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1. Take a coordinate system with OZ pointing vertically downwards. A circular wire
ring of radius a hangs in a vertical plane, with its centre at the origin. The plane rotates
around OZ at constant angular velocity φ̇ = Ω. (The dot means the time derivative d/dt.)
A bead of mass m moves without friction on the wire.
(a) Construct the Lagrangian for the motion of the bead, taking the polar angle θ as the
generalized coordinate.

L =
1

2
ma2

[

θ̇2 + Ω2 sin2 θ
]

+ mga cos θ .

(b) Show that Lagrange’s equation is

θ̈ +
[

g

a
− Ω2 cos θ

]

sin θ = 0 .

Also show that the bead is in equilibrium at angle θ0 where cos θ0 = g/(a Ω2). Verify this
result by balancing the centrifugal acceleration against gravity in a rotating coordinate
system.
(c) Show that the bead executes simple harmonic motion, for small displacements from
the equilibrium angle, θ = θ0 + η, according to

η̈ + (Ω2 sin2 θ0) η = 0 .

(d) What happens for very slow rotational speeds Ω2 < Ω2

0
≡ g/a? Show in this case that

small oscillations are governed by

η̈ + (Ω2

0
− Ω2) η = 0 .

Describe in words the behaviour of the bead in the three regimes of Ω2.
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2. A different problem, relating to a bead of mass m moving freely on a horizontal wire
hoop of radius a, leads to the following Lagrangian, which is purely kinetic energy:

T = L(φ, φ̇) =
ma2

2

[

φ̇2 + 2ω φ̇ cos(φ − ωt)
]

.

The angle φ gives the position of the bead, while ω is a constant angular velocity of the
hoop.
(a) Since the Lagrangian depends explicitly on time, the momentum will not be simply
mφ̇. Show that the canonical momentum p = pφ ≡ ∂L/∂φ̇ conjugate to φ is given by

p

ma2
= φ̇ + ω cos(φ − ωt)) .

(b) Complete the Lagrange equation to obtain the equation of motion

φ̈ + ω2 sin(φ − ωt) = 0 .

(Explanatory note: If we define θ = φ − ωt, this would be the equation of the physical
pendulum: θ would be the bead angle measured in a rotating coordinate system. The
whole problem could be worked out in terms of θ but it is much messier.)

(c) Using (a), deduce that the Hamiltonian is

H(p, φ) = pφ̇ − L =
ma2

2
φ̇2 =

ma2

2

[

p

ma2
− ω cos(φ − ωt)

]2

.

(d) Verify that Hamilton’s equations

φ̇ =
∂H

∂p
; ṗ = −

∂H

∂φ
,

lead to the same equation of motion as in part (b).
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3. In discussing the motion of a rigid body, it is convenient to introduce an inertial frame,
and a body-fixed frame of reference, having the same origin. Euler’s equations follow from
the statement

(d~L

dt

)

in
=

(d~L

dt

)

body
+ ~ω × ~L = ~Γ , (1)

where ~ω is the instantaneous angular velocity vector, and ~L is the angular momentum.

(a) What does ~Γ represent? From eq. 1, derive Euler’s equations, which describe the
motion in the body-fixed frame.

(b) Take the rigid body to be collection of mass points mp at positions ~rp. Show that its

kinetic energy can be expressed as a matrix product 2T = ~ωT Î ~ω where Î is the inertia
tensor whose elements are

Iij =
∑

p

mp (r2

pδi,j − xpixpj) ,

and xpi is the i’th Cartesian component of the vector ~rp, and δij is the Kronecker symbol.

(c) Similarly, show that the angular momentum vector can be expressed component-wise
as

Li =
∑

j

Îijωj or ~L = Î~ω .

Explain what the principal axes of inertia are, and why they are useful. Give an example
of a rigid body where it is easy to identify the principal axes.

