The rise of “higher mathematies”, that is,
differential and integral calculus, was a turn-
ing point in the history of civilization: it
gave man a powerful tool for analyzing pro-
cesses of many different kinds, for developing a
fundamental explanation of physical phenome-
na, and for construecting a scientific picture of
the world. Actnally, it was the thinkers of an-
cient Greece, primarily the genius of Archi-
medes of Syracuse (287-212 B.C.), who skill-
fully solved the first problems of differential
and integral caleulus. Archimedes successful-
Iy applied mathematics in designing machi-
nes and devices (the weapons of war which he
invented struck terror into the Romans laying
siege to his mnative Syracuse). Archimedes
knew, for example, how to draw tangenls to
curves and how to caleculate an area bounded
by curves. He solved the problem of drawing a
tangent to what came to be called the Archi-
medes spiral, that ig, the line described by a
snail crawling steadily along the spoke of a
wheel turning at a constant rate, and also the
problem of squaring the parabola, that is,
finding the area of a segment of a parabola.
Today problems of this kind can he solved
without difficulty by any college student (or
even a student of higher school). but in
those remote times they were within the pow-
ers of only a giant like Archimedes. There
was no general method for solving such prob-
lems. Each one required preat efiort.

For that matter, the primitive level of tech-
nology in ancient Greece did not reguire the
solution of problems that called for great in-
ventiveness but were devoid of applications
outside mathemalics: as a rule, the thinkers of
ancient times regarded mathematics not as an
effecetive method of solving practical problems
but only as a theoretical science whose perfec-
tion rteflected the profound harmony of the
world, vet only explained the world in a pu-
rely philosophical sense. (Archimedes was
practically the only exception in this respect
because he closely linked mathematics with
mechanics and physics. But he was a genius; in
this, as in many other respects, he was far
ahead of his time.)

The static nalure of life in ancient Greece,
where hardly any machines were known and
life centered around city sguares, palaces, and
temples decorated with beautiful statues as
immobile as the femples and city squares
themselves, gave rise to the metaphysical think-
ing (rigidity) that was so characteristic of
the mathematics of antiquity: it was not
customary to regard processes in flux. They
limited themselves to unchanging “states,” a
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reflection ot which were, for the famous geo-
meter Euelid of Alexandria (early third centu-
ry B.C.), merely chains of congruent triangles,
which occurred frequently in his arguments.

With the flowering of Ttalian cities in the
15th and 16th centuries and the appearance of
the first factories, which heralded the imminent
rise of machine-based production, the static
metaphysical thinking of the ancients became
inconceivable. Im this period it could only
hinder much needed scientific progress. The
great Galileo Galilei (1504-1642) was the first
to proclaim publicly that mathematics provid-
ed the kev to the mysteries of the Universe
(see footnote 3.15). Under Galilen’s influence,
his pupils—Evangelista Torricelli (1608-1647)
who discovered the principle ol the barome-
ter. and the geometrician Donaventura Ca-
valieri (1598-1847) who continued the work of
Archimedes, for whom their teacher had such
great  affection—solved many specific pro-
blems which today lie within the province of
higher mathematics. For one, Cavalieri evol-
ved a method of calculating volumes that is
very similar to those described above. Galileo
was the first to see that the problem of deter-
mining the path of an object from its velocity
practically coincides with the problem that
had so interested Archimedes, that of defer-
mining the aree of curved figures. Continuing
Galileo’s work, Torricelli cstablished that the
inverse problem, that of finding the velocity
from the path, was akin to the problem of dra-
wing a tangent to o curve. But at that time
there did not yet exist general methods of solv-
ing such problems; there was no common al-
gorithm to enable one “to calculate without
thinking.”

