe the ‘radial’ angle of

an image away from the lens, and φ to measure the ‘azimuthal’ angle of the image

transverse to the radial direction θ. Lensing only moves the image of the source away

or towards the lens (in the θ direction), with one image inside of and one outside of

θ = θE, but does not also change φ.

In terms of these coordinates, suppose a narrow beam of light rays has angular

widths ∆θ and ∆φ when it leaves the source. Since the source is displaced relative

to the lens by the angle β, the spread in ∆θ can be interpreted as a spread ∆β in

the initial angular position of the beam relative to the lens. Once the beam has been

lensed its new angular position relative to the lens is θ±, and although the spread

in the beam in the φ direction remains unchanged, in the θ direction the spread

becomes

∆θ± =

(
dθ±
dβ

)
∆β =

1

2

[
1± β√

β2 + 4θ2E

]
∆β . (6.28)

Because of this distortion the images of a galaxy that would have appeared to us

as being spherical without the lens, become elliptical in a precisely calculable way.

Observationally, the problem is that galaxies are not perfectly spherical, and so the

trick is to distinguish the distortions due to lensing from general oddities in galactic

shapes. This is where statistics come in, because galaxies are usually randomly

oriented in the sky and can come in a fairly random pattern of shapes. But the

distortions due to lensing in the part of the sky near a source are preferentially

distorted along the direction towards the lens. If one samples a large sample of

galaxies in a particular part of the sky and finds a bias for galaxies to be distorted

(on average) in a particular direction, this can be interpreted as evidence for lensing

by a source that lies in this direction. By repeating this process over and over again
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for nearby regions it is possible to provide a map of the foreground mass distribution

that is doing the lensing, regardless of whether this distribution is directly visible or

not.

Maps of the mass distribution in the uni-

Figure 13: A sketch of the angular dis-

tortion of the two lensed images.

verse produced by weak lensing surveys of

this type are just now (2008) being performed,

and are providing one of the main lines of

evidence for the existence of vast amounts of

Dark Matter throughout the universe (more

about which later).

Microlensing

Lensing can also be applied to objects in

our own galaxy, and for nearby galaxies (like

the Magellanic Clouds – which are two small

galaxies that orbit our own) since stars, plan-

ets and other objects can periodically pass

into the line of sight towards other stars. Seeking these kinds of lensing events could

allow us to count the number of relatively small and dark objects that may be floating

about the galaxy, otherwise unseen.

A major complication in this case is the very small size of the angular deflection,

however, since a solar-mass lens situated 10 kpc away (a typical galactic distance)

lensing a source that is 10 kpc beyond it, would give (using 10 kpc ≃ 3 × 1020 m)

θE ≃ 2× 10−9 radians, or 5× 10−4 arc seconds. Angular distances this small are too

small to measure from Earth, even if two stars could be found lying this close to the

same line of sight.

But even if the two separate images of the source star are not separately visible,

taken together they increase the total amount of light received at the earth from the

source, compared with what would have arrived in the absence of lensing. Although

we do not know how bright the initial source star intrinsically is, we know that

within our galaxy stars are moving, with an average speed of roughly 200 km/sec.

So although the absolute brightness of the unresolved images cannot be compared

with a known initial source brightness, the change in brightness of the images as the

lens and source move into and out of alignment can be measured.

What does this change of brightness look like? Since a star emits radiation

thermally, its surface brightness depends only on its temperature and so its apparent

brightness as seen by any given observer is controlled purely by the total fraction of

the star’s radiation that the observer is able to catch. And this fraction is controlled

by the solid angle that the source subtends as seen by the observer. (This is why
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the apparent brightness of a star usually falls off with distance, d, from the star like

1/d2.) The increase in brightness due to the lensing may therefore be computed by

calculating the increased solid angle subtended due to the splitting and distorting of

the lensed images.

Consider then a beam of light

Figure 14: Observational traces of brightness vs day

of observation for candidate microlensing events (from

the MACHO Collaboration).

coming from the source at θ =

β having a small angular width

∆θ = ∆β and ∆φ. The solid

angle, observed from Earth, spanned

by this beam at the source is

then ∆Ω = sin θ∆θ∆φ ≃ β∆β∆φ.

Once it has been lensed, we have

seen that the beam acquires a

new angular position, θ = θ±,

and widths ∆θ± = (dθ±/dβ)∆β

and ∆φ. After the lensing the

beam subtends the new solid an-

gle ∆Ω± ≃ |θ±∆θ±∆φ|, where
the absolute value arises because

θ− is negative. The change in

intensity due to the imaging is therefore given by the ratio of these two solid angles

summed over the two images:

Ilens
Isource

=
∑
i=±

∣∣∣∣θi∆θi∆φβ∆β∆φ

∣∣∣∣ =∑
i=±

∣∣∣∣θiβ
(
dθi
dβ

)∣∣∣∣
=

1

2

[
β√

β2 + 4θ2E
+

√
β2 + 4θ2E
β

]
. (6.29)

Notice that since f(x) = 1
2
(x+ 1/x) ≥ 1 (with equality occurring only when x = 1)

we have Ilens ≥ Isource, with equality occurring only if θE/β → 0.

The time-dependence enters this intensity because β varies with time as the

relative positions of the source and lens change. The maximum change occurs once

β ≃ θE and so for lens and source a distance of order D away, the time required for

a maximal change of intensity can be estimated to be τ ≃ θED/v, where v ≃ 200

km/sec is the typical speed of galactic objects. Taking D ≃ 10 kpc and θE ≃ 2×10−9

radians, as above, then gives the estimate τ ≃ 0.1 years, or a few months.

Although it might seem like a million-to-one shot to happen to see a lens and

source line up in precisely this way, these kinds of microlensing events have been

sought by dedicating a telescope to repeatedly photograph large fields of stars over
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many nights, and then looking for the few stars whose brightness changes. Such

a search inevitably finds various types of variable stars, whose brightness changes

for other reasons internal to the star, but these can be identified by seeing how

their pattern of variation differs at different wavelengths. Once these are removed, a

handful of bona fide microlensing events remain, some of which are shown in fig. 14.

The frequency of these events is consistent with what is known for small stellar and

planetary objects, but is too small to account for the dark matter (whose presence

is inferred in all galaxies from measurements of how they rotate).

6.3 Gravitational waves

Waves are a generic consequence of relativistic field theory, and correspond to the

fact that information can only travel out through the field at a finite speed (at most,

the speed of light), bringing the news to other particles about how their sources have

moved. For the special case of General Relativity, since gravity is represented as the

geometry of spacetime, gravitational waves are ripples in the fabric of spacetime itself.

These are generated when masses are moved relative to one another. These waves

are the precise analogs of the electromagnetic waves that are generated by moving

electrical charges, and which we know as light, radio waves, x-rays etc., depending

on their frequency.

To understand many of the properties of gravitational waves it suffices to consider

very small geometrical ripples about flat spacetime, for which the metric has the form

gµν(x) = ηµν + hµν(x) , (6.30)

where hµν represents a small deviation that depends on position and time. Calcu-

lating the Christoffel symbols and curvature tensor, but dropping all terms that are

quadratic and higher in the small quantity hµν leads a Ricci tensor of the form

Rµν = −1

2
ηαβ
(
∂α∂β hµν − ∂µ∂α hβν − ∂ν∂α hβµ + ∂µ∂ν hαβ

)
+O(h2) . (6.31)

We can simplify this by using the freedom to change coordinates, in which case

a small change, xµ → xµ + ξµ, leads to

hµν → hµν + ηνλ∂µξ
λ + ηµλ∂νξ

λ , (6.32)

up to quantities that quadratic in ξµ. A convenient choice is to use the four in-

dependent quantities in ξµ to impose the following four independent constraints on

hµν :

ησν∂σ

(
hµν −

1

2
ηµνη

αβhαβ

)
= 0 , (6.33)
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since with this choice the vacuum Einstein equations become, to linear order in h:

Rµν = −1

2
□hµν = 0 , (6.34)

where □ = ηαβ ∂α∂β denotes the d’Alembertian operator (which was introduced in

the earlier sections devoted to special relativity).

The significance of this last equation is that it is a wave equation, as may be

seen by writing it out without the benefit of the Einstein summation convention

(and re-introducing the factors of c):

□hµν = − 1

c2
∂2hµν
∂t2

+∇2hµν = 0 . (6.35)

This has as solutions arbitrary linear combinations of plane waves,

hµν(x) = εµν(k) exp
[
ikµx

µ
]
, (6.36)

where the quantity εµν describes the wave’s polarization (of which there are two

independent forms, more about which below), and the 4-vector kµ must satisfy

k2 = ηµνk
µkν = 0 . (6.37)

Writing kµ = {ω,k}, eq. (6.37) implies k = ωk̂, where k̂ := k/|k| is the unit

vector normal to the plane of the wave-front. The plane wave then becomes

exp
[
ikµx

µ
]
= exp

[
−iωt+ ik · x

]
= exp

[
−iω

(
t− k̂ · x

)]
. (6.38)

General spatial profiles, hµν(x), are built as linear combinations of the above solutions

(i.e. by Fourier transformation). Eq. (6.38) implies the waves are functions of the

combination t − x/c, where x = k̂ · x and the factors of c are restored. This shows

that wave profiles propagate with speed c: both gravitational and electromagnetic

waves move at the speed of light.

The two polarizations of gravitational waves correspond to the choices possible

for the polarization tensor, εµν(k), which eqs. (6.33) imply satisfy

kµεµν −
1

2
kν ε

µ
µ = 0 . (6.39)

This condition has many more than two solutions, but it is also true that this con-

dition does not completely remove the freedom to change εµν(k) by using coordi-

nate transformations of the form (6.32) with ξµ(x) = ζµeik·x, with constant ζµ and

k2 = kµk
µ = 0. To see why, notice that under such a transformation we have

εµν(k) → ε̃µν(k) with

ε̃µν(k) := εµν(k) + ikµζν + ikνζµ , (6.40)
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and so if εµν(k) satisfies (6.39) then so also does ε̃µν(k), since (using k2 = 0)

kµε̃µν(k)−
1

2
kν ε̃

µ
µ = i(k · ζ)kν −

i

2
kν (2k · ζ) = 0 . (6.41)

This remaining freedom to redefine coordinates is also removed if εµν(k) is re-

quired to also satisfy a second condition: ℓµεµν(k) = 0 where ℓµ is a second future-

pointed null vector, ℓµℓ
µ = 0, chosen such that kµℓ

µ = −1. Contracting (6.39) with

ℓν then implies εµµ = 0 and so kµεµν = 0. For instance, for a wave moving along the

positive z-axis with frequency ω ̸= 0, we can choose

kµ = ω


1

0

0

1

 and ℓµ =
1

2ω


1

0

0

−1

 , (6.42)

and so the most general εµν(k) satisfying k
µεµν = ℓµεµν = εµµ = 0 is

εµν =


0 0 0 0

0 ε+ ε× 0

0 ε× −ε+ 0

0 0 0 0

 , (6.43)

where ε+ and ε× denote the two types of polarizations. Notice the wave is transverse

(just like an electromagnetic wave) because these polarizations are only nonzero in

the x and y directions for a wave travelling along the z-axis.

If such a wave were to pass by a material it causes nearby particles to move

relative to one another in an oscillatory fashion. Because gravity is so weak the

induced motion for test particles on Earth is likely to be extremely small.

Remarkably, such relative motion was recently observed for the arms of a pair of

long laser interferometers, built by the LIGO collaboration with precisely the goal of

determining if such waves actually exist in nature. The LIGO interferometers each

have arms several kilometers long, and were situated thousands of kilometers away

from one another (so that their reactions to any stray environmental effects would not

be correlated, unlike for the passage of a gravitational wave). The observed wave had

precisely the properties that would have been expected if the wave were emitted by

two distant black holes, that initially orbited one another but whose orbits decayed

(for reasons described below) until they eventually merged together into a larger,

spinning, black hole.

6.4 Binary pulsars

The most precise extra-solar tests of GR come from the study of the orbits of binary

pulsars. This section briefly describes what these systems are, and what new features
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arise in their study beyond those that are familiar from tests of GR within the solar

system.

What are binary pulsars?

A pulsar is an astrophysical object that is observed to send regularly repeated bursts

of radiation (which could be radio waves, or x-rays etc.), whose repetition period

ranges from a few seconds to a few milliseconds (see Fig. 15).

Their properties fit what would

Figure 15: Plots of the spectrum of radiation

from two representative pulsars. The pattern

shown is repeated over and over again.

be expected for a very compact star,

called a neutron star, that is rapidly

spinning. A neutron star is an ex-

otic beast, with a mass similar to

that of the Sun but a radius of only

a few kilometres, which is not much

larger than its Schwarzschild radius.

This small size makes it capable of

rotating as quickly as many times a

second. Such a star, once rapidly ro-

tating, would tend to set up a large

magnetic field which would tend to

fire very energetic particles into space

along a well-directed beam. Such a

beam would rotate with the neutron

star, causing a lighthouse-like beam

of particles that sweeps around as

the neutron star turns. The regu-

lar pattern of pulses of radio waves

or x-rays seen from the Earth then

arises as this lighthouse beam repeatedly sweeps past us.

A binary pulsar is a pulsar (i.e. a neutron star) that orbits a companion star.

This companion can be an ordinary star like the Sun, or possibly even another neu-

tron star. (Stars orbiting one another like this are actually not an unusual occurrence,

since just under half the stars visible in the sky orbit a partner in this way.) The fact

that the pulsar is in an orbit around another star can be inferred from the shifts that

this motion induces in the frequency of the light the pulsar emits, a phenomenon

called the Doppler effect.

It takes a pulsar a few days or so to orbit once around its partner, indicating that

the pulsar and its companion are closer to one another than Mercury is to our Sun.

Together with the compactness of the pulsar itself, this means that the gravitational
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fields through which these stars pass are much stronger than those to which we are

accustomed in the solar system. What’s more, the fact that the pulsar sends out

such regularly repeating signals means that we see an exquisitely precise clock in

orbit around another star, providing a remarkable chance to measure the nature of

space and time in these orbits.

For all of these reasons there are a number of relativistic effects that are com-

paratively large relative to those seen in the solar system. This allows a potentially

greater suite of tests of GR than are possible in the solar system. Some of the rela-

tivistic effects that have been seen in these systems are the ones that are also seen

in the solar system. These include

• the relativistic precession, or periastron shift, of the pulsar orbits;

• the relativistic slowing of time as counted by the pulsar as it moves in the

gravitational field of its companion;

• the Shapiro time delay of the pulsar signals as they pass through the gravita-

tional field of the massive companion.

Orbital Decay

There are also new effects seen in binary pulsar systems, that have not been

seen before. Foremost among these is the observed decay of the pulsar orbit, which

are very slowly spiralling in towards one another. This orbital decay is observed

as an extremely small, slow, secular increase in the orbital period, seen in Fig. 16.

Although small, the increase is observable because the pulsars have been watched

consistently over a long period of time, in some cases — for the Hulse-Taylor pulsar,

for example — for several decades.

