Duration of Examination: 3 Hours
McMaster University Final Examination
April 24, 2008
Student Name:

Student Number:

Please read the paper before you decide where to begin. This examination paper includes 5 questions on 5 pages. You are responsible for ensuring that your copy of the paper is complete. Please bring any discrepancy to the attention of an invigilator.

NOTE: Candidates may bring and use the Special Examination Memorandum Sheet. The standard McMaster Pocket calculator (Casio fx 991) is also permitted. Your mark will be based on the best four questions completed, but all work submitted will be graded.

1. Take a coordinate system with $O Z$ pointing vertically downwards. A circular wire ring of radius a hangs in a vertical plane, with its centre at the origin. The plane rotates around OZ at constant angular velocity $\dot{\phi}=\Omega$. (The dot means the time derivative $d / d t$.) A bead of mass m moves without friction on the wire.
(a) Construct the Lagrangian for the motion of the bead, taking the polar angle θ as the generalized coordinate.

$$
L=\frac{1}{2} m a^{2}\left[\dot{\theta}^{2}+\Omega^{2} \sin ^{2} \theta\right]+m g a \cos \theta .
$$

(b) Show that Lagrange's equation is

$$
\ddot{\theta}+\left[\frac{g}{a}-\Omega^{2} \cos \theta\right] \sin \theta=0
$$

Also show that the bead is in equilibrium at angle θ_{0} where $\cos \theta_{0}=g /\left(a \Omega^{2}\right)$. Verify this result by balancing the centrifugal acceleration against gravity in a rotating coordinate system.
(c) Show that the bead executes simple harmonic motion, for small displacements from the equilibrium angle, $\theta=\theta_{0}+\eta$, according to

$$
\ddot{\eta}+\left(\Omega^{2} \sin ^{2} \theta_{0}\right) \eta=0 .
$$

(d) What happens for very slow rotational speeds $\Omega^{2}<\Omega_{0}^{2} \equiv g / a$? Show in this case that small oscillations are governed by

$$
\ddot{\eta}+\left(\Omega_{0}^{2}-\Omega^{2}\right) \eta=0
$$

Describe in words the behaviour of the bead in the three regimes of Ω^{2}.
2. A different problem, relating to a bead of mass m moving freely on a horizontal wire hoop of radius a, leads to the following Lagrangian, which is purely kinetic energy:

$$
T=L(\phi, \dot{\phi})=\frac{m a^{2}}{2}\left[\dot{\phi}^{2}+2 \omega \dot{\phi} \cos (\phi-\omega t)\right]
$$

The angle ϕ gives the position of the bead, while ω is a constant angular velocity of the hoop.
(a). Since the Lagrangian depends explicitly on time, the momentum will not be simply $m \dot{\phi}$. Show that the canonical momentum $p=p_{\phi} \equiv \partial L / \partial \dot{\phi}$ conjugate to ϕ is given by

$$
\left.\frac{p}{m a^{2}}=\dot{\phi}+\omega \cos (\phi-\omega t)\right) .
$$

(b) Complete the Lagrange equation to obtain the equation of motion

$$
\ddot{\phi}+\omega^{2} \sin (\phi-\omega t)=0 .
$$

(Explanatory note: If we define $\theta=\phi-\omega t$, this would be the equation of the physical pendulum: θ would be the bead angle measured in a rotating coordinate system. The whole problem could be worked out in terms of θ but it is much messier.)
(c) Using (a), deduce that the Hamiltonian is

$$
H(p, \phi)=p \dot{\phi}-L=\frac{m a^{2}}{2} \dot{\phi}^{2}=\frac{m a^{2}}{2}\left[\frac{p}{m a^{2}}-\omega \cos (\phi-\omega t)\right]^{2}
$$