Nor did Johann Kepler (1571-1630), that
outstanding astronomer and mathematician

Johann Kepler

whose discoveries played such a big role im
building a scientific picture of the world. have
any such method. Kepler was indisputably the-
Jeading master of integration in his day
(though it was no¢ called that vet). In 1614,
when Kepler married a second time, he had
occasion to buy a good deal ol wine for the
wedding reception, and he saw how difficult
it was to estimale the cubical contents of wine:
casks of different shapes from the base radius.
and the height. The problem intrigued him.
The following year, 1615, he published his
Nova Stereometria Doliorum Vinariorum (The
New Science of Measuring Volumes nf Wine
Casks), “with addenda to Archimedean sterco-
metry,” as he also informed the reader. Here he
collected a large number of problems in de-
termining the volume of bodies limited by
curved surfaces and displayed great ingenuity
in developing formulas for such volumes. which
are today established by integral calculus (see
Section 7.10).

René Descartes (1596-1650) was truly the
forerunner of higher mathematics. Soldier,
diplomat, natural scientist, and abstract think--
er, he was the father of analytic geometry (the
method of coordinates in geometry; sce Chap-
ter 1) and a profound philosopher who decla-
red that the world was knowable. He stated
the hasic principles of dialectics and the place
occupied in life by various processes whose:
study, he believed, constituted the chiel aim
of mathematics. Descartes substantially im-
proved the symbols and language of matbemat-
icg, giving them their present-day appear-
ance. This greatly stimulated further prog-
ress and democratization of mathematical
knowledge.

Another French scientist, Pierre Fermat
(1601-1665), a lawver bv nrofessinn and a nea-
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found amateur mathematician, was a con-
temporary and, in a way, a rival of Descartes.
Working independently of Descartes, Fermat
somewhat carlier elaborated (though it was
published later) a system of using, in geo-
metry, ite methods of coordinates and alge-
braic computations now known as analytic
geometry. Fermat's exposition of the subject
was perhaps closer to the modern one than
that of Descartes; and the fact that the writ-
ings of Descartes have come to hold a much
more significant place in the history of science
is connected primarily with his active teaching
and hig more advanced system of notation.
(The situation was much the same inthe devel-
opment of differential and integral calculus.)
Simultaneously, Fermat occupied himself with
problems that are now part of mathematical
analysis. He evolved the concept of the differ-
ential (see Section 4.1 below) and the overall
idea that the mazima and minima of a {(smooth}
function must lie at the peints where the (first)
derivative of the function vanishes, and also
-carried out ingenious caleulations of the values
of some integrals (e.g., the method of deducing
formula (5.2.1) indicated in Excrcise 3.2.3).
Descartes, too, made contributicns to the field
of analysis.

Christian Huygens (1629-1695) of the Neth-
erlands {a junior contemporary of Descartes
and Fermat) created the wave theory of
light and was noted for his work in the appli-
calion of mathematics to mechanics and phys-
ics (e.g., he produced the strict mathematical
theory of pendulum clocks (see Section 7.9)).
In his investigations, however, Huygens used
the archaic methods of thinkers of anti-
quity, Archimedes for one, because he believed
that a newer method would yield no advan-
tages inasmuch as he could solve any prob-
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lem “in the old way.” {True, but you had to
have the brains of Huygens to do that.)

Two outstanding thinkers of the 17th cen-
tury, the Englishman Sir Isaac Newton (1643-
1727) and the German Gottiried Leibniz (1646-
1746), are rightly regarded as the real found-
ers of higher mathematics. Both indisputab-
ly rank among the most profound scientists
that the world has ever known. To them we
owe a coherent exposition of the new calculus,
a chain of formulas for finding the derivative
of any given algebraic function without any
difficulty and a complete understanding of the
connection between the derivative and the in-
tegral and the significance of that connection,
which provides a general algorithm for cal-
culating integrals by turning to a list of deriv-
atives (see Chapters 4 and 5).