Why is this decay a relativistic effect? It is because orbital decay indicates that

the pulsar orbit is losing energy. General Relativity predicts such an energy loss,

due to the emission of gravitational waves. After a short aside to summarize the

properties of gravitational waves, we return to a discussion of their implications for

pulsar orbits in more detail.
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Gravitational Waves and Orbital Decay

Because the waves are produced

Figure 16: A plot comparing measurements of

the rate of decay of the pulsar orbital period as

a function of time, with the prediction following

from gravitational radiation in GR.

by moving masses, much as electro-

magnetic waves arise from the mo-

tion of electric charges, the energy

loss rate into gravitational radiation

turns out to be proportional to a

power of both the total mass, M , of

the orbiting system and of its orbital

angular frequency, Ω = 2π/P :

L =
128G

5c5
M2R4Ω6 ≃ 2×1033

erg

sec

[(
M

M⊙

)(
1 hour

P

)]10/3
,

(6.44)

and the second equality uses Kepler’s

3rd Law, Ω2 = GM/R3, to trade

R for M and Ω (or the orbital pe-

riod, P ). Alternatively, L ≃ 25 (GM2Ω/R) (v/c)5,

where v ≃ RΩ is of order the orbital

speed. This way of writing things

shows that the first term represents

an emission of an appreciable frac-

tion of the gravitational binding en-

ergy per period, while the second

factor suppresses the result by 5 powers of v/c. For orbits with a period of P ≃ 1

hour ≃ 1.1 × 10−4 year, Kepler’s 3rd Law implies a mean orbital radius that is of

order R ≃ (1.1×10−4)2/3 AU ≃ 0.002 AU, where 1 AU ≃ 1.5×1011 m. Consequently,

v/c ≃ RΩ/c ≃ 0.1.

Equating this to the loss rate of orbital energy and using the properties of Newto-

nian orbits to relate the energy to the orbital period, give the resulting GR prediction

for the period change

dP

dt
= −3× 10−12

[(
M

M⊙

)(
1 hour

P

)]5/3
. (6.45)

Fig. 16 plots the comparison between the prediction of eq. (6.45) and the observed

rate of decrease of orbital period for the Hulse-Taylor pulsar, PSR B1913+16, which

has been closely and continually watched for several decades now.

But in order for this to provide a test of General Relativity it is necessary to

know what the masses are for both the pulsar and its companion. How were these
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Figure 17: Plot of the prediction for periastron shift (blue), orbital decay rate (dotted

black) and relativistic time delay (dashed red) for the Hulse-Taylor binary, PSR 1913+16

in General Relativity, as functions of the mass of the pulsar and its companion in the binary

system. If GR is true all three lines should touch at a point (within errors), revealing the

masses of the actual bodies involved.

measured in order to make the comparison of fig. 16? Although they cannot be

measured directly, since the companion is not in this case visible, progress is possible

because the masses also appear in the prediction for the size of the other relativistic

effects that are observed for pulsars. The strategy is to use the agreement of these

predictions with experiment to infer the masses of the orbiting stars, and then to use

these to predict the gravitational radiation rate.

Fig. 17 illustrates this strategy, showing three curves that give the relationship

between the pulsar mass and the mass of its companion that follows by requiring the

prediction of GR for the precession of the orbit, the slowing down of the pulsar clock,

and the orbital decay caused by gravitational radiation, to agree with what is seen

for a particular pulsar. If GR provides a correct description of the pulsar system, all

three of these curves should touch at a single point, corresponding to the masses of

the two bodies in the orbit. The remarkable fact is that they do, and because they

do we learn both that GR is working well, and what the masses of the two stars must

be. And given these masses the rate of decay evolves in time in precisely the way

predicted by GR, as seen in Fig. 16.
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The Double Binary Pulsar

Figure 18: Plot of the prediction for peri-

astron shift (dashed blue), orbital decay rate

(dashed green), relativistic time delay (red),

Shapiro time delay (orange) and shift (black),

for the double-binary system, PSR J0737-

3039 in General Relativity, as functions of

the mass of the two pulsars. If GR is true

all five lines should touch at a point (which

they do within the errors).

Almost a thousand pulsars have been dis-

covered over the years, and some of the

ones found more recently promise to pro-

vide new ways to test General Relativity.

A particularly promising system is given

by the pulsar J0737-3039, which (unusu-

ally) consists of a pulsar being orbited by

another pulsar. Even better, the pulsars

almost eclipse one another (that is, the

beam from one passes through the as-

trophysical detritus that surrounds the

other), and so their orbit is inclined so

that we see it edge-on from the point of

view of the Earth.

This system is something of a holy

grail for testing general relativity, since

it provides access to more relativistic ef-

fects than do other pulsar systems. For

example, the near-eclipsing of one pulsar

by the other implies that the observed

light signal from one pulsar passes very

close to the other on its way to the Earth, and so experiences a Shapiro time delay

that is observable and may be compared with predictions.

The prediction of General Relativity for the five observable relativistic effects as

a function of the two pulsar masses is given in Fig. 18. If GR provides a correct

description of the pulsar system, all of the curves should touch at a single point,

corresponding to the masses of the two pulsars. Remarkably, again they all do to

within the errors, confirming that GR is working well. And just like for the Hulse-

Taylor pulsar, the precision of these tests will improve the longer its signals are

watched.

Direct Detection of Gravitational Waves

Big things took place in the years since these notes were first written (2008), with

the direct detection in 2015 of gravitational waves by the LIGO detector on Earth.

The detector used a very large interferometer to detect the passage of gravitational

waves. This is done by splitting a laser beam and having it travel back and forth

multiple times down the length of two perpendicular arms, before recombining the
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(a) No magnetic field (b) Magnetic field applied

Figure 19: Left panel: Aerial view of one of the two LIGO interferometers. Laser light

is split and sent down each arm, multiply reflecting on mirrors at each end before being

recombined to mutually interfere. This allows precision comparison of the length of each

arm as a function of time, with the passage of a gravitational wave observed as an oscillatory

relative change in length. Right panel: The first detected gravitational-wave signal, with

the two colours representing the correlated signals seen by to the two LIGO interferometers.

(Figure source: LIGO Collaboration).

beam and measuring the resulting interference pattern. The interference pattern is

extremely sensitive to the relative length of the interferometer’s two arms, and the

passage of a gravitational is detected by observing the characteristic oscillation in

this relative length caused by the passage of a gravitational wave.

Extreme care is taken when doing so to isolate the interferometer mirrors from

their environment, and extremely large interferometer ams were used, in order to

allow the extremely small signal to be detected and to be distinguished from other

spurious sources of vibration. Coincident detection by two independent interfer-

ometers situated more than 1,000 km apart from one another was also required to

eliminate any unknown local sources at either site. The detected signal is shown

in the right-hand panel of Fig. 19, showing in particular how the signals of the two

interferometers indeed correlated with one another.

6.5 Astrophysical Black Holes

There is considerable evidence within astrophysics for the existence of black holes in

the universe, and this provides support for the general picture of these objects that

is painted by General Relativity even though they do not yet provide precision tests

of the theory.

In each case the thrust of the evidence identifies the total mass of an unseen

central object by watching how it is orbited by objects that we can see. This is
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compared with upper limits to its size, that either come from direct observations of

the innermost positions of the orbiting objects, or by considerations related to how

fast the object is observed to change its brightness. In many cases there is so much

mass crammed into so small a region that there is no known way for it to support

itself against collapse into a black hole.

There are two broad classes of black holes that have been reliably identified in

this way: stellar-sized black holes; and super-massive black holes in the centers of

galaxies. (Intermediate-sized black holes, with masses of order thousands of solar

masses, are also believed to exist — perhaps at the centers of globular clusters of

stars — but evidence for them is more controversial.)

Stellar-sized black holes

Among the first black hole candidates were those having masses not so different

from that of the Sun, as would be expected as the endpoints of the gravitational

collapse of a sufficiently massive star. Although the black hole itself is not visible, it

can be observed when matter that falls into it radiates. And such infalling matter

is particularly likely in situations where the black hole is in an orbit with another

ordinary star, since in this case material from the companion star can be siphoned off

to continually feed the black hole (as illustrated in fig. 20). As it falls in, this matter

can become hot enough to emit x-rays, and many examples of such x-ray binaries

are known (some of which are among the brightest objects in the sky when viewed

in x-rays).

Sometimes the stellar companion to

Figure 20: A drawing (courtesy of the Euro-

pean Space Agency and Hubble Space Tele-

scope) of an x-ray binary system.

the black hole is a star that is sufficiently

luminous to be directly visible in optical

or radio wavelengths. In such cases the

black hole dominates the luminosity of

the binary pair in x-rays, while its stel-

lar partner is the one that can be seen in

the visible spectrum. Among the most

famous x-ray binaries that are believed

to consist of black holes is Cygnus X-1,

the brightest x-ray source in its constel-

lation as seen from Earth. The orbital

partner of the x-ray source has been identified to be the super-giant star AGK2 +35

1910 = HDE 226868, which is itself incapable of emitting the x-rays observed from

its partner. Both stars are 2 kpc away from us, and move together in an aggregation

of stars, indicating a probable common origin.
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The light from this star exhibits the characteristic Doppler shifts that are asso-

ciated with being in an orbit about a massive partner, with an orbital period of 5.6

days. Because the plane of the orbit relative to the sky is unknown it is trickier to

determine unambiguously the mass of the partner, but the best estimates lead to a

mass of 8.7± 0.8 M⊙. On the other hand, since the x-ray source varies in time with

a timescale faster than several times a second, it cannot be larger than a fraction

of a light-second across (the best estimates indicate its size is smaller than 105 km).

The compact object is believed to be a black hole since neutron stars cannot be this

massive, and no other object is known that can have this much mass compressed

within the allowed size.

Galactic black holes

Enormous black holes, more massive than a million Suns, are believed to reside at

the center of most galaxies. When fed by infalling material, these can be among the

most luminous objects in the universe.

The Milky Way

Detailed studies of the properties of the galactic center give very good evidence

that our own galaxy, the Milky Way, itself contains such a super-massive black hole.

This evidence partially comes from the indications that there is a very powerful

energy source located near the galactic center, as would be expected if material

accretes there onto a black hole. The galactic center is an active energy emitter

when viewed in radio and x-ray wavelengths. (Studies with visible light are more

difficult because this is obscured by the dust that lies along our line of sight to the

galactic center.) Fig. 21 shows an x-ray photograph of our galactic center, showing

the presence of a variety of sources.

A more detailed picture of the Milky Way’s central object is formed by studying

how it affects the motion of stars in its immediate vicinity. The motion of a handful

of such stars have been observed continually for 16 years, allowing a detailed recon-

struction of their orbits that in some cases includes enough time for them to have

completed an entire revolution about the galactic center [6].

The observed orbits are consistent with motion in the presence of a very massive

point source, since they are very close to Keplerian. For instance, one of the inner-

most stars — the star S2 of fig. 22 — moves in an orbit whose eccentricity is e = 0.88

and whose semimajor axis subtends an angle (seen from the Earth) of 0.1 seconds of

arc, or 4× 10−7 radians. Since the galactic center is 8.3 kpc away, this corresponds

to an orbit whose semimajor axis is 0.01 light years, or about 4 light days.

These orbits indicate that the mass of the central mass is 4.3× 106 M⊙. On the

other hand, the size of the source must be much smaller than the point of closest
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approach of the smallest orbit (which turns out to be 17 light hours) because the

orbits are consistent with the central object being at a single point. For comparison,

the Schwarzschild radius corresponding to a mass of 4.3× 106 M⊙ is about 1.2× 107

km, or 43 light seconds. (For reference, our Sun is about a light second across, and

the Earth is about 8 light minutes – or 480 light seconds – from the Sun.)

The central source being orbited is

Figure 21: An Chandra satellite x-ray im-

age of the center of our galaxy.

believed to be a black hole because there

is no other known way to cram this much

mass into so small a region, without its

being directly visible. If there were a

black hole at the galactic center, simu-

lations show that stars would naturally

be found orbiting it that are formed as

huge gas clouds fall into the black hole.

Active Galaxies

Figure 22: A plot of reconstructed orbits of

several stars orbiting the center of our galaxy

[6].

Super-massive black holes at the center

of other galaxies are believed to be among

the brightest objects in the sky, and the

difference between these and the one in

the center of our own galaxy seems to

be mostly to do with how much mate-

rial they are being fed. An example of

the kinds of energy release that is pos-

sible is given by fig. 23, which shows a

jet of energetic particles emerging from

the center of the large elliptical galaxy

M87 in the Virgo cluster about 17 Mpc

away from us. This jet is more than 5000

light years long, and the apparent speed

of the matter being ejected along it has

been measured using the Hubble space

telescope. This finds the apparent motion to be between 4 to 6 times the speed of

light, an illusion that indicates (see exercise 11 in chapter 2) that the jet is moving at

relativistic speeds (but slower than light) largely directed towards us, along the line

of sight. Other indications of a strong energy source in M87 comes from its strong

emissions in x-rays and gamma rays.

The argument that the energy source at the galactic center is a black hole again

comes from measurements indicating that an enormous amount of mass resides within
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a comparatively small volume. For M87 the mass measurement is made by following

the speed with which hot gas orbits the central object in a central disc as a function

of the gas’ distance from the center. The speed of the orbits is measurable as a net

Doppler red-shift on one (receding) side of the central object, and a net blue-shift

on the other (approaching) side. These measurements indicate the central object is

enormously massive: its mass is 3× 109 solar masses.

An upper limit to the size within

Figure 23: A Hubble Space Telescope pho-

tograph of an energetic jet emerging from the

center of galaxy M87.

which this mass is compressed comes from

the HESS gamma ray telescope which

sees variations in the gamma ray flux

that occur over timescales of a few days.

This indicates that the 3 billion solar

masses lie within a region that is a few

light days across. For comparison, the

Schwarzschild radius of a black hole whose

mass is 3×109 M⊙ is about 8 light hours

(which is larger than the planetary or-

bits of our solar system). The only known

object that can be this massive and yet

so small is a black hole.

A second piece of circumstantial evi-

dence for the central object being a black

hole is the enormous efficiency – 6 times

better than the nuclear fusion that drives stars like the Sun – with which a black

hole is able to convert mass into energy. To see why this is so consider the conserved

quantity, E = −(1 − rs/r)(dt/dτ), of a particle moving in a circular orbit at radius

r. The 4-velocity for such a particle is

uµ = γ


1

0

0

Ω

 , (6.46)

where γ = dt/dτ and Ω = dϕ/dt. Since 1 = −u · u = γ2[(1− rs/r)− r2Ω2], we have

γ =
1√

(1− rs/r)− r2Ω2
=

1√
1− 3rs/2r

, (6.47)

where the last equality uses Kepler’s 3rd Law, Ω2 = GM/r3 = rs/(2r
3) — which is

exactly satisfied for circular orbits in Schwarzschild spacetime (see exercise 28) — to

write r2Ω2 = rs/(2r).
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Using eq. (6.47) in the expression for E then gives

E =
1− rs/r√
1− 3rs/2r

, (6.48)

which for the innermost circular orbit at r = 6M = 3rs becomes

E =
2
√
2

3
≃ 0.94 . (6.49)

Since E = 1 for a particle at rest at infinity, E can be interpreted as the energy per

unit rest mass, and eq. (6.49) shows that as much as 6% of the rest mass of a particle

can be converted to gravitational binding energy as a particle falls into an orbit

close to the black hole. This is ultimately the energy that is released to drive the

acceleration of the few particles that escape the black hole by being accelerated out

the jet (which emerges along the axis of rotation for the accretion disc that infalling

matter forms around the black hole).

By comparison, typical nuclear interactions release the nuclear binding energy,

and comparing the 27 MeV released by each fusion of a Helium nucleus from four

Hydrogen nuclei shows that this type of fusion releases roughly only 1% of the rest

mass available as energy. The energy released from matter infalling into a black hole

is therefore expected to be roughly 6 times more abundant than would have been

released by using the same amount of matter in some sort of a nuclear reaction.

7. Cosmology

The earlier sections show that once one accepts Einstein’s point of view that the

right way to describe gravity is as the curvature of spacetime, it becomes possible

to relate our local geometry to the distribution of matter in our immediate vicinity.

