
Physics 3C3

Term Test Prof. D.W.L. Sprung

Duration of Examination: 2 Hours 3:30 p.m Friday March 5, 2010

———————————————————– ——————————————————-

This examination paper includes 4 questions on 3 pages.

NOTE: Complete answers to three questions will constitute a complete paper, but all
work submitted will be graded. (That means that unless you cross something out I will
look at it, and base your mark on the best three questions.)

———————————————————– ——————————————————–
1. Hamilton’s principle states that the classical action between fixed end-points,

S =
∫ B

A
L(q, q̇; t)dt ; L = T − V ,

is stationary under small variations in the path qs(t) → qs(t) + δqs(t). (a) Explain what

that means. Is S ever a maximum? Does it really matter whether it is a maximum, a
minimum or a stationary point?

(b) Consider making such a variation in the path. Changing qs(t) forces a change in the
associated velocity. Show that the velocity changes as follows:

q̇s(t) → q̇s(t) +
dδqs(t)

dt
.

(c) Derive Lagrange’s equations of motion from Hamilton’s principle

d

dt

[∂L(q, q̇)

∂q̇s

]

− ∂L(q, q̇)

∂qs
= 0 .

(If you find it too complicated to have s > 1 degrees of freedom, try first with s = 1.)

Sketch of Foucault pendulum
(copied from Fig. 12.1, page 45 of text)
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2. Consider motion in a rotating coordinate system with basis vectors êi (body-fixed

axes), as compared to an inertial frame ê
(0)
i having the same origin. An arbitrary vector

~V can be described in two ways:

~V =
∑

i

V
(0)
i ê

(0)
i =

∑

i

Vi êi

(a) Justify the relation

(d~V

dt

)

in
=

(d~V

dt

)

body
+

∑

i

Vi

dêi

dt

=
(d~V

dt

)

body
+ ~ω × ~V , (1)

where ~ω is the instantaneous angular velocity vector, pointing along the axis of rotation.

(b) For motion on the surface of the earth justify the relation

(d2r

dt2

)

in
=

(d2r

dt2

)

body
+ 2

(

~ω × ~v
)

+
(

ω̇ × ~r
)

+
(

~ω × (~ω × ~r)
)

= ~Fext/m , (2)

where Fext are the applied forces, and all positions r and velocities v are vectors.

(c) The Foucault pendulum provides a striking demonstration that the earth rotates on
its axis. Take a coordinate system as indicated in the sketch on page 1, with the ẑ-axis
vertical, the x̂-axis pointing south and the ŷ-axis pointing east, at our location. The
angular velocity of the earth is a vector

~ω = ω(− sin θ, 0, cos θ)

where θ is our co-latitude. Let ~T be the tension in the cord, and ℓ its length. Write out
the equation of motion of the mass m:

mr̈ = m~g + ~T − 2m(~ω × ṙ)

in Cartesian components. Justify the approximation T cosψ ∼ mg.

(d) Show that the equations of motion for the horizontal components can be combined in
the form ζ(t) = x(t) + iy(t), to give

ζ̈ + 2iω cos θ ζ̇ +
g

ℓ
ζ = 0 .

From there show that the plane of oscillation rotates clockwise at angular rate ω cos θ,
making the period about 36 hours.
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3. In the scattering of a point particle from a spherical fixed target, the orbit is determined
by the initial velocity v∞ and initial position (−∞, b), where b is the “impact parameter”.
(a) How are the parameters b and v∞ related to the energy and angular momentum of the

particle? Under what conditions are E and ~L conserved? What property of the potential
ensures that motion proceeds in a plane?

(b) An instructive example of scattering, where the orbit requires no calculation, is scat-
tering from a hard sphere of radius R. (No force acts until the projectile reaches the
sphere; then it will reflect from the sphere according to the rule “angle of incidence =
angle of reflection”.) Show that the scattering angle is given by

cos(θ/2) = b/R . (3)

What range of scattering angles is possible? Verify that the angular momentum of the
scattered particle is unchanged.

(c) Define the differential scattering cross-section and show that for this problem it is

σ(θ) =
b

sin θ

∣

∣

∣

db

dθ

∣

∣

∣ =
R2

4
. (4)

How do you interpret the total cross-section in this example?

-2R -R 0 R 2R

b

α 

α 

(d) By extending the final trajectory backwards, verify that the final angular momentum
is the same as the initial.
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4. Consider linear oscillations of a pair of equal point masses m connected by a spring of
force constant k, held between two fixed walls located at x = 0, 3a by springs ( constant
K).

K

m

a
k

m

2a
K

(a) Write down the Lagrangian for this system, taking the displacements from equilibrium
to be qj = xj − ja, j = 1, 2. Show that the equations for the normal modes are

(

K + k −mω2 −k
−k K + k −mω2

) (

q1
q2

)

= 0 .

(b) Show that the eigenfrequencies are given by

mω2
1 = K , mω2

2 = K + 2k ,

with normal mode vectors (columns of the modal matrix A)

1√
2m

(

1
1

)

,
1√
2m

(

1
−1

)

.

respectively. (You may simply verify the result, or do it constructively.)

(c) Describe in words the oscillation patterns of the masses corresponding to each of the
normal modes. Why does the lowest frequency correspond to the symmetric mode?

(d) What happens if the outer springs are removed (K → 0)? Is a zero-frequency mode
an oscillatory motion, or if not, what does it mean? How is this situation related to
Newton’s first law?

Miscellaneous information

( ~A× ~B)3 = A1B2 − A2B1 and cyclically

cos(A+B) = cosA cosB − sinA sinB

sin(A+B) = sinA cosB + cosA sinB

cos 2x = 1 − 2 sin2 x = 2 cos2 x− 1 (5)

The END
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