Leibniz was a truly versatile scientist: he
delved into philosophy, philology, history,
psychology (in which he was one of the pio-
necrs of penetration into the sphere of the
subconscious), biology (he was one of the pre-
cursors of the thecory of evolution), geology,
mining, mathematics, and mechanics (he evol-
ved the concept of “living force,” thatis, kinet-
ic encrgy). At the same time he was active in
politics and diplomacy (he strove to reconcile
the German principalities because he [oresaw
their eventual union into a single state, and
dreamed of uniting the Catholic and Protestant
churches). He was also an organizer of scien-
tific academies:; for one, he was the founder
and first president of the Prussian Academy of
Sciences in Berlin, and he had scveral talks
with Peter the Great of Russia about found-
ing a Russian academy of sciences, which
was later established in full conformity with
his suggestions and wishes. The mathematical
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analysis of Leibniz [to whom we owe, among
other things, the modern terms “derivative”
{(dbleitung in German) and “integral,”®.1%] was
of a form much like that adopted in our book.
Leibniz designated the (first) derivative of a
funciion y = f () by the symbol dy/dr; he
understood the “differentials” dy and dz as
the “limiting” values of the increments Ay
and Ax at which we arrive by an unbounded
reduction of Ar (neither the word “limit"
nor its concept existed in the mathematics of
Leibniz). This approach corresponded to in-
troducing the concept of the derivative as the
tangent of the angle formed by the tangent
line to the graph of the function and the «
axis: to a small Ax there corresponds a small
triangle MNP (sce Figure 7.9.1), where
tan o, = NP/PM = Ay/Az; when Ax is re-
duced without limit, the increments Ax and Ay
are replaced by the differentials dx and dy,
and the secant A7V of length 4s (the differen-
tial of the arc length; see Section 7.9) is re-
placed by the appropriate tangent line (Leibniz
called such a triangle the characteristic tri-
angle).

Leibniz emphasized in every possible way
the algorithmic aspect of the new calculus
and the system of rules that automatically
guarantec a correct result when seeking deriva-
tives. He also worked out a method of handl-
ing differentials {(dealt with here in Chap-

%1% At first Leibniz simply spoke of the
sum {and also "summational calculus” instead
of “integral calculus™; he cnthusiastically
adopted the terms integral (from the Latin
integer, mcaning whole) and integral calculus
proposed by his pupils, the brothers Fakob
and Johann Bernoulli,

Isaac Newton

ter 4); use of this method provides a recipe for
calculating derivatives. Leibniz used the mod-
ern  symbol H f (z) dx to designate the inte-
gral of the function y = f (x).

Leibniz was a tireless teacher, and that
plus his felicitous system of neotation and terms
resulted in the universal acceptance of higher
mathematics in the form he developed it.
Leibniz is also considered a classic in the
field of philosophy (here he did much to
extend and to amplify the work done by
Descartes). Ile also deserves credit for many
profound ideas that partially became reality
only in the 19th and 20th centuries: e.g., the
idea of a “geometrical caleculus,” from which
the modern vector calculus later arose; his
attempts to “algorithmize thinking,” in which,
as lLeibniz wrote, the two sides in a contro-
versy would no longer have to conduct lengthy
debates inasmuch as one of them could always
say to the other, "Well, let us verify which of
us is right, let us caleulate, my dear sir.”
The rough outlines of this kind of “proposition-
al calculus,” found in the papers of Leibniz,
closely resemble the mathematical logic of
the 19th and 20th centuries.

Newton arrived at the same ideas as Leib-
niz quite independently and even somewhat
carlier. He was perhaps more of a physicist
and astronemer than a mathematician; his
contributions to the birth of physics and to
the rise of a new method in natural seience
cannot be exaggerated. Joseph Louis Lagrange
{1736-1813), the distinguished 18th and 19th
century mathematician and investigator in
the field of mechanies (we will discuss his
work later on) once said of Newton: “He is
the most fortunate of men, for the system of
the world can be discovered only once.” The
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same idea is conveyed in the famous “Epitaph
for Sir Tsaac Newton” writlen by his conlem-
porary Alexander Pope (1688-1744):

Nature, and Nature's laws lay hid in
night: God said, Let Newton bel and all
was light.