However the same logic also connects geometry to the matter distribution over much

larger scales, and in principle should relate the geometry of the Universe as a whole

to the average distribution of matter on the largest observable scales.

It is this realization that underlies the science of cosmology, which uses obser-

vations of the distribution of matter on very large scales to make inferences about

the overall curvature of space and time, and how these change in time. This section

provides a brief overview of the Big Bang theory of cosmology, with an emphasis is

on the theoretical ideas that pertain to General Relativity.

7.1 Kinematics of an expanding Universe
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We start with a section describing the

Figure 24: A map of the nearby distri-

bution of galaxies on the sky seen from

the earth, as obtained from the 2-Mass

galaxy survey. The ‘S’-shaped smear is

where our view is obscured by the pres-

ence of our own galaxy in the foreground.

geometry of spacetime on which all of the

subsequent sections rely. The key underly-

ing assumption in this section is that the

universe is homogeneous and isotropic when

seen on the largest distance scales. Here

isotropic means that all directions are equiv-

alent as seen by an observer situated at a

particular point, and so is equivalent to the

spherical symmetry of the geometry about

this point. Homogeneity states that the above

isotropy holds for an observer located at any

point. Until relatively recently this assertion

about the homogeneity and isotropy of the

universe was an assumption, often called the

Cosmological Principle. More recently it has become possible to put this assertion on

an observational footing, based on large-scale surveys of the distribution of matter

and radiation within the observed universe. The isotropy of this distribution rela-

tive to our own vantage point can be seen in fig. 24, which shows a the results of a

representative galaxy survey.

The LFRW Metric

The assumption that the universe is spherically symmetric and homogeneous puts a

strong restriction on the form of the universe’s overall geometry. We have already

seen that spherical symmetry by itself ensures that the metric can always be written

in the ‘isotropic’ form of eq. (3.20):

ds2 = −e2α(ϱ,τ) dτ 2 + e2β(ϱ,τ)
[
dϱ2 + ϱ2 (dθ2 + sin2 θ dϕ2)

]
, (7.1)

for some unknown functions, α(ϱ, τ) and β(ϱ, τ).

These functions are further restricted by the requirement of homogeneity, which

says that α must be a function only of the time coordinate, α = α(τ). This function

can then be completely eliminated by redefining the time coordinate, τ → t, so that

eα(τ)dτ = dt.

It is tempting to conclude that homogeneity amounts to translation invariance,

and so β must also be independent of ϱ. Although this does provide a homogeneous

and isotropic space, it does not produce the most general one. The condition on β

is slightly weaker: β must come as a sum, β = f(τ) + g(ϱ). Although β can depend

on ϱ, the allowed dependence is very restrictive. Homogeneity turns out to require
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that g(ϱ) is such that we can change variables ϱ → r, in a way that allows it to be

put into the LeMaitre-Friedmann-Robertson-Walker (LFRW) form:

ds2 = −dt2 + a2(t)

[
dr2

1− κr2/r20
+ r2 dθ2 + r2 sin2 θ dϕ2

]
(7.2)

= −dt2 + a2(t)
[
dℓ2 + r2(ℓ) dθ2 + r2(ℓ) sin2 θ dϕ2

]
,

where r0 is a constant and κ can take one of the following three values: κ = 1, 0,−1.

This is the most general 4D geometry that is consistent with isotropy and homo-

geneity of its spatial slices, and it is characterized by the one unknown function,

a(t) = ef(τ(t)). The content of Einstein’s equations will be to relate the shape of the

function a(t) to the matter content of the universe.

The coordinate ℓ in this metric is related to r by dℓ = dr/(1 − κr2/r20)
1/2, so if

we demand ℓ(r = 0) = 0 then

r(ℓ) =


r0 sin(ℓ/r0) if κ = +1

ℓ if κ = 0

r0 sinh(ℓ/r0) if κ = −1

. (7.3)

Notice that the metric, eq. (7.2), is invariant under the following re-scaling of

parameters: a → a/λ, r0 → λr0, provided we also re-scale the coordinate ℓ → λℓ.

This freedom is often used to choose convenient units, such as by choosing λ to ensure

r0 = 1 (if κ ̸= 0), or perhaps to set a(t0) = 1 for some t0.

The coordinates used all have the following simple physical interpretations.

• t represents the proper time along the time-like trajectories along which ℓ, θ

and ϕ are fixed. The range over which t may run is defined by the region over

which the function a(t) is neither zero nor infinite.

• ℓ is simply related to the proper distance measured along the radial directions

along which t, θ and ϕ are fixed, since this proper distance is given by

D(ℓ, t) = ℓ a(t) . (7.4)

If κ = 0,−1 then ℓ takes values in the range 0 < ℓ < ∞, but if κ = +1 then ℓ

is restricted to run over 0 < ℓ < πr0 because r(ℓ) vanishes at ℓ = πr0.

• 0 < θ < π and 0 < ϕ < 2π represent the usual angular coordinates of spheri-

cal polar coordinates. (Spherical coordinates furnish a convenient description

of our view of the universe, with the origin of coordinates representing our

vantage point.) The geometry is invariant under the SO(3) rotations of the

2-dimensional spherical surfaces at fixed ℓ and t which these coordinates pa-

rameterize.
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• r(ℓ) is simply related to the arc-length measured along these spherical surfaces

of fixed ℓ and t in the sense that a small angular displacement, dθ, is subtended

by a proper arc-length

ds = a(t) r(ℓ) dθ , (7.5)

at a coordinate position ℓ. It follows that the sphere having proper radius

ℓa(t) has a proper circumference of C = 2π r(ℓ)a(t) and its proper area is

A = 4π r2(ℓ)a2(t).

The quantities κ and r0 characterize the curvature of the spatial slices at fixed

t, in the following way.

Flat Spatial Curvature

If κ = 0 then r(ℓ) = ℓ and the spatial part of the LFRW metric reduces (apart

from the overall factor, a2(t)) to the metric of flat 3-dimensional space, written in

spherical polar coordinates:

ds23 = dr2 + r2(dθ2 + sin2 θ dϕ2) , (7.6)

as may be seen by performing the standard coordinate transformation

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ (7.7)

in the metric of eq. (2.2). In this case the parameter r0 does not appear in the metric.

Positive Spatial Curvature

When κ = 1 we have r(ℓ) = r0 sin(ℓ/r0) and the metric for t fixed describes the

geometry of a 3-dimensional sphere whose radius of curvature is r0. For instance, in

this case the circumference of a circle of proper radius a(t) ℓ is

C = 2πa(t) r0 sin

(
ℓ

r0

)
, (7.8)

which is strictly smaller than the corresponding flat result: C < 2πa(t) ℓ.

Furthermore, for fixed t, C is a monotonically increasing function of ℓ until

ℓ = πr0/2, but beyond this point C decreases until it vanishes at ℓ = πr0. The

maximum coordinate circumference obtained in this way is Cmax = 2πa(t) r0.

Notice also that the flat κ = 0 case is retrieved in the limit of infinite curvature

radius: r0 → ∞.

Negative Spatial Curvature

When κ = −1 we have r(ℓ) = r0 sinh(ℓ/r0), which makes the metric for constant

t describe the geometry of a 3-dimensional surface of negative constant curvature.
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(The surface of a saddle is close to being a 2-dimensional surface having constant

negative curvature.) The radius of curvature of this space is r0. In this case the

circumference of a circle of proper radius a(t) ℓ grows monotonically with ℓ,

C = 2πa(t) r0 sinh

(
ℓ

r0

)
, (7.9)

and is always larger than the corresponding flat-space result: C > 2πa(t) ℓ.

Again the flat κ = 0 case is retrieved in the limit of infinite curvature radius:

r0 → ∞.

Particle Motion

For the purposes of cosmology galaxies are particles, and so their trajectories in this

spacetime are given, as usual, by solutions to the geodesic equation, eq. (3.36)

d2xµ

ds2
+ Γµ

νλ[x(s)]

(
dxν

ds

)(
dxλ

ds

)
= 0 , (7.10)

with the Christoffel symbols, Γµ
νλ, given by eq. (2.39).

For the LFRW metric the only nonzero Christoffel symbols turn out to be given

by

Γt
ℓℓ = aȧ , Γt

θθ = aȧ r2 , Γt
ϕϕ = aȧ r2 sin2 θ ,

Γℓ
tℓ = Γℓ

ℓt = Γθ
tθ = Γθ

θt = Γϕ
tϕ = Γϕ

ϕt =
ȧ

a
, (7.11)

Γℓ
θθ = −rr′ , Γℓ

ϕϕ = −rr′ sin2 θ , Γθ
ℓθ = Γθ

θℓ = Γϕ
ℓϕ = Γϕ

ϕℓ =
r′

r
,

Γθ
ϕϕ = − sin θ cos θ , Γϕ

θϕ = cot θ ,

where the dots denote differentiation with respect to t and the primes represent

derivatives with respect to ℓ.

Using these expressions for the Christoffel symbols, the four geodesic equations

then become

d2t

ds2
+ aȧ

{(
dℓ

ds

)2

+ r2

[(
dθ

ds

)2

+ sin2 θ

(
dϕ

ds

)2
]}

= 0

d2ℓ

ds2
+ 2

(
ȧ

a

)
dℓ

ds

dt

ds
− rr′

[(
dθ

ds

)2

+ sin2 θ

(
dϕ

ds

)2
]
= 0

d2θ

ds2
+ 2

(
ȧ

a

)
dθ

ds

dt

ds
+ 2

(
r′

r

)
dθ

ds

dℓ

ds
− sin θ cos θ

(
dϕ

ds

)2

= 0

d2ϕ

ds2
+ 2

(
ȧ

a

)
dϕ

ds

dt

ds
+ 2

(
r′

r

)
dϕ

ds

dℓ

ds
+ 2 cot θ

dθ

ds

dϕ

ds
= 0
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Since the metric is rotationally invariant, angular momentum is conserved along

these geodesics in precisely the same way as it was for the Schwarzschild metric.

That is, the motion is guaranteed to take place entirely within a plane, and we are

free to choose our coordinates so that this plane is described by the equator, θ = π
2
,

for all s (which is clearly a solution to the d2θ/ds2 equation above). Rotational

invariance implies that the equation of motion for ϕ may be integrated once, to give

(using θ = π/2)

L = a2r2
dϕ

ds
, (7.12)

where L is a constant.

The remaining equations can often be explicitly integrated. When ȧ = 0 they

describe motion at constant speed along the geodesics of the spatial geometry (along

straight lines if this geometry is flat: κ = 0). When ȧ ̸= 0, motion along these

geodesics instead tends to damp out under the influence of the ȧ/a terms in the

equations (called the Hubble ‘friction’ terms). This damping arises because the ex-

pansion of the universe extracts energy from the motion. Several special cases are of

particular interest.

• Radial Motion: If dθ/ds = dϕ/ds = 0 at one point, then these quantities

remain zero along the entire geodesic. This shows that an initially radial motion

continues in the radial direction for all times. Radial free fall is described by

the equations of motion

d2t

ds2
+ a ȧ

(
dℓ

ds

)2

= 0 and
d2ℓ

ds2
+ 2

ȧ

a

(
dℓ

ds

)(
dt

ds

)
= 0 . (7.13)

These together imply the constancy of the proper distance along the geodesic,

(d/ds)[(dt/ds)2 − a2(dℓ/ds)2] = 0, as expected on general grounds.

• Inertial Motion: If a galaxy is initially at rest — and so dℓ/ds = dθ/ds =

dϕ/ds = 0 — then it remains at rest, at fixed coordinate position, for all t.

This shows that observers who remain at fixed position ℓ (the analogs of the

observers at fixed r for the Schwarzschild metric) move along geodesics (unlike

for the fixed-r observers in Schwarzschild).

Hubble Flow and Peculiar Motion

Consider now a particle moving more slowly than light, but for which some force

keeps it from moving along a geodesic. This might happen for a galaxy, for instance,

if some local density enhancement attracts it. In particular, consider for simplicity

a galaxy having coordinates (t, ℓ = ℓ(t), θ = θ0, ϕ = ϕ0), which moves on a purely

radial trajectory. The proper distance to this galaxy from, say, the origin is given by
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D(ℓ, t) = ℓ(t)a(t), and so its proper velocity relative to an observer at the origin is

Vp =
dD

dt
= ℓ

da

dt
+ a

dℓ

dt
= H D + a

dℓ

dt
, (7.14)

where

H(t) :=
1

a

(
da

dt

)
. (7.15)

The first term of eq. (7.14) describes the galaxy’s apparent motion due to the overall

universal expansion, and expresses the Hubble Law: in the absence of other motions

at any given instant all galaxies recede with a proper speed which is proportional

to their proper distance. (This law describes the observed overall motion of galaxies

very well, as is illustrated in fig. 25.) By contrast, the second term describes peculiar

velocity,

Vpec = a
dℓ

dt
, (7.16)

which expresses any deviation from geodesic motion in the overall LFRW metric.

Measurements ofH at the present epoch,

Figure 25: A plot of velocity (redshift)

vs (luminosity) distance for a class of

bright, distant objects that are used to

trace the motions of very distant galax-

ies (courtesy of Michael Richmond).

H0 = H(t = t0), giveH0 = 70±10 km/sec/Mpc,

which for a galaxy 1,000 Mpc distant (us-

ing present-day proper distance) would rep-

resent an apparent Hubble velocity of VH =

70, 000 km/sec, or VH/c ∼ 0.2.

If the proper time of an observer riding

in this galaxy, τ , is used as the parameter

along its trajectory, then (as usual)

gµν

(
dxν

dτ

)(
dxν

dτ

)
= −1 . (7.17)

This expression allows the time dilation of

observers in the galaxy to be related to the

motion just described. Specialized to the ra-

dial motion ℓ = ℓ(t) this last equation reads(
dt

dτ

)2

− a2
(
dℓ

dτ

)2

=

(
dt

dτ

)2 [
1− V 2

pec

]
= 1 , (7.18)

and so the local time dilation is

dt

dτ
= γpec =

1√
1− V 2

pec

. (7.19)
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We see that there is no time dilation in the absence of peculiar motion, so t

describes the proper time for all observers who sit at fixed coordinate positions.

In the presence of proper motion a time dilation arises, given by the usual special

relativistic expression in terms of the peculiar velocity, Vpec.

Light Rays and Redshift

The trajectories of particles (like photons) moving at the speed of light similarly

satisfy

gµν

(
dxν

ds

)(
dxν

ds

)
= 0 , (7.20)

which for radial motion specializes to

dt

ds
= ± a

dℓ

ds
. (7.21)

Consider now a photon which is sent to us (at the origin) along a radial trajectory

from a galaxy which is situated at fixed coordinate position ℓ = L. If we suppose the

photon to arrive at our position at t = 0 then we may compute its departure time at

the emitting galaxy, t = −T . Explicitly, the look-back time, T , is given by eq. (7.21)

to be

L =

∫ T

0

dt

a(t)
. (7.22)

Imagine now repeating this calculation for a sequence of photons (or for a train

of wave crests) which are emitted from the galaxy and are received here. Suppose

two consecutive photons are emitted at events which are labelled by the coordinate

positions (−T, L, θ0, ϕ0) and (−T +δT, L+δL, θ0, ϕ0), with the first of these received

at the origin at time t = 0 and the second arriving at (δt, δℓ, θ0, ϕ0). The redshift

of such a wave train may be found by computing how δt depends on δT , the scale

factor, a(t), and the peculiar motions of the emitter and observer.

