ABB-261

e-mail: mckay@physics.mcmaster.ca

**Text: **John R. Taylor, Classical
Mechanics, University Science Books

**Web Page:** __http://www.physics.mcmaster.ca/phys2d03__

Notes, assignments, and announcements will be available through **Avenue**
at __avenue.mcmaster.ca__.

The text for the course is
well-written and reasonably complete. For additional reading, browse through
the QA805-QA807 section in the library, if the library still has any books.
Check the preface and table of contents first, as elementary and advanced texts
are randomly intermingled. In previous years we have used Introduction to
Classical Mechanics by Atam Arya, and Analytical Mechanics by Fowles and Cassiday (edition 4,
by Fowles, is terse but very good; later editions not
so much). Somewhat more advanced texts include Classical Dynamics
by Marion and Thornton and Classical Mechanics by Chow. Both present
the same material at about a third-year level. Newtonian Dynamics
by Ralph Baierlein is excellent, but also a little
more advanced than Taylor. A classic graduate-level text is Classical
Mechanics by Goldstein.

A first-year Physics text (*e.g.,*
Serway, Knight, Young and Freedman, etc.) will be
very helpful, particularly if it has been a few years since you took first-year
physics. Try the QC21-QC23 section of a library. You may want to review the
math you learned in first year (differential and integral calculus, complex
numbers), so pull out your old math text, or borrow an older edition from the
library.

Only the *Casio fx-991*
calculator may be used during tests and the final examination.

**Marks: **

Exam, 50%

Midterm tests, 35%

Assignments, 15%

Marks will be combined using a 100-point scale. We reserve the right to
alter the weightings given above, provided it does not decrease a student's
grade.

The final exam will be
three hours long, during the December exam period. Two midterm tests will be
held; **dates and locations to be announced.** There will be about
eight or nine weekly assignments, 3 to 5 questions each. Students are expected
to attend all lectures, take notes, and participate in discussions. From time
to time, exercises or quizzes may be given during the lecture.

*The instructor and
university reserve the right to modify elements of the course during the term
if necessary. It is the responsibility of each student to Avenue to Learn and the
course website weekly during the term and to note any changes.*

**Academic Ethics and
Collaboration:**
Academic dishonesty consists of misrepresentation by deception or by other
fraudulent means and can result in serious consequences, *e.g.* a grade of
zero on an assignment, loss of credit with a notation on the transcript
(notation reads: "Grade of F assigned for academic dishonesty"),
and/or suspension or expulsion from the university. It is the responsibility of
the student to understand just what does constitute academic dishonesty and to
be aware of the penalties. Please refer to the policies posted at __http://www.mcmaster.ca/academicintegrity____ __.

**In this course all students are
expected to complete their assignments independently**. You are encouraged to
discuss assignment problems with other students, and to share ideas about *general
approaches* to the solution. However, each student should work out the final
details independently, and **write up the final answer without referring to any
written solution or rough work from any other source.** This particularly
forbids “working on the assignment together” and handing in two or
more substantially identical solutions.

Physics 2D3 introduces the
student to the analytical methods used in Newtonian mechanics. A few particular
problems (*e.g.,* the 1-D oscillator, Kepler
orbits) will be solved in some detail, but the emphasis is on teaching general
methods and principles. Assignment and exam questions will ask the student to *derive*
a solution or *prove* a result from basic principles, using the same
general approach presented in class. The objective is to teach the *methods*
of classical mechanics rather than simply the results.

Newtonian mechanics
describes the world using second-order differential equations. Methods of
solution are developed as we go, without assuming a prior course in
differential equations. The student is assumed to be familiar with complex
numbers, vector algebra (dot products, cross products) and differential and integral
calculus. We make some use of integral calculus in 2 and 3 dimensions, in
rectangular and polar coordinates.

The following list of
topics, and particularly the implied schedule, should be regarded as
approximate. Some sections of the chapters listed will be omitted:

- (Text
chapter 1) Newton's Laws, coordinate systems (2 or 3 lectures)
- (Text
chapter 2) Projectiles (3 lectures)
- section
2.6 (complex exponentials) will be deferred until later
- we
will likely skip section 2.7
- (Text
chapter 3) Momentum and angular momentum (2 or 3 lectures)
- (Text
chapter 4) Energy (4 or 5 lectures)
- some
sections (
*e.g.*4.4, 4.8) will be covered superficially - (Text
chapter 5) Oscillations (5 lectures)
- (Text
chapter 7) Langrange's Equations (5 lectures)
- skip
chapter 6;
- Skip
section 7.4, and 7.8 to 7.10
- maybe
include a little of chapter 13
- (Text
chapter 8) 2-body central force problem (3 lectures?)
- we
will skip much of this chapter if time is short
- (Text
chapter 9) Accelerated reference frames (3 or 4 lectures)
- fictitious
forces; rotating coordinates
- static
effects of the earth's rotation
- dynamic effects: Coriolis
forces, examples; Foucault pendulum?
- (Text
Chapter 10, sections 1--6) Rigid-body rotation in 3-D (2 or 3 lectures, if
time permits)