Newton, of course, identified the derivative
with velocity: he regarded its properties as
the physical properties of velocity. Yet the
formal mathematical theory of derivatives (and
also integrals), founded on a variation of the
theory of limits, was not alien to him either.
IHHowever, in the abseuce of a definition of the
term limit, the theory did not make his con-
structions more flawless than the (logically not
indisputable) manipulations of Leibniz with
infinitesimals, but only made them more un-
wieldy; also the fact that ILeibniz clearly
exerted a greater influence on European mathe-
nllatic.s than Newlon may be connccted with
this.

Newton gave the name of fluzion to the de-
rivative, and the initial function from which
the derivative was calculated was called the
fluent (from the Latin fluere, to flow), empha-
sizing that the quantities under consideration
were variable; the fluxion arose as the rate of
change of the fluent, while the fluent was re-
stored from the fluxion as the path from the
speed. Newton began his exposition of the
analysis with two basic problems, to which
all the others are reduced.

i. Knowing the length of the path travers-
ed, find the speed of motion over a fixed time
interval.

2. Knowing the speed of motion, find the
ength of the path traversed over a fixed time
terval,

These are obviously the problemsof finding
the derivative from the given function, and of
finding the function from its derivative, that
is, the problem of calculating an indefinite
integral. The fact that these two problems (in
their geometrical presentation, the drawing of
a tangent to a given curve and the calculation
of the area bounded by the curve) are inverses
of cach other had evidently been discovered
ficst by Newton’s teacher, Isaac Barrow (1630-
1677y, who subsequently resigned his post as
Lucasian Professor of Mathematics at Cam-
bridge (a rare case in the history of sciencel!} in
lavor of his brilliant pupil because he felt
that Newton was more worthy of the post
thaun he. However, il is not at all by accident
that the connection between derivatives and
integrals is named after Newton and Leibniz
instead of after Barrow, for only these two
oreat scientists realized the full extent of the
mutually inverse nature of the operations of
differentiation and integration, which had
been discovered by Barrow (and also, inde-
pendently, by Leibniz), and the possibility
of making this fact the {foundation for a broad
caleulation of derivatives and infegrals. It is
to the far-sightedness of Newton and Leibniz
that mathematical analysis owes the rapid
progress that began immediately after the
first publications and statements by these two
great scientists and which truly marked the
dawn of a new era, the era of great scientific
discoveries, the era of a sweeping assault on
Nature's secrets lo promote buman welfare.

Priority in applying dillerential and inte-
gral caleulus to fathom Nature's secrets un-
doubtedly goes to Isaae Newton, who put
forward the general idea that the lJaws of Na-
ture must have the form of differential equations
linking the functions that describe the pheno-
menon under study. We owe to Newton the
formulation of the basic equations of motion
(for more details sce Chapters 3 and 10),
which he then applied to deduce the law of
gravitation and to study the motion of cele-
stial bodies and the fairly complicated pro-
blems of celestial mechanics {see Lagrange's
above-cited assessment of Newton). In effect,
Newton’s work gave birth to a theoretical
physics based on the use of a profound mathe-
matical apparatus, which physics, in its sub-
stantive part, has gone far beyond the limits
of the problems which Newlon grappled with
and, in its mathematical part, rests on the
whole body of modern science, many 1imes
surpassing the differential and integral calcu-
lus created by Newton and Leibniz.

Newton designated a fluxion (derivative)
by a dot placed above the letter symbolizing
the initial function. For example, he wrote

the derivative of the function y = f (z) as ¥-
(This notation is retained today in mechanics,
but we will not use it.} Newton proposed des-
ignating the operation of a transition from a
fluxion to a fluent by a dot placed underneath:



thus, if y =

tem of notation, y =

z% and y, = 2, then, inthissys-
y; and y1 =y The

symmelry of these designations makes them
attractive. The theurem of the connection
petween the derivatlive and the integral can

be writlen as [ollows: y = y, where the expres-

gion y can be understood in two ways: as the
fluxion of the function y and as the fluent of

the function y. But today this appealing nota-
tion has only historical significance (besides,
Newton himself was not particularly consistent
in using it). The designation y’ for the deriva-
tive of a funetion was introduced by the
French mathematician Augustin Cauchy (1789-
1857), whom we will be hearing more about
later.