We know that the trajectories of both photons satisfy eq. (7.21), and so we know

L =

∫ T

0

dt

a(t)
and (L+ δL)− δℓ =

∫ T−δT

−δt

dt

a(t)
. (7.23)

Subtracting the first of these from the second, and expanding the result to first order

in the small quantities δt, δT δL leads to the following relation

δL− δℓ =

∫ T−δT

−δt

dt

a(t)
−
∫ T

0

dt

a(t)
≈ δt

a0
− δT

a(T )
, (7.24)

where a0 = a(0). Dividing by δT then gives

δL

δT
− δℓ

δt

(
δt

δT

)
=

1

a0

(
δt

δT

)
− 1

a(T )
. (7.25)
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This may now be solved for δt/δT as a function of a0, a(T ) and the emitter and

observer’s peculiar velocities, Vpec = a(T )[δL/δT ] and vpec = a0[δℓ/δt] to give

δt

δT
=

a0
a(T )

(
1 + Vpec
1 + vpec

)
. (7.26)

The redshift, z, of the light is defined in terms of its wavelength at emission,

λem, and at observation, λobs, by z = (λobs − λem)/λem and so

1 + z =
λobs
λem

=
δτobs
δτem

=
δt

δT

[
1− v2pec
1− V 2

pec

]1/2
(7.27)

=
a0
a(T )

(
1 + Vpec
1 + vpec

)[
1− v2pec
1− V 2

pec

]1/2
.

This last expression uses eq. (7.19) to relate the proper time of the observer, δτobs,

and of the emitter, δτem, to the corresponding coordinate time differences, δt and

δT .

Eq. (7.27) is the main result. For negligible peculiar motions it reduces to a

simple expression for the redshift due to the Hubble flow

1 + z =
a0
a(T )

, (7.28)

which is a red shift – i.e. z > 0 – if the universe expands – i.e. a0 > a(T ). This

expression gives a good method for measuring the universe’s scale factor, a(t), since

it shows that it is simply related to the redshift of the light received from distant

galaxies.

For non-relativistic peculiar velocities this generalizes to the approximate formula

1 + z ≈ a0
a(T )

[
1 + (Vpec − vpec)

]
. (7.29)

Notice that (as expected) relative peculiar motion also generates a redshift – z > 0

– if Vpec > vpec – that is, if the emitting galaxy is receding from the observing one.

In principle, the dependence of z on peculiar velocity complicates the inference

of the universal scale factor from measurements of redshift, since in principle it

requires knowledge of the peculiar velocity of the distant emitting galaxy. In practice,

however, this complication is only important for relatively nearby galaxies, for which

the redshift due to the peculiar velocities are not dominated by that due to the

universal expansion.

7.2 Distance vs redshift

In LFRW cosmology the expansion of the universe is characterized by the time de-

pendence of the scale factor, a(t), which we shall see is in most circumstances a
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monotonic function of t. In principle, predictions for a(t) can be tested by mea-

suring the proper distances, D(L,−T ), to distant celestial objects and comparing

this with the look-back time, T , to these objects. Measurements of D(L,−T ) vs T
allow the inference of a(t) because of the connection between L and T — i.e. the

relation L(T ) given implicitly by eq. (7.23) — which expresses the fact that all of our

observations about the distant universe lie along our past light cone, because they

rely on our detecting photons which have come to us from the far reaches of space.

In practice, however, it is much easier to directly measure a than it is to measure

T because of the direct relationship between a and redshift. So inferences about the

geometry of spacetime instead are founded on measuring the dependence of distance

on redshift, z, for distant objects, rather than on look-back time, T . z and T carry

the same information provided a(t) is a monotonic function of time, and so it is more

convenient to use z itself as an operational measure of the universe’s age and size.

The remainder of this section derives expressions for the dependence of various

measures of distance on redshift, given a universal expansion history, a(t).

Proper Distance

Consider, then, a galaxy which at event (−T, L, θ0, ϕ0) sends light to us which we

receive at the origin at t = 0. Writing a0 = a(0), the present-day proper distance to

this galaxy is given by

D(T ) = D(L(T ),−T ) = a0 L =

∫ T

0

(
a0
a(t)

)
dt . (7.30)

This may be changed into an expression in terms of redshift by changing integration

variable from t to z using the relations

1 + z =
a0
a(t)

and so dz = −
(
a0 ȧ

a2

)
dt = −(1 + z)H dt , (7.31)

where as before H = ȧ/a. This leads to the desired result

D(z) =

∫ z

0

dz′

H(z′)
. (7.32)

Unfortunately, proper distance is also not particularly convenient since it is not

easily obtained from observations. There are two other notions of distance which are

more practical, whose dependence on z is now derived.

Luminosity Distance

One way of inferring how far away a distant object is becomes possible if the object’s

intrinsic rate of energy release per unit time — i.e. luminosity, L — is known. If L is
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known then it may be compared with the observed energy flux, f , which is received

at Earth from the object, with the distance to the object obtained by assuming

that the flux is related to L only by the geometrical solid angle which the Earth

subtends at the source. For instance in Euclidean space the flux received by a source

of luminosity L situated a distance D away is given by

f =
L

4πD2
, (7.33)

provided the source sends its energy equally in all directions and that there is no

absorption or scattering of the light while it is en route from the source. The lu-

minosity distance, DL, to the object may then be defined in terms of L and f by

DL = [L/(4πf)]1/2. This is the distance measure which is used, for example, in

recent measurements of the universal expansion using distant Type I supernovae.

Suppose, then, that the source emits a packet of light having energy, δEem, in a

time, δtem, and so has luminosity L = δEem/δtem. In an LFRW universe the relation

between L and the flux, f , we observe depends differently on distance than in flat

spacetime, in the following ways.

• Because the wavelength of the light is stretched by the universal expansion,

and the energy of a light wave is inversely proportional to its wavelength (E =

hν = hc/λ) this packet of energy arrives to us having a red-shifted energy

δEobs = δEem/(1 + z).

• Because of the expansion of space the wavelength of the light stretches as space

expands while it is en route. As a result the spatial extent of the packet also

stretches by a factor 1 + z during its passage between the source and us. The

means that on its arrival the time taken for the packet to deliver its energy is

δtobs = δtem(1 + z).

• The total energy from the source is sent in all directions, and so (using the

LFRW metric) it is spread over a sphere having surface area A = 4πr2(L)a2 at

a proper distance D = La from the source, where r(L) is given by eq. (7.3).

The flux observed at Earth is therefore given by

f =
1

4πr2(L) a20

(
δEobs

δtobs

)
=

1

4πr2(L) a20

(
δEem/(1 + z)

δtem(1 + z)

)
(7.34)

=

(
L

4πr2(L) a20

)
1

(1 + z)2
,
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and so the luminosity distance becomes

DL(z) ≡
[

L
4πf

]1/2
= a0 r(L(z)) (1 + z) . (7.35)

Notice that the present-day proper distance to the same galaxy would be D = La0.

Since in the special case of a spatially-flat universe, κ = 0, we have r(ℓ) = ℓ, in this

case DL is related to this proper distance by

DL(z) = D(z) (1 + z) (if κ = 0) . (7.36)

Angular-Diameter Distance

A second measure of distance becomes possible if an object of known proper length is

observed at a distance, since the angle which the object subtends as seen from Earth

is geometrically related to its distance from us. In Euclidean geometry an object of

length ds placed a distance D ≫ ds from us subtends an angle

dθ =
ds

D
(radians) , (7.37)

which motivates defining the angular-diameter distance by DA = ds/dθ in terms of

the (assumed) known length ds and measured angle dθ. This notion of distance comes

up in the study of the temperature fluctuations of the cosmic microwave background

radiation (about which more will be said later).

The connection between ds and dθ differs in the LFRW geometry in the following

ways.

• At any given time, within an LFRW geometry the proper length of an object

which subtends an angle dθ when placed a proper distance D = a ℓ away is

given by ds = a r(ℓ) dθ, with r(ℓ) given by eq. (7.3).

• When an object is observed from a great distance it is the proper distance at

the time its light was emitted which appears in the previous argument. Due to

the overall expansion of space this corresponds to a proper distance at present

which is a factor a0/a(−T ) = 1 + z larger.

With these two effects in mind, the angle subtended by an object having proper

length ds when observed from a present-day proper distance D = a0L away is given

by

dθ =
ds

a(−T ) r(L)
=

ds

a0 r(L)/(1 + z)
, (7.38)

and so the angular-diameter distance of such an object is

DA(z) ≡
ds

dθ
=
a0 r(L(z))

1 + z
=

DL(z)

(1 + z)2
, (7.39)
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where the last equality uses eq. (7.35).

Notice that in the special case of a spatially-flat universe (κ = 0), we have

r(ℓ) = ℓ and so the angular-diameter distance to an object situated a proper distance

D = a0L away is

DA(z) =
D(z)

1 + z
(if κ = 0) . (7.40)

This is equivalent to the object’s proper distance as measured at the time of the

light’s emission rather than its present proper distance.

Exercise 31: Measurements of the total number, N , of distant objects

as a function of their redshift, z, provide another way to measure a(t).

Show that if the objects in question have a density n(t), then

dN = 4πn(t)a3(t)r2(ℓ(t)) dℓ

= 4πn(t)a2(t)r2(ℓ(t)) dt (7.41)

= 4πn[t(z)]a20r
2[ℓ(t(z))]

dz

(1 + z)3H(z)
.

The Recent Universe

For later purposes it is useful to evaluate the above distance-redshift expressions

for various choices for the time-dependence of the universal expansion, a(t). For

simplicity (and because this appears to be a good description of the present-day

universe) in the case of DL and DA we provide formulae for the special case κ = 0.

A great many cosmological observations are restricted to the comparatively

nearby universe, for which the observed red-shifts are small. For such small red-

shifts it is useful to evaluate the distance-redshift expressions by expanding about

the present epoch, for which z = 0. Consider, therefore, a scale factor of the form

a(t) = a0 + ȧ0 (t− t0) +
1

2
ä0 (t− t0)

2 + · · · , (7.42)

where t = t0 denotes the present epoch. In what follows it is convenient to measure

the time difference in units of H−1
0 , where H0 = ȧ0/a0 by defining ζ = −H0 (t− t0),

in which case the above expansion is expected to furnish a good approximation for

|ζ| <∼ 1. (Notice that as defined ζ ≥ 0 when applied to a(t) in the past universe, for

which t ≤ t0.)

In terms of this expansion the redshift of light becomes

1 + z =
a0
a(t)

= 1 + ζ +
(
1 +

q0
2

)
ζ2 + · · · , (7.43)
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where q0 ≡ −a0ä0/ȧ20 = −ä/(a0H2
0 ), with the sign chosen so that q0 > 0 for a

decelerating universe (for which ä0 < 0).

The distance-redshift relations are governed by H(z), which is given by

H = H0

[
1 +

(
ä0
ȧ0

− ȧ0
a0

)
(t− t0) + · · ·

]
(7.44)

= H0

[
1 + (1 + q0) z + · · ·

]
.

Using this in eq. (7.32) leads to the following expression for D(z) near z = 0

D(z) = H−1
0

[
z − 1

2
(1 + q0) z

2 + · · ·
]
, (7.45)

which for κ = 0 also imply the following small-z expansions for the luminosity and

angular-diameter distances

DL(z) = H−1
0

[
z +

1

2
(1− q0) z

2 + · · ·
]

(7.46)

DA(z) = H−1
0

[
z − 1

2
(3 + q0) z

2 + · · ·
]
.

For small z the leading distance-redshift dependence is therefore predicted to be

linear — D(z) ≃ H−1
0 z — for all of the distance definitions given above, a result

which expresses Hubble’s Law in the form observers really test it (such as in fig. 25).

It is the measurement of this slope, such as by the Hubble Key Project [7], that lead

to the current best value H0 = 72± 8 km/sec/Mpc.

Clearly a precise determination of distance vs redshift for objects out to larger

redshifts permits the extraction of the deceleration parameter (q0) in addition to both

the present-day Hubble constant (H0). This has proven quite difficult to do reliably,

but has recently been accomplished (see fig. 27) using the luminosity-distance vs

redshift relation measured for Type IA supernovae, which are bright enough to be

seen at enormous distances but for which the intrinsic luminosity is known. It is

these measurements that discovered that the universal expansion is accelerating –

that is, q0 < 0 so ä0 > 0.

Power-Law Expansion

Another situation of considerable practical interest is the case where the expansion

varies as a power of t, as in

1 + z =
a0
a(t)

=

(
t0
t

)α

, (7.47)

for some choices for the parameters a0, t0 and α. In later sections we shall find this

law is produced (if κ = 0) with α = 1
2
for a universe full of radiation, and with α = 2

3
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for a universe consisting dominantly of non-relativistic matter (like atoms or stars).

For such a universe the Hubble and deceleration parameters become

H(t) =
ȧ

a
=
α

t
= H0

(
t0
t

)
= H0 (1 + z)1/α and q(t) = −a ä

ȧ2
=

1− α

α
.

(7.48)

Notice that this kind of power law im-

Figure 26: Measurements of the

present-day Hubble scale, H0, as ob-

tained from distance-redshift measure-

ments by the Hubble Key Project.

plies that a vanishes for t = 0 provided only

that α > 0 (and so in particular does so for

the cases α = 1
2
and 2

3
mentioned above).

This is the Big Bang which underlies much

of modern cosmology. In terms of q = q0 and

the present value of the Hubble parameter,

H0, this occurs a time

t0 = αH−1
0 =

H−1
0

q0 + 1
(7.49)

in the past.

Using the above expressions for q and

H(z) in eq. (7.32) gives the following expres-

sion for the proper distance

D(z) = H−1
0

∫ z

0

dz′

(1 + z′)1/α
=
H−1

0

q

[
1− 1

(1 + z)q

]
, (7.50)

which with DL(z) = D(z) (1+ z) and DA(z) = D(z)/(1+ z) give the luminosity and

angular-diameter distances when κ = 0.

Radiation-Dominated Universe (if κ = 0):

As mentioned above, the special case where the universe is dominated by radiation

with κ = 0 turns out to correspond to a power-law expansion with α = 1
2
, and so

we have H(z) = H0(1 + z)2 and q(z) = q0 = 1. This leads to the following proper

distance

D(z) = H−1
0

(
z

1 + z

)
=

{
H−1

0 [z − z2 + · · · ] if z ≪ 1

H−1
0

[
1− 1

z
+ · · ·

]
if z ≫ 1

. (7.51)

Since κ = 0 the luminosity and angular-diameter distances become

DL(z) = H−1
0 z , DA(z) = H−1

0

[
z

(1 + z)2

]
=

{
H−1

0 [z − 2 z2 + · · · ] if z ≪ 1
H−1

0

z

[
1− 2

z
+ · · ·

]
if z ≫ 1

.