(d) Verify that Hamilton's equations

$$
\dot{\phi}=\frac{\partial H}{\partial p} ; \quad \dot{p}=-\frac{\partial H}{\partial \phi}
$$

lead to the same equation of motion as in part (b).
3. In discussing the motion of a rigid body, it is convenient to introduce an inertial frame, and a body-fixed frame of reference, having the same origin. Euler's equations follow from the statement

$$
\begin{equation*}
\left(\frac{d \vec{L}}{d t}\right)_{i n}=\left(\frac{d \vec{L}}{d t}\right)_{b o d y}+\vec{\omega} \times \vec{L}=\vec{\Gamma} \tag{1}
\end{equation*}
$$

where $\vec{\omega}$ is the instantaneous angular velocity vector, and \vec{L} is the angular momentum.
(a) What does $\vec{\Gamma}$ represent? From eq. 1, derive Euler's equations, which describe the motion in the body-fixed frame.
(b) Take the rigid body to be collection of mass points m_{p} at positions \vec{r}_{p}. Show that its kinetic energy can be expressed as a matrix product $2 T=\vec{\omega}^{T} \hat{I} \vec{\omega}$ where \hat{I} is the inertia tensor whose elements are

$$
I_{i j}=\sum_{p} m_{p}\left(r_{p}^{2} \delta_{i, j}-x_{p i} x_{p j}\right),
$$

and $x_{p i}$ is the i 'th Cartesian component of the vector \vec{r}_{p}, and $\delta_{i j}$ is the Kronecker symbol. (c) Similarly, show that the angular momentum vector can be expressed component-wise as

$$
L_{i}=\sum_{j} \hat{I}_{i j} \omega_{j} \quad \text { or } \quad \vec{L}=\hat{I} \vec{\omega}
$$

Explain what the principal axes of inertia are, and why they are useful. Give an example of a rigid body where it is easy to identify the principal axes.
(d) The earth is, to a good approximation, an oblate spheroid of rotation, with $I_{3}>$ $I_{1}=I_{2}$. From Euler's equations, with no external torques, show that ω_{3} is a constant of motion. Show further that the other two components of $\vec{\omega}$ obey coupled equations of motion which can be put in the form

$$
\begin{equation*}
\dot{\omega_{1}}=-\Omega \omega_{2}, \quad \dot{\omega_{2}}=\Omega \omega_{1}, \quad \text { where } \quad \Omega \equiv \omega_{3} \frac{I_{3}-I_{1}}{I_{1}} \sim \frac{\omega_{3}}{305} . \tag{2}
\end{equation*}
$$

Solve these equations for $\vec{\omega}(t)$, and describe in words the motion of the angular velocity vector with respect to the symmetry axis of the earth, as seen by an earth-bound observer.
4. Hamilton's Principle states that the action integral is stationary against small variations δq_{i} of the path followed by a mechanical system between fixed end points at times t_{1} and t_{2}. When this is applied to the Hamiltonian we have to consider arbitrary variations $\delta q_{i}(t)$ and $\delta p_{i}(t)$ of the coordinates and momenta, and require that

$$
\delta \int_{1}^{2} L(q, \dot{q}, t) d t=\delta \int_{1}^{2}\left[\sum_{i} p_{i} \dot{q}_{i}-H(q, p, t)\right] d t=0 .
$$

(q, p without indices refers to the entire set of coordinates and momenta.)
(a) Show that this leads to Hamilton's equations of motion for each pair of conjugate variables:

$$
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}} ; \quad \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}} .
$$

Suggestion: You need to use the identity $p_{j} \delta \dot{q}_{j}=\frac{d}{d t}\left[p_{j} \delta q_{j}\right]-\dot{p}_{j} \delta q_{j}$.
(b) Consider making a canonical change of variables from the set $\{q, p\}$ to a new set $\{Q, P\}$ with $Q_{i}=Q_{i}(q, p)$, and $P_{i}=P_{i}(q, p)$. Show that if

$$
\sum_{i} p_{i} \dot{q}_{i}-H(q, p, t)=\sum_{j} P_{j} \dot{Q}_{j}-\tilde{H}(Q, P, t)+\frac{d F(q, Q, t)}{d t}
$$

then Hamilton's principle implies that \tilde{H} plays the role of the new Hamiltonian and Hamilton's equations of motion apply in the new variables. ($F(q, Q, t)$ is called a typeone generator of the canonical transformation.)
As part of the demonstration, you will want to impose the following relations:

$$
p_{s}=\frac{\partial F}{\partial q_{s}}(q, Q, t) ; \quad-P_{s}=\frac{\partial F}{\partial Q_{s}}(q, Q, t) ; \quad H(q, p, t)=\tilde{H}(Q, P, t)-\frac{\partial F}{\partial t} .
$$