One of the regrettable episodes in the hi-
story of science was the bitter controversy be-
tween Newton and Leibniz, conducted chiefly
by their admirers and puplls and not by the
two outstanding scientists themselves.3. 20 T
was a controversy that brought neither honour
notr advantage to either side. Leibniz, accused
(quite groundlessly, as we kuow today) of di-
rectly borrowing his ideas from Newton, lost
the patronage of the dukes of Hanover, who
had long supported him, and died in poverty
and oblivion. His death was not reporied in
a single German (to say nothing of an English)
publication; and even the Berlin (Prussian)
Academy, which he founded, took no notice of
his death. Only the French Academy, of
which Leitbniz had been an active moember,
paid tribute to him in a eulogy. On the other
hand, the refusal to recognize Leibniz (and
also the refusal to recognize his diffcrential
and integral caleulus) substantially hindered
the progress of English science and completely
separated English pure and applied mathemat-
ics from continental mathematics: English
university graduates were not familiar with the
terms “derivative” and “integral” or with the
notation introduced by Leibniz, and hence
were unable to read books and treatises by

3.20 The Royal Society of London appoin-
ted a special commitice to discuss the eontro-
versy over priority (the committee sided with
Newton). ‘This committee, naturally, did not
include scientists whose works it discussed.
More thau thal, the first phrase of the com-
mittee’s report (published under the title
Commercium Epistolicium in 1712) stated that
only the absence of the scientists involved in
the controversy could ensure impartiality. But,
alas, a copy of the dralt of the report written
in the hand so well known to historians of
science shows with all certainty that the re-
port {including the first phrase) was written
completely by the then President of the Royal
Socicety, Sir Isaac Newton, On the other hand,
the behavior of Leibniz in the controversy
with Newton can also hardly be covsidered
irreproachable.

German or French scientists. [t seems to us,
however, that the disagreement hetween New-
ton and Leibniz was not accidental and deser-
ves @ more detailed examination of its causes.
The fact that Newton and Letbniz simul-
taneously and, beyond dispute, independently
discovered differential and integral calculus
best of all demonstrates the timeliness and
inevitability of the great scientific revolution
of the 17th century. Moreover, the different
{even opposite) psychic make- up and scientif-
ic programs of these two outstanding scien-
tists, which shaped the pathways by which
they arrived al their discoverics, make a
comparison of their investigations hlghly edi-
fying.?-2! Leibniz, the ])hl](}‘-s(l[}h{"{‘ was large-
ly guided by what he called the * ‘metaphysics
of infinitesimals” (differentials; incidentally,
this concept, which came from Fermat, appea-
red in Newton's works wnder another name
before it did in those of Leibniz), Leibniz was
carried onwards by the language he had cre-
ated, by the developed symbols and terminol-
ogy characteristic ol the new caleulus. (We
remind our readers once again of Leibniz's
great interest in the science of language: he
was onc of the founders of what is now known
as comparative-historical linguistics.)
Moreover, the definition (later included in
all textbooks) of infinitesimals as wvariables
whose limit is equal to zero was undoubtedly
alien to Leibniz., [t corresponded much more
closely to the scientific thinking of Newton.