(7.52)

Matter-Dominated Universe (if κ = 0):
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The special case where κ = 0 and the universe is dominated by non-relativistic

matter corresponds to power-law expansion with α = 2
3
, and so H(z) = H0(1 + z)3/2

and q(z) = q0 =
1
2
. This leads to the proper distance

D(z) = 2H−1
0

[
(1 + z)1/2 − 1

(1 + z)1/2

]
=

{
H−1

0

[
z − 3

4
z2 + · · ·

]
if z ≪ 1

2H−1
0

[
1−

(
1
z

)1/2
+ · · ·

]
if z ≫ 1

. (7.53)

Because κ = 0 the luminosity and angular-diameter distances are

DL(z) = 2H−1
0

[
(1 + z)−

√
1 + z

]
=

{
2H−1

0

[
z + 1

4
z2 + · · ·

]
if z ≪ 1

2H−1
0 z

[
1−

(
1
z

)1/2
+ · · ·

]
if z ≫ 1

,

(7.54)

and

DA(z) = 2H−1
0

[
(1 + z)1/2 − 1

(1 + z)3/2

]
=

{
H−1

0

[
z − 7

4
z2 + · · ·

]
if z ≪ 1

2H−1
0

z

[
1−

(
1
z

)1/2
+ · · ·

]
if z ≫ 1

. (7.55)

Notice that for both matter- and radiation-dominated universes the present-day

proper distance approaches a limiting value of order H−1
0 when z → ∞. This implies

that we do not learn about arbitrarily large distances when we look into the past at

objects having larger and larger redshifts. A related observation is the fact that the

angular-diameter distance is not a monotonic function of z, since it grows like z for

small z but vanishes asymptotically for large z, proportional to 1/z. Since (when

κ = 0) angular-diameter distance is the proper distance to the source measured at

the time the light is emitted rather than observed, this vanishing of DA for large

z shows that our observations are limited to a vanishingly small local region in the

very distant past. This limitation to our view is called our local particle horizon. It

arises because for these geometries the universe becomes vanishingly small at a finite

time in our past and the universal expansion can be fast enough to permit objects

to be sufficiently distant that light cannot reach us from them given the limited age

of the universe.

Exponential Expansion

The next special case of interest corresponds to exponential expansion

1 + z =
a0
a(t)

= exp[−H0 (t− t0)] , (7.56)

which may be regarded as the limiting case of a power law for which α → ∞. We

shall find this kind of expansion can be produced when the universal energy density

is dominated by the energy of the vacuum.
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In this case the Hubble and deceleration parameters are time-independent, with

H(t) =
ȧ

a
= H0 and q(t) = q0 = −1 , (7.57)

and the redshift-dependence of the proper distance is D(z) = H−1
0

∫ z

0
dz′ = H−1

0 z.

The luminosity and angular-diameter distances (when κ = 0) then become.

DL(z) = H−1
0 z(1 + z) and DA(z) = H−1

0

(
z

1 + z

)
. (7.58)

Notice that, unlike for the previous ex-

Figure 27: Measurements of the

luminosity-distance/redshift relation to

higher redshifts, with evidence for q0 <

0, by the Supernova Cosmology Project

and the High-z Supernova Search.

amples, the expansion in this case is acceler-

ated, with ä > 0 and so q0 < 0. This kind of

expansion is particularly interesting because

of recent tests of Hubble’s Law out to com-

paratively large redshifts, which indicate q0

really is negative (see fig. 27). We shall see

later that this kind of expansion can also be

generated by plausible kinds of matter, and

in particular would arise if the vacuum itself

were to have a nonzero energy density.

Unlike the case of matter- and radiation-

domination considered earlier, in this case

the present-day proper distance grows with-

out bound but the proper-distance at emis-

sion approaches a fixed limit, DA → H−1
0 , as z → ∞. This distance represents

an apparent horizon beyond which we are unable to penetrate with observations,

and differs from the particle horizon considered above because it is not tied to there

only having been a finite proper time since the universe had zero size. For the

exponentially-expanding universe only a finite proper distance in the past is acces-

sible to us even though t can run back to −∞. The existence of this horizon can be

traced to the enormous speed of the exponential expansion, with which light waves

travelling at finite speed cannot keep up.

7.3 Dynamics of an expanding Universe

The previous sections described the kinematics of how various distance-redshift re-

lationships depend on the universal expansion history, a(t). The present section

instead addresses the question of how this expansion history depends on the energy

content of the matter which lives inside the universe. This connection has its roots

in the Einstein field equations

Rµν −
1

2
Rgµν = 8πGTµν , (7.59)
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which relate the curvature of spacetime to its energy-momentum content — i.e.

“matter tells space how to curve”.

Homogeneous and Isotropic Stress Energy

The conditions of homogeneity and isotropy strongly restrict the distribution of mat-

ter and energy within the universe, in the same way that they restrict the metric to

take the Friedmann-Robertson-Walker form, given by eq. (7.2). For the stress-energy

tensor, Tµν , the analogous conditions have the following form.

• Isotropy permits the energy density, ρ = T tt, to be an arbitrary function of

time, t, and radial position, ℓ, but homogeneity forbids any dependence on

the position ℓ. The most general energy density can therefore only be time

dependent: T tt = ρ(t).

• Isotropy permits a net energy flux, si = T ti with i = 1, 2, 3, so long as it points

purely in the radial direction.14 In LFRW coordinates this implies T tθ = T tϕ =

0 while T tℓ can be a nonzero function of t and ℓ. Homogeneity, however,

requires T tℓ = 0 because having a nonzero energy flux would necessarily allow

one to distinguish between the directions from which and to which the energy

is flowing. The same conclusions equally apply to the momentum density:

πi = T it = 0.

• Isotropy permits the 3-dimensional stress tensor, T ij, to be nonzero provided

it is built from the metric tensor itself, or from the radial direction vector, xi.

That is, isotropy allows T ij = p gij + q xixj, where p and q can be functions

of both t and ℓ. However homogeneity precludes p from depending on ℓ, and

does not permit a nonzero q at all, since the radial vector picks out a preferred

place as its origin. It follows that the stress tensor must have the diagonal form

T j
i = gikT

kj = p(t) δji .

We are led to the conclusion that homogeneity and isotropy only permit a stress-

energy of the form

T tt = ρ(t) , T ti = T it = 0 and T ij = p(t) gij , (7.60)

which is characterized by two functions of time: ρ(t) and p(t). As is clear from the

definition of T µν , ρ represents the (average) energy density as seen by co-moving

observers who are situated at fixed values of (ℓ, θ, ϕ). As we saw in earlier sections,

the interpretation of T ij as a momentum flux together with stress-energy conservation

14This can be removed by changing the radial coordinate, but we do not do so in order not to

lose the simple connection between proper distance and coordinate distance, D = a(t)∆ℓ.
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implies that the net rate of change in momentum of a volume V — i.e. the net force

acting on V — is given by the flux of momentum current through the boundary, ∂V :

F i ≡ dP i

dt
=

∫
V

∂πi

∂t
d3V = −

∫
∂V

T ijnj d
2S = −

∫
∂V

p ni d2S , (7.61)

which shows that p represents the total (average) pressure of the matter whose stress

energy is under consideration.

Our goal now is to see how Einstein’s equations relate these quantities to a(t).

Einstein’s Equations

In order to determine how a(t) is connected to ρ(t) and p(t) we require the Ricci

tensor for the LFRW metric, eq. (7.2). It is convenient to write the metric in terms

of the time coordinate, t, and the space coordinates, xi = {r, θ, ϕ}, as

gtt = −1 , gti = 0 and gij = a2(t) ĝij , (7.62)

where ĝij dx
idxj = dr2/(1−κr2/r20)+ r2 (dθ2+sin2 θ dϕ2) denotes the spatial metric

with the scale factor, a(t), removed. In terms of these, the only nonzero Christoffel

symbols are

Γt
ij = aȧ ĝij , Γi

tj = Γi
jt =

ȧ

a
δij and Γi

jk = Γ̂i
jk , (7.63)

where Γ̂i
jk denotes the Christoffel symbols built from the spatial metric, ĝij. The

components of the Ricci tensor are similarly given by

Rtt = −3 ä

a
, Rti = 0 and Rij = R̂ij +

(
aä+ 2 ȧ2

)
ĝij , (7.64)

where the Ricci tensor for the spatial metric is

R̂ij =
2κ

r20
ĝij . (7.65)

In the same basis the components of the stress energy are

Ttt = ρ , Tti = 0 and Tij = p gij = p a2 ĝij , (7.66)

and so specializing the Einstein field equations, eq. (4.4), to homogeneous and

isotropic geometries leads to the following two independent differential equations

which relate a(t) to ρ(t) and p(t):

3

(
ä

a

)
= −4πG (ρ+ 3p)

ä

a
+ 2

(
ȧ

a

)2

+
2κ

a2r20
= 4πG (ρ− p) . (7.67)
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In particular, a particularly useful combination of these may be chosen for which ä

is eliminated, and is called the Friedmann equation,(
ȧ

a

)2

+
κ

a2r20
=

8πG

3
ρ . (7.68)

Rather than directly using an equation involving second derivatives as our second

equation it is more convenient to instead use the equation describing the Conservation

of Stress-Energy in curved space, eq. (4.6):

∇µT
µν = ∂µT

µν + Γµ
µαT

αν + Γν
µαT

µα = 0 . (7.69)

Once specialized to the stress energy and connection given above, eqs. (7.63) and

(7.66), the ν = i components of this equation vanish for any ρ or p (because of

the assumed homogeneity and isotropy). But the ν = t component of this equation

carries some content:

0 =
∂T tt

∂t
+ Γi

itT
tt + Γt

ijT
ij

= ρ̇+ 3

(
ȧ

a

)
(ρ+ p) . (7.70)

The physical meaning of this last equation as energy conservation is more easily

seen if it is rewritten as
d

dt

(
ρ a3
)
+ p

d

dt
(a3) = 0 , (7.71)

since in this form it relates the rate of change of the total energy, ρa3, to the work

done by the pressure as the universe expands. For matter in thermal equilibrium, a

comparison of this last equation with the 1st Law of Thermodynamics shows that the

expansion of the universe is adiabatic, inasmuch as the total entropy of the matter

in the universe does not change in a homogeneous and isotropic expansion.

Cosmic Acceleration and Matter

In what follows we use the easier-to-use first-order Friedmann and energy-conservation

equations, eqs. (7.68) and (7.70), rather than the original second-order equations,

eq. (7.67), that directly arise from the Einstein equations.

To see that these are equivalent it is instructive to rederive the second-order

equations, eqs. (7.67), from eqs. (7.68) and (7.70). To this end differentiate eq. (7.68)

and use eq. (7.70) to eliminate ρ̇. This gives (if ȧ ̸= 0) the first of eqs. (7.67):

ä

a
= −4πG

3
(ρ+ 3p) . (7.72)

Notice that this last equation implies that ä < 0 for most forms of matter, since for

these ρ and p are typically positive. This corresponds physically to the statement
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that gravity is always attractive, and so the mutual attraction of the galaxies in the

universe always acts to slow down the universal expansion. As we shall see there can

be exceptions to this general rule, for which ρ+3p < 0, and so whose presence could

cause the universal expansion to accelerate rather than decelerate.

Another application of eq. (7.72) is to use it to see what may be learned about

the present-day values of ρ and p from measurements of the present-day expansion

rate, H0, and deceleration parameter, q0. To this end notice that the Friedmann

equation evaluated at the present epoch implies

H2
0 +

κ

(a0r0)2
=

8πG

3
ρ0 or 1 +

κ

(a0H0r0)2
=
ρ0
ρc

≡ Ω0 , (7.73)

where the critical density is defined by ρc ≡ 3H2
0/(8πG) and the last equality defines

Ω0 to be the energy density in units of this critical density, Ω0 = ρ0/ρc. Given the

current measurement H0 = 70 ± 10 km/sec/Mpc, the critical density’s numerical

value becomes ρc = 5200± 1000 MeV m−3 = (9± 2)× 10−30 g cm−3.

ρc is defined in the way it is because if ρ0 = ρc then κ = 0. Similarly if κ = +1

then we must have ρ0 > ρc and if κ = −1 then ρ0 < ρc. Evaluating the acceleration

equation, eq. (7.72), at the present epoch similarly gives

q0 = − ä0
a0H2

0

=
4πG

3H2
0

(ρ0 + 3p0) =
ρ0 + 3p0

2ρc
=

Ω0

2
(1 + 3w0) , (7.74)

where we define w0 = p0/ρ0. Clearly a measurement of H0 and q0 allows the inference

of both ρ0 and p0, and knowledge of ρ0 also allows the determination of κ, since

κ = +1 if and only if Ω0 > 1 and q0 >
1
2
while κ = −1 requires both Ω0 < 1 and

q0 <
1
2
. In particular, distance-redshift measurements that indicate q0 < 0 also imply

w0 < −1
3
(given that ρ0 ≃ ρc > 0).

Equations of State

Mathematically speaking, finding the evolution of the universe as a function of time

requires the integration of eqs. (7.68) and (7.70), but in themselves these two equa-

tions are inadequate to determine the evolution of the three unknown functions, a(t),

ρ(t) and p(t). Another condition is required in order to make the problem well-posed.

The missing condition is furnished by the equation of state for the matter in

question, which for the present purposes may be regarded as being an expression for

the pressure as a function of energy density, p = p(ρ). As we shall see this expression

is typically characteristic of the microscopic constituents of the matter whose stress

energy is of interest. Such an equation of state naturally arises for matter which

is in local thermodynamic equilibrium, since this often allows both p and ρ to be

expressed in terms of a single quantity like the local temperature, T . But it may also

– 141 –



arise for matter which was only in equilibrium in the past, even if it is no longer in

equilibrium at present.

Most of the equations of state of interest in cosmology have the general form

p = w ρ , (7.75)

where w is a t-independent constant. Given an equation of state of this form it is

possible to integrate eqs. (7.68) and (7.70) to determine how a, ρ and p vary with

time, as we now see.

The first step is to determine how p and ρ depend on a, since this is dictated by

energy conservation. Using eq. (7.75) to eliminate p allows eq. (7.70) to be written

ρ̇

ρ
+ 3(1 + w)

ȧ

a
= 0 , (7.76)

which may be integrated to obtain

ρ = ρ0

(a0
a

)σ
with σ = 3(1 + w) . (7.77)

The pressure satisfies an identical dependence on a by virtue of the equation of state:

p = wρ.

If eq. (7.77) is now used to eliminate ρ from eq. (7.68), the following differential

equation for a(t) is obtained

ȧ2 =
8πGρ0a

2
0

3

(a0
a

)σ−2

− κ

r20
, (7.78)

In the special case that κ = 0 this equation is easily integrated to give

a(t) = a0

(
t

t0

)α

with α =
2

σ
=

2

3(1 + w)
. (7.79)

We now apply the above expressions to a few examples of the equations of state

which are known to be relevant to cosmology.

Empty Space

The simplest cosmology possible is obtained in the absence of matter, in which case

ρ = p = 0. In this case we have ȧ2 = −κ, from which we see that κ ̸= +1. Two

distinct solutions are possible, depending on whether κ = 0 or κ = −1.

If κ = 0 we have ȧ = 0 and so we may choose a = 1 for all t. In this case the

LFRW metric simply reduces to the flat metric of Minkowski space, written in polar

coordinates.

If κ = −1 then we have ȧ = ±1 and so a = ±(t−t0)+a0. This negatively-curved
geometry is known as the Milne Universe, but so far as we know it does not play any

role in Big Bang cosmology.
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Radiation

A gas of relativistic particles, like photons or neutrinos (or other particles for suffi-

ciently high temperatures), when in thermal equilibrium has an energy density and

pressure given by

ρ = aB T
4 and p =

1

3
aB T

4 , (7.80)

where aB = π2/15 = 0.6580 is the Stefan-Boltzmann constant (in units where kB =

c = ℏ = 1) and T is the temperature. These two expressions ensure that ρ and p

satisfy the relation

p =
1

3
ρ and so w =

1

3
. (7.81)

Since w = 1
3
we see that σ = 3(1 + w) = 4 and so ρ ∝ a−4. This has a simple

physical interpretation for a gas of noninteracting photons, since for these the total

number of photons is fixed (and so nγ ∝ a−3), but each photon energy also redshifts

like 1/a as the universe expands, leading to ργ ∝ a−4.