(c) Explain how Hamilton-Jacobi theory leads to the solution of a mechanical problem by using a type-two generating function $S(q, P, t)$ (which is called Hamilton's principal function):

$$
F \equiv S(q, P, t)-\sum_{j} P_{j} Q_{j} .
$$

Suggestion: In this case you will want to impose

$$
p_{i}=\frac{\partial S}{\partial q_{i}} ; \quad Q_{i}=\frac{\partial S}{\partial P_{i}} ; \quad \tilde{H}(Q, P, t)=H(q, p, t)+\frac{\partial S}{\partial t} .
$$

5. Consider a system of independent harmonic oscillators for which

$$
H(q, p)=\sum_{i}\left[\frac{p_{i}^{2}}{2 m_{i}}+\frac{1}{2} k_{i} q_{i}^{2}\right]=\sum_{i} H_{i}\left(q_{i}, p_{i}\right)
$$

Since the Hamiltonian has no explicit time-dependence, it represents the energy. The system is separable, so we can apply the Hamilton-Jacobi method in the form

$$
S(q, P, t)=W(q, P)-E t=\sum_{s} W_{s}\left(q_{s}, p_{s}\right)-\alpha_{s} t
$$

(a) From the Hamilton-Jacobi equation, show that

$$
p_{s}=\frac{\partial W}{\partial q_{s}}= \pm \sqrt{2 m_{s}\left[\alpha_{s}-\left(k_{s} / 2\right) q_{s}^{2}\right]} .
$$

(b) Show that the action $J_{s} \equiv \oint p_{s} d q_{s}=2 \pi \alpha_{s} \sqrt{m_{s} / k_{s}} \equiv \alpha_{s} / \nu_{s}$.
(c) Express the Hamiltonian in the action-angle representation.
(d) In the Bohr-Sommerfeld method of quantisation, it is postulated that the action takes only the values $J_{s}=n_{s} h$, where h is Planck's constant and $n_{s}=0,1, \cdots$ is a non-negative integer. Write down a list of the low-lying energy levels of the quantised three-dimensional oscillator with up to three quanta of energy.

The END

Canonical transformations
Generating function of type 1: $F=F_{1}(q, Q, t)$.
Derivatives:

$$
p_{i}=\frac{\partial F_{1}}{\partial q_{i}} \quad P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}}
$$

Trivial special case: $\quad F_{1}=q_{i} Q_{i}, Q_{i}=p_{i}, P_{i}=-q_{i}$.
Generating function of type 2: $F=F_{2}(q, P, t)-Q_{i} P_{i}$.
Derivatives:

$$
p_{i}=\frac{\partial F_{2}}{\partial q_{i}} \quad Q_{i}=\frac{\partial F_{2}}{\partial P_{i}}
$$

Trivial special case:

$$
F_{2}=q_{i} P_{i}, Q_{i}=q_{i}, P_{i}=p_{i}
$$

Generating function of type 3: $F=F_{3}(p, Q, t)+q_{i} p_{i}$.
Derivatives:

$$
q_{i}=-\frac{\partial F_{3}}{\partial p_{i}} \quad P_{i}=-\frac{\partial F_{3}}{\partial Q_{i}}
$$

Trivial special case:
$F_{3}=p_{i} Q_{i}, Q_{i}=-q_{i}, P_{i}=-p_{i}$.
Generating function of type 4: $F=F_{4}(p, P, t)+q_{i} p_{i}-Q_{i} P_{i}$.
Derivatives:

$$
q_{i}=-\frac{\partial F_{4}}{\partial p_{i}} \quad Q_{i}=\frac{\partial F_{4}}{\partial P_{i}}
$$

Trivial special case:

$$
F_{4}=p_{i} P_{i}, Q_{i}=p_{i}, P_{i}=-q_{i}
$$