Leibuiz t‘egzn‘ded infinitesimals as “special
numbers,” the rules for using which completely
differed from those governing operations car-

4.21 These differences in approach and
viewpoint make, we believe, the whole contro-
versy over priority quile meaningless, sinee
now it can be said thal the inveotions of New-
ton and Leibniz were entirely different (e.g.,
see A R. Hall, Philosophers at War: The Quar-
rel Between Newton and Leibniz, Cambridge
University Press, Cambridge, 19303,

Note that analytic geometry was created
simultaneously and independently by Descartes
and Fermat: moreover, 1lhese two scien-
tists also belonged to different psychological
types. In contrast to Descartes, who thought
largely in terms of physics (and also geomet-
ry), Fermat can be regarded as an algorith-
mist similar to Leibniz. This is reflected in his
far more syslematic treatment of the subject
of analytic geomelry. (The “algorithmicity” of
Fermat's thinking was most {ully manifested
in his oulstanding achievements in the theory
of numbers, a theory that did not interest
Descartes tn Lhe least; incidentally, Fermat
had a most profound grasp of physics—he
discovered a remarkable principle that the

path of a rav of light from one point to  an-
uthm_ thronghone or more media, is such that
the time laken is a minimum, Fermat's prin-
ciple played an outstanding role in the further
development of physics.



ried out with ordinary (real) numbers.?-22 New-
ton, the physicist, however, proceeded from
the substantive meaning of the new concepts
and their role in natural science: he regarded
the derivative as speed, and the reason why he
did not carry through to the end the theory
of limits which he had set forth in outline
was because he saw no particular need for it,
In his view, the physical meaning of all the
concepts that he introduced fully justified
them, and he {felt no need for formal mathemnat-
ical theories here.

We can assume that the profound mutual
antipathy that arose between Newton and
Leibniz occurred at the time of their first
(and, apparently, only) meeting. This was
when Leibniz came to England to demon-
strale his version of a “mathematical” (to be
more exact, arithmetical) machine [the first to
pul forward this idea was the outstanding
17th-century French mathematician and phys-
icist f3laise Pascal (1023-1662)"-#: the very
idea of such a machine ran counter to New-
ton’s type of intellect]. Stitl more remote from
Newton was Leibniz's dream (and prevision)
of “logical machines” {actually, the prototypes
of today’s computers) for mechanizing mental
processes. On the other hand, Leibniz comple-
tely rejected Newtlonian mechanics ({altho-
ugh he had an exceptionally high opinion of

3.22 Interestingly, these ideas of Leibniz
received a fully logical substantiation only in
1960 in what is known as nonstandard analysis
introduced by the American mathematician
Abraham Rebinson (1918-1974), which has
already found definite application.

.23 Tn some respects Leibniz’s machine sur-
passed Pascal’s arithmetical machine: il not
only could perform arithmetic operations on
numbers but could, for instance, extract
sgquare roois,

Newton as a mathematician), because the very
idea of action-at-a-distance (Newtonian gra-
vitation) contradicted his general scientific and
religious views,

The subscquent evolution of the scientific
idcas of Newton and Leibniz in European
science is not wilthoul interest. Newton emerged
the indisputable victor in the debate about
priority, but the ouiward forms of difier-
ential and integral calculus have come down
to us entirely from Leibniz. As fer scientific
ideclogy in the broad scnse of the word, this
was influenced for many centuries to a far
greater degree by Newton than by Leibniz.
This is illustrated not only by the above-cited
lines from Pope and Lagrange. The entire
history of European science in the 18th, 19th,
and first half of the 20th centuries was inspi-
red by Newtonian mechanics as a true model
of a scientific theory in the finest meaning of
the term. And our book, too, vwes much more
to the views of Newton than to the world-
outlook of Teibriz.

But in the second half of the present cen-
tury Leibniz’s dream of “thinking machines”
has suddenly come true. What is more, to-
day's *compulerization of knowledge” has once
again put the algorithmic ideas of Leibniz in
the forefront of scientific thinking, not to men-
tion the significance of diverse particular
achievements of the great German, from the
clements of mathematical logic he created to
his serious interest in combinatorics, something
guile unusual for the 171h century.

Summing up, we can say that while New-
ton and Leibniz approached higher mathemat-
ics from different starting points, the subse-
guent history of science has confirmed the
unquestionable value of both avenues of
thought which they represent, the value of
both Newton's approaches and the scientific
idcas of Leibniz,