Since σ = 4 we have α = 2/σ = 1/2, and so if κ = 0 then a(t) ∝ t1/2. Explicit

expressions are given in previous sections for the proper, luminosity and angular-

diameter distance as functions of redshift for this type of expansion.
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Non-relativistic Matter

An ideal gas of non-relativistic particles in thermal equilibrium has a pressure and

energy density given by15

p = nT and ρ = nm+
nT

γ − 1
, (7.82)

where n is the number of particles per unit volume, m is the particle’s rest mass and

γ = cp/cv is its ratio of specific heats, with γ = 5
3
for a gas of monatomic atoms.

For non-relativistic particles the total number of particles is usually also con-

served, which implies that
d

dt

[
n a3

]
= 0 . (7.83)

Since m ≫ T (or else the atoms would be relativistic) the equation of state for this

gas may be taken to be

p/ρ ≈ 0 and so w ≈ 0 . (7.84)

Notice that although this equation of state is derived for a thermal gas, it applies

much more generally, such as for the cosmic fluid of galaxies, or for other forms of

non-relativistic matter that are not in thermal equilibrium. This because for all such

systems the pressure is suppressed relative to the energy density by factors of v/c.

If w = 0 then energy conservation implies σ = 3(1 + w) = 3 and so ρa3 is

a constant. This is appropriate for non-relativistic matter for which the energy

density is dominated by the particle rest-masses, ρ ≈ nm, because in this case energy

conservation is equivalent to conservation of particle number, which we’ve seen is

equivalent to n ∝ a−3 (since this leaves the total number of particles, N ∼ n a3,

fixed).

Given that σ = 3 we have α = 2/σ = 2
3
and so if κ = 0 then the universal scale

factor expands like a ∝ t2/3. Explicit expressions for the proper, luminosity and

angular-diameter distances for this type of expansion are all given in earlier sections.

Nonrelativistic Solutions for General κ:

When σ = 3 it is also possible to solve eq. (7.68) analytically even when κ ̸= 0. We

pause here to display these solutions in some detail because most of the history of the

universe from z ∼ 104 down to z ∼ 1 appears to have been governed by a universe

whose energy density was dominated by non-relativistic matter.

As was described in earlier sections, we may expect the solutions for general κ to

be described by two integration constants, which we may take to be Ω0 and H0, or

equivalently to be q0 = Ω0/2 and H0. The value of κ is related to these parameters

15Units are again used for which Boltzmann’s constant is unity: kB = 1.
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because Ω0 = 2q0 = 1 if and only if κ = 0, and κ = +1 if Ω0 > 1 and κ = −1 if

Ω < 1.

For κ = +1 (and so ρ0 > ρc) the solution for a(t) is most compactly given in

parametric form, as the formula for a cycloid:

a(ζ)

a0
=

q0
2q0 − 1

(
1− cos ζ

)
=

1

2

(
Ω0

Ω0 − 1

)(
1− cos ζ

)
H0 t(ζ) =

q0
(2q0 − 1)3/2

(
ζ − sin ζ

)
=

Ω0

2(Ω0 − 1)3/2

(
ζ − sin ζ

)
. (7.85)

Here the initial conditions which parameterize this solution are given in terms of the

physically measurable parameters, q0 = Ω0/2 and H0.

As ζ increases from 0 to 2π, t increases monotonically from an initial value of 0

to tend = πΩ0H
−1
0 /(Ω0 − 1)3/2, but a/a0 rises from 0 at t = 0 to a maximum value,

Ω0/(Ω0 − 1) when t = tmax = tend/2. After this point a/a0 decreases monotonically

until it again vanishes at t = tend. This describes a universe which begins in a Big

Bang at t = 0, stops expanding at t = tmax and then finally recollapses and ends in

a Big Crunch at t = tend.

For κ = −1 (and so Ω0 < 1 and q0 <
1
2
) the solution for a(t) is given by a very

similar expression

a(ζ)

a0
=

q0
1− 2q0

(
cosh ζ − 1

)
=

1

2

(
Ω0

1− Ω0

)(
cosh ζ − 1

)
H0 t(ζ) =

q0
(1− 2q0)3/2

(
sinh ζ − ζ

)
=

Ω0

2(1− Ω0)3/2

(
sinh ζ − ζ

)
. (7.86)

This time both t and a increase monotonically with ζ, whose range runs from 0 to

infinity. In this case the universe begins in a Big Bang at t = 0 and then continues

expanding (and cooling) forever, leading to a Big Chill in the remote future.

The Vacuum

If the vacuum is Lorentz invariant, as the success of special relativity seems to in-

dicate, then its stress energy must satisfy Tµν = ρ gµν . This implies the vacuum

pressure must satisfy the only possible Lorentz-invariant equation of state:

p = −ρ and so w = −1 . (7.87)

Clearly either p or ρ must be negative with this equation of state, and unlike for

other equations of state there is no reason of principle for choosing either sign for ρ

a priori.

Because w = −1 when the vacuum energy is dominant, we see that σ = 3(1 +

w) = 0 and so energy conservation implies that ρ is a constant, independent of a
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or t. This kind of constant energy density is often called, for historical reasons, the

cosmological constant.

In this situation α = 2/σ → ∞, which shows that the power-law solutions,

a ∝ tα, are not appropriate. Returning directly to the Friedmann equation, eq. (7.68),

shows that if κ = 0 then ȧ ∝ ±a and so the solutions are given by exponentials:

a ∝ exp[±H0(t − t0)]. Explicit expressions for the proper, luminosity and angular-

diameter distances as functions of z are given for this expansion in earlier sections.

Notice also that in this case ρ+ 3p = −2ρ, which is negative if ρ is positive. As

such this furnishes an explicit example of an equation of state for which the universal

acceleration, ä/a = −4
3
πG(ρ+ 3p) = +8

3
πGρ, can be positive if ρ > 0.

If all lengths are expanding, how can one tell?

We round out this section by taking a breather to address a basic conceptual question

concerning the expanding universe. Since it is spacetime itself that is expanding, this

question asks, how it is possible to measure the expansion of the universe if all of

one’s rulers are also expanding?

In a nutshell, the key to this puzzle is that time, t, is not expanding, and so

energies that are defined relative to this time do not change as the universal length

scale expands. For example, we have seen above that the rest masses of nonrelativistic

particles do not change as the universe expands, and this is related to why the

energy density of such particles fall with the universal expansion proportional to

1/a3. Because energies and masses do not change, neither do the sizes of bound

states like atoms, and so small everyday objects do not grow along with the universal

expansion.

To see this in more detail, imagine solving the Schrödinger equation for the

ground state of the Hydrogen atom in a universe that is expanding, but doing so at

a rate that is much smaller than any atomic frequencies.16 In terms of rectangular

co-moving coordinates, x, physical (proper) distances, y, are measured by including

the (slowly varying) time-dependent scale factor, y = ax, where a = a(t). In terms

of these the Schrödinger equation is

− ℏ2

2me

∇2
yψ − α

|y|
ψ = Eψ , (7.88)

where α = e2/4π is the electromagnetic fine-structure constant, me is the electron

mass, r2 = y2 = a2x2 and so ∇2
y = a−2∇2

x relates the Laplace operators for the

coordinates y and x respectively.

16This is an extremely good approximation, since the present-day Hubble scale, H0, is roughly

10−34 times smaller than the frequency associated with the 13.6 eV binding energy of the Hydrogen

atom.
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Following the usual steps leads to ground-state wave functions of the form ψ ∝
exp(−r/a0), with the Bohr radius given by a0 = 1/(αme) and the energy E0 =

−1
2
α2me. This shows that the atom’s physical size, a0, measured using the nominally

expanding physical coordinates, y, is fixed by the time-independent constantsme and

α. This is in contrast with the time-dependent separation between galaxies in the

LFRW metric, which are situated at fixed values of x (because these are geodesics),

and so separate as a gets larger.

But how do we see that it is the scale H that is the relevant comparison when

deciding which bound systems do not expand with the universal expansion? And

what about bound states where it is gravity itself that is doing the binding? Do the

Schwarzschild radii of stars increase as the universe expands? These questions can be

explicitly answered using an exact solution to Einstein’s equations that describes a

gravitating object (like a black hole) sitting within an expanding LFRW cosmology.

The solution in question is called the McVittie solution [8], and for spatially flat

cosmologies (κ = 0) has the form

ds2 = −
(
1− µ

1 + µ

)2

dt2 + (1 + µ)4 a2 [dϱ2 + ϱ2(dθ2 + sin2 θ dϕ2)] , (7.89)

where ϱ is the radial coordinate, the dimensionless quantity µ is defined by

µ(ϱ, t) =
GM

2a(t) ϱ
, (7.90)

and the scale factor a(t) is obtained by solving the Friedmann equation, as for the

LFRW metric (with κ = 0):

H2 =

(
ȧ

a

)2

=
8πGρ

3
. (7.91)

Here ρ(t) is the homogeneous isotropic energy density that governs the time-dependence

of the cosmological environment.

The limiting LFRW and Schwarzschild behaviours are easier to see if we change

coordinates, ϱ→ r, where r is defined so that the area of the spheres at fixed r and

t are A = 4πr2. The desired coordinate change therefore is

r = (1 + µ)2 a ϱ . (7.92)

The metric in these new coordinates then becomes

ds2 = −
(
1− rs

r
−H2r2

)
dt2 +

dr2

1− rs/r
− 2Hr√

1− rs/r
dr dt+ r2

(
dθ2 + sin2 θ dϕ2

)
,

(7.93)
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where, as usual, rs = 2GM (which is independent of time). To see that this geometry

approaches an LFRW metric at large distances, use rs/r ≪ (Hr)2 to neglect the rs/r

terms in eq. (7.93). Then adopt the co-moving radius, ℓ, that is used in the standard

form of the LFRW metric, defined (for κ = 0) by r = a(t) ℓ. Using dr = a dℓ+rH dt,

we see that −(1−H2r2)dt2 + dr2 − 2Hr drdt = −dt2 + a2dℓ2, and so

ds2 ≃ −dt2 + a2
(
dℓ2 + ℓ2dθ2 + ℓ2 sin2 θ dϕ2

)
if r3 ≫ rs/H

2 . (7.94)

This is clearly the LFRW metric (with κ = 0), to which the McVittie solution

asymptotes in the limit (Hr)2 ≫ rs/r.

To identify that the metric, eq. (7.93), approaches the Schwarzschild metric in

the opposite limit, Hr ≪ rs/r, it is worth defining the new time coordinate τ by

dτ = dt+
Hrdr√

1− rs/r (1− rs/r −H2r2)
, (7.95)

since this allows the metric to be written in the diagonal form

ds2 = −
(
1− rs

r
−H2r2

)
dτ 2 +

dr2

1− rs/r −H2r2
+ r2

(
dθ2 + sin2 θ dϕ2

)
. (7.96)

Clearly this reduces to the Schwarzschild solution when (Hr)2 ≪ rs/r, which is true

for any distances that are small compared with the megaparsec scales of relevance

to cosmology.

For the present purposes, the important thing is that the physical constants

characterizing the size of the bound object (a−1
0 = αme for the atomic case, or

rs = 2GM for gravitationally bound systems), are time-independent when expressed

using the distance measure, r. But the distance between galaxies, that move along

the geodesics corresponding to fixed values of ℓ, grow with time proportional to a(t)

in these same coordinates. The overall expansion of the universe can therefore be

measured by using the sizes of the bound states as the rulers.

7.4 Present-day energy content

In general the universe contains more than one kind of matter, with some relativistic

particles (like photons) mixed with non-relativistic particles (like atoms) plus possibly

other more exotic forms, each of which satisfies its own equation of state and interacts

fairly weakly with the others. This section summarizes what is known about the

universe’s contents now, and what may be said about the expansion of the universe

in the presence of a mixture of matter of this sort.

Indeed, there is evidence that the universe now contains at least 4 independent

types of matter. This section summarizes what is known about the abundance of

various types of matter in our present best understanding of the universe.
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Radiation

The universe is awash with radiation, with the following components.

The Cosmic Microwave Background Radiation:

The sky is full of photons, called the Cosmic Microwave Background (CMB), whose

measured spectrum (see fig. 28) indicates that they are distributed in a thermal

distribution whose temperature is Tγ = 2.725 K. These photons were first directly

detected using a microwave horn on the Earth’s surface, and their thermal prop-

erties have subsequently been precisely measured using balloon- and satellite-borne

instruments.

As we saw earlier, the number

Figure 28: A plot of the measured spectrum of

the cosmic microwave background radiation, as

measured by the FIRAS instrument aboard the

COBE satellite.

density and energy density of ther-

mal photons are determined by the

temperature, with nγ ∝ T 3 while

ργ ∝ T 4. The number density corre-

sponding to T0 = 2.725 K turns out

to be

nγ0 = 4.11× 108 m−3 , (7.97)

which is very high, much higher than

the number density of ordinary atoms.

The energy density carried by these

photons similarly turns out to be

ργ0 = 0.261 MeV m−3

or Ωγ0 = 5.0× 10−5 , (7.98)

where as before Ω = ρ/ρc measures the density relative to the critical density, ρc =

5200± 1000 MeV −3 ≃ 9× 10−28 g/cm3.

Starlight:

The CMB photons turn out to be somewhat more abundant and carry more energy

than is the integrated number of photons emitted by stars since stars first formed,

and so represent the dominant contribution of photons to the universal energy den-

sity. For instance, a very rough estimate of the density in starlight is obtained by

multiplying the present-day luminosity density of galaxies,17 nL ≃ 2×108 L⊙ Mpc−3

by the approximate age of the universe, H−1
0 ≃ 14 Gy, which gives ρ⋆ ≃ 7 × 10−3

MeV m−3, or Ω⋆ ≃ 1× 10−6.

17L⊙ here denotes the luminosity of the Sun.
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Relic Neutrinos:

Neutrinos are elementary particles whose mass is small enough to also make them

relativistic during most of the universe’s history, meaning they also count as radiation

when tallying the universe’s total energy density. There are three species of neutrino,

but because they are electrically neutral they interact very weakly with matter: they

can penetrate the entire earth without interacting once. Their existence is known

because they take part in radioactive decays, such as in the conversion of a neutron

into a proton,

n↔ p+ e− + νe , (7.99)

in beta decay.

It is believed on theoretical grounds (more about these grounds in subsequent

sections) that there is also an almost equally large population of cosmic relic neutrinos

filling the universe, although these neutrinos have never been detected. They are

expected to have been relativistic throughout most of the universe’s history, although

they may have perhaps become non-relativistic very recently. They are also expected

to be thermally distributed, as are the photons. The neutrinos are expected to have

a slightly lower temperature, Tν0 = 1.9 K, than the photons, and because neutrinos

are fermions they have a slightly different energy-density/temperature relation than

do photons (which are bosons).

These properties make their contribution to the present-day cosmological energy

budget not negligible, being predicted to be

ρν0 = 0.18 MeV m−3 or Ων0 = 3.4× 10−5 . (7.100)

If the neutrinos are relativistic, the total radiation density becomes ρR 0 = ργ0 + ρν0,

which is of order

ρR 0 = 0.44 MeV m−3 or ΩR 0 = 8.4× 10−5 . (7.101)

Nonrelativistic Matter

There are two qualitatively different kinds of matter present in the universe that we

know are not moving at relativistic speeds.

Baryons

The main constituents of the matter we see around us on Earth are atoms, which are

themselves made up of protons, neutrons and electrons, and these are predominantly

non-relativistic at the present epoch. Furthermore the abundance of electrons is very

likely to precisely equal that of protons, since these carry opposite electrical charge,

and a precise equality of abundance is required to ensure that the universe carries
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no net charge. (The penalty for not having charges locally balance is huge electric

forces that ensure that charges move until the local charge density vanishes.)