(d) The earth is, to a good approximation, an oblate spheroid of rotation, with I3 >
I1 = I2. From Euler’s equations, with no external torques, show that ω3 is a constant
of motion. Show further that the other two components of ~ω obey coupled equations of
motion which can be put in the form

ω̇1 = −Ω ω2 , ω̇2 = Ω ω1 , where Ω ≡ ω3

I3 − I1

I1

∼
ω3

305
. (2)

Solve these equations for ~ω(t), and describe in words the motion of the angular velocity
vector with respect to the symmetry axis of the earth, as seen by an earth-bound observer.
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4. Hamilton’s Principle states that the action integral is stationary against small varia-
tions δqi of the path followed by a mechanical system between fixed end points at times t1
and t2. When this is applied to the Hamiltonian we have to consider arbitrary variations
δqi(t) and δpi(t) of the coordinates and momenta, and require that

δ
∫

2

1

L(q, q̇, t)dt = δ
∫

2

1

[
∑

i

pi q̇i − H(q, p, t)]dt = 0 .

(q, p without indices refers to the entire set of coordinates and momenta.)
(a) Show that this leads to Hamilton’s equations of motion for each pair of conjugate
variables:

q̇j =
∂H

∂pj

; ṗj = −
∂H

∂qj

.

Suggestion: You need to use the identity pj δq̇j = d
dt

[pj δqj ] − ṗj δqj.

(b) Consider making a canonical change of variables from the set {q, p} to a new set
{Q, P} with Qi = Qi(q, p), and Pi = Pi(q, p). Show that if

∑

i

piq̇i − H(q, p, t) =
∑

j

PjQ̇j − H̃(Q, P, t) +
dF (q, Q, t)

dt

then Hamilton’s principle implies that H̃ plays the role of the new Hamiltonian and
Hamilton’s equations of motion apply in the new variables. (F (q, Q, t) is called a type-
one generator of the canonical transformation.)
As part of the demonstration, you will want to impose the following relations:

ps =
∂F

∂qs

(q, Q, t) ; −Ps =
∂F

∂Qs

(q, Q, t) ; H(q, p, t) = H̃(Q, P, t) −
∂F

∂t
.

(c) Explain how Hamilton-Jacobi theory leads to the solution of a mechanical problem

by using a type-two generating function S(q, P, t) (which is called Hamilton’s principal
function):

F ≡ S(q, P, t) −
∑

j

PjQj .

Suggestion: In this case you will want to impose

pi =
∂S

∂qi

; Qi =
∂S

∂Pi

; H̃(Q, P, t) = H(q, p, t) +
∂S

∂t
.
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5. Consider a system of independent harmonic oscillators for which

H(q, p) =
∑

i

[

p2

i

2mi

+
1

2
kiq

2

i

]

=
∑

i

Hi(qi, pi) .

Since the Hamiltonian has no explicit time-dependence, it represents the energy. The
system is separable, so we can apply the Hamilton-Jacobi method in the form

S(q, P, t) = W (q, P )− Et =
∑

s

Ws(qs, ps) − αst .

(a) From the Hamilton-Jacobi equation, show that

ps =
∂W

∂qs

= ±
√

2ms[αs − (ks/2)q2
s ] .

(b) Show that the action Js ≡
∮

ps dqs = 2παs

√

ms/ks ≡ αs/νs.

(c) Express the Hamiltonian in the action-angle representation.
(d) In the Bohr-Sommerfeld method of quantisation, it is postulated that the action takes
only the values Js = nsh, where h is Planck’s constant and ns = 0, 1, · · · is a non-negative
integer. Write down a list of the low-lying energy levels of the quantised three-dimensional
oscillator with up to three quanta of energy.

The END

Canonical transformations
Generating function of type 1: F = F1(q, Q, t).

Derivatives:

pi =
∂F1

∂qi

Pi = −
∂F1

∂Qi

Trivial special case: F1 = qi Qi, Qi = pi, Pi = −qi.
Generating function of type 2: F = F2(q, P, t) − Qi Pi.

Derivatives:

pi =
∂F2

∂qi

Qi =
∂F2

∂Pi

Trivial special case: F2 = qi Pi, Qi = qi, Pi = pi.
Generating function of type 3: F = F3(p, Q, t) + qi pi.

Derivatives:

qi = −
∂F3

∂pi

Pi = −
∂F3

∂Qi

Trivial special case: F3 = pi Qi, Qi = −qi, Pi = −pi.
Generating function of type 4: F = F4(p, P, t) + qi pi − Qi Pi.

Derivatives:

qi = −
∂F4

∂pi

Qi =
∂F4

∂Pi

Trivial special case: F4 = pi Pi, Qi = pi, Pi = −qi.
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