The mass of the proton and neutron is 940 MeV, which is about 1840 times

more massive than the electron, and so the energy density in ordinary non-relativistic

particles is likely to be well approximated by the total energy in protons and neutrons.

This is also called the total energy in baryons, since protons and neutrons carry an

approximately conserved charge called baryon number.

For reasons to become clear in later

Figure 29: The predictions for light-nuclei

abundance as a function of baryon density,

with the vertical strip indicating the baryon

abundance that gives agreement with obser-

vations for all of the light elements. (Cour-

tesy of Ned Wright’s cosmology page.)

sections, it is possible to determine the

total number of baryons in the universe

(regardless of whether or not they are

presently visible) from the success of the

predictions of the abundances of light el-

ements due to primordial nucleosynthe-

sis during the very early universe (see

fig. 29). This indicates that there is about

one baryon for every 1010 photons, lead-

ing to the following contribution to the

total energy density in baryons (i.e. or-

dinary protons, neutrons and electrons)

ρB0 = 210 MeV m−3 or ΩB0 = 0.04 .

(7.102)

For comparison, the amount of lumi-

nous matter is considerably smaller than

this. Using the previously-quoted lumi-

nosity density for galaxies, nL = 2× 108

L⊙ Mpc−3, together with a typical mass-

to-luminosity ratio of M/L = 4M⊙/L⊙,

gives an energy density in luminous baryons which is roughly 10% of the total amount

in baryons

ρL0 = 20 MeV m−3 or ΩL0 = 0.004 . (7.103)

It should be emphasized that although there is more energy in baryons than in

CMB photons, the number density of baryons is much smaller. That is

nB0 =
210 MeV m−3

940 MeV
= 0.22 m−3 = 5× 10−10 nγ0 , (7.104)

and this plays an important role in the physics of the early universe.
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Dark Matter

There several lines of evidence that point

Figure 30: A measurement of a galactic

rotation speed vs distance from the galac-

tic center. The dashed line indicates what

would be expected if the visible matter were

the only matter present.

to the existence of another form of non-

relativistic matter besides baryons, called

Dark Matter, which appear to carry more

energy density than the baryons.

Some of this evidence comes from

different independent measures of the to-

tal amount of gravitating mass in galax-

ies. This can be inferred by measuring

the rotation rates of galaxies as a func-

tion of distance from the galactic center,

since this gives speed as a function of ra-

dius, v(r), for objects orbiting the galac-

tic center (see fig. (30)). For circular or-

bits about a point mass Newton’s Laws

would imply a = v2/r = F/m ∝ 1/r2,

and so v ∝ 1/
√
r, and a similar fall-off is expected for gas and stars within galaxies

(indicated by the dashed line in fig. 30) if only the matter that is visible were present.

The disagreement between predictions and observations — which is the rule for large

luminous galaxies — indicates that there is 10 – 100 times as much gravitating mass

present than would be inferred by counting the luminous matter.

A similar result holds for the total mass in galaxy clusters, as estimated in three

independent ways:

• The mass in a galaxy cluster can be inferred by measuring the motions of its

constituent galaxies, and comparing this to Newton’s Laws (much as was done

for stars and gas orbiting in galaxies).

• Alternatively, it can be inferred from the temperature of the hot intergalactic

gas that is seen when the galaxy cluster is viewed in x-ray wavelengths (see

fig. 31).18 This temperature gives the average speed of the hydrogen ions

present, and the cluster mass must be large enough to have kept this gas bound

to the cluster to prevent its dispersal.

• Finally, the mass of a cluster can be inferred by measuring the amount of

gravitational lensing that it produces in the images of more distant galaxies,

such as revealed by micro-lensing surveys.

18Typically, there are more baryons in the intergalactic gas than in the galaxies themselves.
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Two further lines of evidence also point towards the existence of Dark Matter,

based on the picture that the large-scale structure of galaxies and clusters of galaxies

first arose as gravity amplified initially small primordial density fluctuations that

were already present in the early universe. They start from the realization that

these primordial fluctuations are revealed to us by detailed measurements of the

temperature of the Cosmic Microwave Background (CMB) as a function of direction,

seen from Earth (see fig. 35). Since the CMB represents light that last scattered

from matter as the universe cooled through the temperature when electrons and

protons were first combining into hydrogen nuclei, these temperature fluctuations

represent density fluctuations in the primordial hydrogen gas. Since it is these same

fluctuations that are later amplified by gravity to form the galaxies, the properties

of the CMB can be related to those of the observed distribution of galaxies we see

in the later universe.

Since it turns out that gravity can

Figure 31: A visible-light photograph of

a cluster of galaxies overlaid by an x-ray

picture indicating the presence of hot inter-

galactic gas. The orbital speeds of the galax-

ies and the gas molecules both indicate the

presence of Dark Matter.

only amplify density fluctuations if the

universe is dominated by nonrelativistic

matter, the first piece of evidence asks

how long it would take to produce the

observed galaxies from the initially small

(10−5) amplitude of temperature fluctu-

ations seen in the CMB. It turns out

that there has been insufficient time if

baryons were the only nonrelativistic mat-

ter in the universe, but galaxies would

have had time to form if there were suf-

ficiently much Dark Matter.

Similarly, since galaxies form by am-

plifying fluctuations seen in the CMB,

the correlations of the CMB should be mirrored by correlations amongst the posi-

tions of the subsequent galaxies. These correlations have been seen and are known

as baryon acoustic oscillations. The properties of these oscillations agree with pre-

dictions only given the right amount of Dark Matter.

All of these estimates appear to be consistent with one another, and indicate a

Dark Matter density that is of order

ρDM0 = 1350 MeV m−3 or ΩDM0 = 0.26 . (7.105)

Furthermore it turns out that whatever this gravitating matter is, it must be

non-relativistic since it otherwise would not take part in the gravitational collapse

that makes galaxies and their clusters in the first place. This indicates that it should
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have the same equation of state, p ≈ 0, as have the baryons, meaning that the total

energy density in non-relativistic matter is the sum of the baryonic and Dark Matter

abundances: ΩM0 = ΩB0 +ΩDM0. Combining the above estimates gives a total that

is of order

ρM0 = 1600 MeV m−3 or Ωm0 = 0.30 . (7.106)

Dark Energy

Finally, there are two lines of evidence which point to a second form of unknown

matter in the universe, which does not share the same equation of state of either

relativistic or nonrelativistic matter. As mentioned above, one line is based on the

recent measurements of the deceleration parameter, q0, that were made by detecting

the expected deviation from Hubble law for very distant supernovae (see fig. 27).

This shows that the universal expansion is accelerating, rather than decelerating,

and so requires the universe must now be dominated by a form of matter for which

ρ+ 3p < 0.

The second line of argument is based

Figure 32: A sketch of the relation between

the measured angle on the sky, θ, of a known

length, D, seen from across a flat (κ = 0)

universe. The dotted lines indicate how the

angle would change (for fixed D) if the in-

tervening geometry of space were positively

curved (κ = 1).

on the evidence in favor of the universe

being spatially flat: κ = 0 and so Ω0 =

1. This evidence comes from measure-

ments of the angular distance between

hot and cold fluctuations in the temper-

ature of the CMB photon distributions,

as has been measured by satellite exper-

iments (see fig. 35). Since these fluctua-

tions are due to sound waves in the pri-

mordial hydrogen gas, their physical size

can be computed in terms of the known

speed of sound in Hydrogen: it is as if

someone has held up a ruler of known

length for us at the other end of the uni-

verse. Furthermore, we also know the distance to this fluctuation from measurements

of H0. In Euclidean geometry knowledge of these two distances would not be inde-

pendent of the angle since the geometry of an isosceles triangle is over-determined by

a measurement of its length, breadth and angular width. Such a triangle is similarly

over-determined in a curved (κ = ±1) geometry, but with a different angle predicted

for a given length triangle (as is shown in fig. 32). Consequently, the geometry of

space can be inferred by comparing the physical distances with the measured angular

separation, leading to the conclusion that κ = 0 to within the errors.
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But the Friedmann equation tells us that κ = 0 implies Ω0 = 1 and so ρ0 = ρc.

And this requires the existence of something besides Dark Matter, since the evidence

for Dark Matter indicates that its abundance is too small to give Ω0 = 1. These two

lines of evidence are consistent with one another (within sizeable errors) and point

to a Dark Energy density which is of order

ρDE0 = 3600 MeV m−3 or ΩDE0 = 0.70 . (7.107)

The equation of state for the Dark

Figure 33: A plot of the amount of Dark En-

ergy and Dark Matter as indicated by super-

nova measurements, properties of the CMB

and direct measurements for Dark Matter.

The fact that the regions overlap indicates

that all evidence is consistent.

Energy is not known, apart from the re-

mark that the observations indicate both

that at present ρDE0 ∼ 0.7 ρc > 0 and

w <∼ −0.8. If w is constant, it is likely

on theoretical grounds that w = −1 and

the Dark Energy is simply the Lorentz-

invariant vacuum energy density. Al-

though it is not yet known whether the

vacuum need be Lorentz invariant to the

precision required to draw cosmological

conclusions of sufficient accuracy, in what

follows it will be assumed that the Dark

Energy equation of state is w = −1.

What emerges is a universe consist-

ing of 70% Dark Energy, 26% Dark Mat-

ter and 4% baryons, with many different lines of evidence converging to paint the

same picture. It is the very consistency of these many lines of evidence — what

has become known as concordance cosmology — that helps give confidence that the

overall framework is healthy even though it involves the existence of two completely

new kinds of unknown matter.

7.5 Earlier epochs

Given the present-day cosmic ingredients described in the previous section, this sec-

tion uses the equations of state for each type of ingredient to extrapolate the relative

abundances into the past in order to estimate what can be said about the cosmic

environment during earlier epochs. The main assumption for this extrapolation is

that the various components of the cosmic fluid are weakly coupled to one another,

and so cannot transfer energy directly to one another.

Under these circumstances the equation of energy conservation, eq. (7.70), ap-

plies separately to each component of the fluid. The relative energy densities then
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change as these components respond differently to the expansion of the universe, as

follows.

• Radiation: For photons, starlight and relic neutrinos of sufficiently small mass

we have w = 1
3
and so ρ(a)/ρ0 = (a0/a)

4;

• Non-relativistic Matter: For both ordinary matter (baryons and electrons)

and for the Dark Matter we have w = 0 and so ρ(a)/ρ0 = (a0/a)
3;

• Vacuum Energy: Assuming the Dark Energy has the equation of state w =

−1 we have ρ(a) = ρ0 for all a.

This implies the total energy density and pressure have the form

ρ(a) = ρDE0 + ρM0

(a0
a

)3
+ ρR0

(a0
a

)4
p(a) = −ρDE0 +

1

3
ρR0

(a0
a

)4
. (7.108)

As the universe is run backwards to smaller sizes it is clear that these results

imply that the Dark Energy becomes less and less important, while relativistic matter

becomes more and more important (see fig. 34). Although the Dark Energy now

dominates, non-relativistic matter is the next most abundant contribution, and when

extrapolated backwards would have satisfied ρM(a) > ρDE(a) relatively recently, at

a redshift

1 + z =
a0
a
>

(
ΩDE0

ΩM0

)1/3

=

(
0.7

0.3

)1/3

= 1.3 . (7.109)

The energy density in baryons alone becomes larger than the Dark Energy density

at a slightly earlier epoch

1 + z >

(
ΩDE0

ΩB0

)1/3

=

(
0.7

0.04

)1/3

= 2.6 . (7.110)

For times earlier than this the dominant component of the energy density is

due to non-relativistic matter, and this remains true back until the epoch when the

energy density in radiation became comparable with that in non-relativistic matter.

Since ρR ∝ a−4 and ρM ∝ a−3 radiation-matter equality occurs when

1 + z >
ΩM0

ΩR0

=
0.3

8.4× 10−5
= 3600 . (7.111)

This crossover would have occurred much later in the absence of Dark Matter, since

the radiation energy density equals the energy density in baryons when

1 + z >
ΩB0

ΩR0

=
0.04

8.4× 10−5
= 480 . (7.112)
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Knowing how ρ depends on a immediately gives, with the Friedmann equation,

H as a function of a, and so also an explicit form for the proper, luminosity and

angular-diameter distances. For example, eq. (7.108) implies

H(a) = H0

[
ΩDE0 + Ωκ0

(a0
a

)2
+ ΩM0

(a0
a

)3
+ ΩR0

(a0
a

)4]1/2
, (7.113)

where we define

Ωκ0 ≡ − κ

(H0r0a0)2
. (7.114)

Using 1 + z = a0/a to eliminate a in favour of z then allows the present-day proper

distance in such a universe to be written

D(z) = H−1
0

∫ z

0

dz′
[
ΩDE0+Ωκ0(1+z

′)2+ΩM0(1+z
′)3+ΩR0(1+z

′)4
]−1/2

, (7.115)

with DL and DA being related to this by powers of (1 + z) if κ = 0. It is clear from

this expression how measurements of DL(z) or DA(z) for a range of z’s can allow an

inference of the relative present-day density abundances, Ωi0, for i = DE,M,R and

κ.

Given the dependence, eq. (7.113) of
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Figure 34: A plot of the energy density,

ρ, vs universal scale factor, a, for radiation,

matter and dark energy.

H on a, it is possible to integrate to ob-

tain the t-dependence of a. Although

in general this dependence must be ob-

tained numerically, many of its features

may be understood on simple analytic

grounds based on the recognition that

for most epochs there is only a single

component of the cosmic fluid which is

dominating the total energy density. We

expect that for redshifts larger than sev-

eral thousand a(t) should be well ap-

proximated by the expansion in a uni-

verse which is filled purely by radiation.

Once a/a0 rises to above 1/3600 there should be a brief transition to the time de-

pendence which describes the universal expansion in a universe dominated by non-

relativistic matter. This should apply right up to the very recent past, when a/a0

is around 0.8, after which there is a transition to vacuum-energy domination, dur-

ing which the universal expansion accelerates to become exponential with t. In

all likelihood we are at present still living in the transition period from matter to

vacuum-energy domination.
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Although the detailed relationship of a on t in principle depends on the value

taken by κ, in practice the contribution of κ is only important in the very recent

past. This is because the best information available at present indicates that Ω0 =

ΩDE0 + Ωm0 + Ωr0 = 1, which is consistent with κ = 0. But even if κ ̸= 0, since

the curvature term in eq. (7.68) varies like a−2, it falls more slowly than does either

the contribution of matter (ρm ∝ a−3) or radiation (ρr ∝ a−4). So given that the

curvature term is at best only comparable to the other energy densities at present,

it becomes more and more negligible the further one looks into the universe’s past.

As a result it is a very good approximation to use κ = 0 in the expression

for a(t) during the matter-dominated and the earlier radiation-dominated epoch, in

which case it has the very simple form a(t) = a0(t/t0)
α, with α = 1

2
during radiation

domination and α = 2
3
during matter domination. It may not be valid to neglect

κ for the more recent periods of matter domination, and so in this case the more

detailed expressions given in the previous section should instead be used. For the

present-day epoch it is best to include both κ ̸= 0 and ρDE ̸= 0, although the best

evidence remains consistent (within largish errors) with κ = 0.

When κ = 0 it is also possible to give simple analytic expressions for the

time dependence of a in the two transition regions: between radiation- and matter-

domination; and between matter- and dark-energy domination. Neglecting radiation

during the matter/dark-energy transition gives a Friedmann equation of the form(
ȧ

a

)2

= H2
de

[
1 +

(aeq
a

)3]
, (7.116)

where aeq is the value of the scale factor when the energy densities of the matter and

dark energy are equal to one another, and H2
de = 8πGρde/3 is the (constant) Hubble

scale during the pure dark-energy epoch. Integrating this equation (assuming ȧ > 0),

with the boundary condition that a = 0 when t = 0 then gives the solution

a(t) = a0 sinh
2/3

(
3Hdet

2

)
, (7.117)

where a0 is a constant. Notice that when Hdet ≫ 1 this approaches the exponential

solution, a/a0 ∝ exp(Hdet) of the dark-energy epoch, while for Hdet ≪ 1 it instead

implies a/a0 ∝ t2/3, as is appropriate for the matter-dominated epoch.

More generally, the transition from an epoch for which(
ȧ

a

)2

= H2
de

[
1 +

(aeq
a

)p ]
, (7.118)

is given by the solution

a(t) = a0 sinh
2/p

(
pHdet

2

)
. (7.119)
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The transition from radiation to matter domination may be handled in a similar

way. It is convenient to write the Friedmann equation during this transition as(
ȧ

a

)2

=
H2

eq

2

[(aeq
a

)3
+
(aeq
a

)4]
, (7.120)

where the constants aeq and Heq are the scale factor and Hubble scale at the instant

where radiation and matter have equal energy densities. This may be integrated

directly (with ȧ > 0 and the initial condition a = 0 when t = 0) to give(
a

aeq
+ 1

)1/2(
a

aeq
− 2

)
=

3Heqt

2
√
2

− 2 . (7.121)

Again this has the correct limits: a ∝ t2/3 when a≫ aeq and a ∝ t1/2 when a≪ aeq.

Exercise 32: Derive eqs. (7.119) and (7.121) by respectively integrating

eqs. (7.118) and (7.120).

7.6 Hot Big Bang cosmology

The equations of state for radiation and non-relativistic matter used in the previous

discussion are based on those which arise for radiation and atoms which are in thermal

equilibrium, and for the case of CMB photons the photons can be seen explicitly to

have a thermal distribution. This all points to matter being hot and dense at some

point in the universe’s past. As we shall see there is also other evidence that the

matter in the universe was once as hot as 1010 K or more, at which time nuclei were

once synthesized from a hot soup of protons, neutrons and electrons.

The Big Bang theory of cosmology starts with the idea that the universe was once

small and hot enough that it contained just a soup of elementary particles, in order

to see if this leads to a later universe that we recognize in cosmological observations.

This picture turns out to describe well many of the features we see around us, which

are otherwise harder to understand. This section starts the discussion of the Big Bang

theory by exploring the properties of a thermal bath of particles in an expanding

universe, in order to understand the conditions under which equilibrium might be

expected to hold, and to see what happens as such a bath cools as the universe

expands.

The Known Particle Content

The starting point of any such description is a summary of the various types of

elementary particles which are known, and their properties. These are well-known

from experimental and theoretical study over more than 40 years.

– 159 –



As mentioned earlier, the highest temperature there is direct observational ev-

idence the universe has attained in the past is T ∼ 1010 K, which corresponds to

thermal energies of order 1 MeV. The elementary particles which might be expected

to be found within a soup having this temperature are the following.

• Photons (γ): are bosons that have two spin (or polarization) states, and have

no electric charge or mass. They can be singly emitted and absorbed by any

electrically-charged particles.

• Electrons and Positrons (e±): are fermions that each have two spin states

and have charge ±e, where e denotes the proton charge.19 Their masses are the

same size as one another, and equal numerically to me = 0.511 MeV. Because

the positron, e+, is the antiparticle for the electron, e−, (and vice versa), these

particles can completely annihilate into photons through the reaction

e+ + e− ↔ 2γ . (7.122)

• Protons (p): are fermions that have two spin states, charge +e and a mass

mp = 938 MeV. Unlike all of the other particles described here (except the

neutron, which is next), the proton can take part in the strong interactions,

which are what hold nuclei together. For example, this permits reactions like

p+ n↔ D + γ , (7.123)

in which a proton and neutron combine to produce a deuterium nucleus, which

is a heavy isotope of Hydrogen that consists of a bound state of one proton

and one neutron. The photon which appears in this expression simply carries

off any excess energy which is released by the reaction.

• Neutrons (n): are fermions having two spin states, no electric charge and a

mass mn = 940 MeV. Like protons, neutrons participate in the strong interac-

tions. Isolated neutrons are unstable, and left to themselves decay through the

weak interactions into a proton, an electron and an electron-antineutrino (see

below).

n→ p+ e− + νe . (7.124)

• Neutrinos and Anti-neutrinos (νe, νe, νµ, νµ, ντ , ντ): are fermions which

are electrically neutral, and have been found to have nonzero masses whose

precise values are not known, but which are known to be smaller than 1 eV.

19Superscripts ‘±’ or context should allow the use of e both as the symbol of the electron and to

denote its charge.
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Although each has two spin states, it is not yet known whether or not the

neutrino and antineutrino are distinct particles (like for electrons) or not (as

for photons).

• Gravitons (G): are bosons which are not electrically charged and are massless.

Gravitons are the quanta which carry the energy packets in a gravitational

wave, in the same way that photons do for electromagnetic waves. Gravitons

only interact with other particles with gravitational strength, which is very

weak compared to the strength of the other interactions. As a result they turn

out never to have been in thermal equilibrium for any of the temperatures to

which we have observational access in cosmology.

The next sections ask how the temperature of a bath of particles would evolve

on thermodynamic grounds as the universe expands.

Cooling Rate

We have found (for several choices for the equation of state) how the energy density

in different forms of matter varies with a as the universe expands, and we have seen

how to find from this how a varies with time, t. We now ask how thermodynamics

relates the temperature to a (and so also t), in order to quantify the rate with which

a hot bath cools due to the universal expansion. Since most of the universe’s history

was dominated by radiation (whose energy density was more important in the past

than it is now), we do so here for relativistic particles.

The energy density and pressure appropriate to a gas of relativistic particles (like

photons) when in thermal equilibrium at temperature TR are given by

ρR = aB T
4
R and pR =

1

3
aB T

4
R , (7.125)

where aB is g/2 times the Stefan-Boltzmann constant, where g counts the number of

internal (spin) states of the particles of interest (and so g = 2 for a gas of photons).

The evolution of TR as the universe expands is simply determined by these ex-

pressions together with energy conservation, which for relativistic particles we have

seen implies ρR a
4 does not change as a increases. It is clear that because ρR ∝ T 4

R

and ρR ∝ a−4, consistency implies the product a TR is constant, and so

TR = TR0

(a0
a

)
= TR0(1 + z) . (7.126)

Notice that this assumes only that ρR ∝ T 4
R ∝ a−4, and so (unlike the expression

for a vs t) it does not assume that the total energy density is radiation-dominated.

One way to see why this is so is to recognize that eq. (7.126) is equivalent to the
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statement that the expansion is adiabatic, since the entropy per unit volume of a

relativistic gas is sR ∝ T 3
R, and so the total entropy in this gas is

SR ∝ sR a
3 ∝ (TR a)

3 = constant . (7.127)

A Thermal History of the Universe

An important consequence of the falling of the temperature as the universe expands

is that it makes interactions amongst the various particles run more slowly. This

happens because the lower temperature means there is less energy available per

collision on average, but also because it means that there are fewer particles about

(per unit volume) with which to interact. Eventually for all interactions there comes

a point where reactions run slowly enough that they are so rare as to be nonexistent.

When this happens the very equilibrium of the particles involved breaks down, and

they are said to freeze out. That is, they coast along without interacting down until

the present day.

What is spectacular about the study of cosmology now is the ability to test

cosmological ideas with observations, and these tests largely rely on detecting those

particles which have fallen out of equilibrium to persist to the present day as residual

relics of the early universe. This section provides a brief history of the early universe

with a focus on describing the various types of relics which arise. Our starting point

is the epoch when the universe has a temperature of about 10 MeV, at which point it

consists of a hot soup of non-relativistic protons and neutrons, in equilibrium with a

population of relativistic electrons, positrons, photons and three species of neutrino.

At MeV temperatures we have approximately equal numbers of protons and

neutrons. Since all of the other particles satisfy m ≪ T at these temperatures,

equipartition of energy in a thermal environment ensures that there are roughly equal

numbers of electrons, positrons, photons and each species of neutrino. Furthermore,

agreement with observations requires the relativistic particles to be considerably more

numerous, with ηB = nB/nγ = (nn + np)/nγ ∼ 10−10. There must also be a slight

excess of electrons over positrons so that ne−ne = np in order to ensure the electrical

neutrality of the cosmic environment. This enormous excess of relativistic particles

over non-relativistic ones ensures that the entropy of the equilibrium bath which

they all share is dominated by the relativistic particles, and so the temperature of

the bath falls like T ∝ a−1, as discussed above. The excess of relativistic matter over

non-relativistic matter also ensures that the energy density is radiation-dominated,

and so ρtot ∝ T 4 ∝ a−4.

We now list a number of landmarks in the thermal history of the universe, which

make an important impact on the relics we see today that are left over from this

earlier and hotter time.
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1. Neutrino Freeze-out: Once the temperatures fall below a few MeV, the

weak interactions are not sufficiently strong to keep the three types of neutrino

species in thermal equilibrium. After this point these neutrinos continue to run

around the universe without scattering, and are still present during the present

epoch as a Cosmic Neutrino Background. Since the neutrinos are relativistic,

however, their number density remains in its equilibrium form with the tem-

perature simply red-shifting, Tν ∝ a−1, as the universe expands. Since this

is precisely the same time-dependence as for the thermal bath containing the

rest of the particles, Tν continues to track the temperature of the thermal bath

as the universe expands. Although these neutrinos are in principle all around

us, they have so far escaped detection due to their extremely small interaction

cross sections.

2. Electron-Positron Annihilation: Once the temperature falls below twice

the electron mass, 2me = 1.2 MeV, the abundance of electrons and positrons

begins to decline relative to photons due to the reaction e+e− → γγ beginning

to predominate over the inverse process of pair creation. This ends up removing

essentially all of the positrons, leaving the same number of residual electrons

as there are protons. This has an important consequence for the later universe,

because this process of annihilation dumps a considerable amount of energy

which reheats the equilibrium bath of photons, neutrons and charged parti-

cles relative to the neutrino temperature, which continues to redshift without

experiencing any heating (because it is no longer in equilibrium).

3. Formation of Nuclei: The thermal evolution at temperatures lower than 1

MeV is richer than would be believed from previous sections due to the possi-

bility which arises of forming bound states. In particular, nuclear interactions

can bind a neutron and proton into deuterium, with a binding energy of 2.22

MeV, and so once temperatures reach this energy range light nuclei begin to

form and so change the chemical composition of the cosmic fluid. The residual

abundance of these nuclei predicted by this process agrees well with the ob-

served primordial abundances, which provides strong evidence for the validity

of the Big Bang picture of cosmology, and gives important information about

the total abundance, nB, of baryons (protons and neutrons). A constraint on

the total number of baryons is possible because the nuclear reaction rates are

proportional to the density of reactants, with more baryons leading to faster re-

actions. But the total number of nuclei formed depends on how long it takes for

temperatures to cool to the point that nuclear reactions also stop happening,

and this is controlled in part by the size of the reaction rates (and so also by
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the baryon density). The result is usually normalized to the density of photons

since the result is then time-independent, leading to ηB := nB/nγ ≃ 10−10.

4. Formation of Atoms: Electromagnetic interactions furnish another impor-

tant set of bound states which complicate the picture of the universe at lower

temperatures. In particular, electrons can bind with nuclei to form neutral

atoms once the temperature falls below the relevant binding energies, E ∼ 10

eV. In practice atoms don’t actually form until the temperature is somewhat

cooler than this, T ≃ 1 eV, because the large number (∼ 1010) of photons for

each electron and proton, makes the reactions where photons dissociate bound

atoms initially more common than those where atoms are formed. At this point

the equilibrium conditions for charged particles and photons changes dramati-

cally, since once atoms form the cosmic fluid becomes electrically neutral, and

so largely transparent to photons. The cosmic microwave background (CMB)

consists of those photons which last scattered from matter at this point, and

have survived unscathed to be observed during the present epoch. The obser-

vation of these photons gives a direct measure of the temperature of the heat

bath from which the photons eventually decoupled, a map of which is given in

fig. 35.

In all, the Hot Big Bang provides

Figure 35: The temperature of the cosmic

microwave background radiation as a func-

tion of direction, as measured by the WMAP

collaboration. The difference between the

hottest and coolest points in this map are of

order 10 µK.

an outstandingly successful description

what we see around ourselves in cosmol-

ogy, but only if we start with just the

right initial conditions sometime before

nucleosynthesis. These initial conditions

require the early universe to be very ho-

mogeneous and isotropic, since this is

what is observed to be true for the cos-

mic microwave background. Indeed, small

temperature (and so also density) fluc-

tuations in the primordial hydrogen en-

vironment are directly observed in pre-

cision measurements of the cosmic mi-

crowave background temperature as a function of direction in the sky (as seen in

fig. 35). Since these fluctuations are only about 10 µK in size, compared with the

CMB’s average temperature of 2.725 K they show that density perturbations were

at most as big as 1 part in 105 when atoms were first forming in the early universe.
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But because primordial fluctuations have been seen, the initial universe cannot

be perfectly homogeneous. This is also a good thing, because the amplitude of these

small density fluctuations is ultimately amplified by gravitational collapse to form the

galaxies and stars we find ourselves surrounded by. An important piece of evidence

for Dark Matter is that there has not been sufficient time for this amplification to

take place if the only non-relativistic particles around are baryons.

It turns out that these initial conditions are not natural, in that they do not

automatically arise unless they are put by hand into the initial conditions. Fur-

thermore, because time evolution moves the universe away from homogeneity and

isotropy, the universe at still-earlier times must be smooth to a much higher accuracy

than at present. It is hoped that these initial conditions may be the relics of a still-

earlier epoch of the universe about which physicists have long speculated, called the

inflationary epoch. The speculations center around the observation that the special

initial conditions of the Big Bang would emerge very naturally if the universe were to

have undergone a period of near exponential expansion (much like the Dark Energy

dominated epoch we now appear to be entering, but with much higher energies and

densities) at much earlier times.
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Here is a selection of textbooks on General Relativity, and cosmology.

1. C.M. Will, Theory and Experiment in Gravitational Physics (Revised Edition),

Cambridge University Press, 1993.

2. S. Carroll, An Introduction to General Relativity Spacetime and Geometry,

Addison Wesley 2004. [Modern and well written]

3. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the

General Theory of Relativity, Wiley 1972. [The timeless classic – very physical]

4. C. Misner, K. Thorne and J. Wheeler, Gravitation, Freeman and Company

1970. [Encyclopedic, with many layers of insight]

5. R. Wald, General Relativity, University of Chicago 1984. [More mathematical,

with an emphasis on modern differential geometry]

6. P.J.E. Peebles, Principles of Physical Cosmology, Princeton University Press

(1993).

7. B. Ryden, Introduction to Cosmology, Pearson Education 2003. [A good un-

dergraduate introduction to modern cosmology]

8. S. Dodelson, Modern Cosmology, Academic Press 2003. [A good, but more

advanced, introduction to modern cosmology.]

9. A. Linde, Particle Physics and Inflationary Cosmology, Harwood Academic

Publishers (1990).

10. E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley (1990).

11. A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure,

Cambridge University Press (2000).

12. S. Weinberg, Cosmology, Oxford University Press (2008).

13. S. Chandrashekhar, The Mathematical Theory of Black Holes, Oxford Univer-

sity Press 1992.

14. S.L. Shapiro and S.A. Teukolsky, Black Holes, White Dwarfs and Neutron

Stars: The physics of compact objects, Wiley 1983.
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