Electric Potential (II)

Text sections 25.3, 25.5

- Potential of a point charge
- Potential of several point charges
- Potential energy of a collection of charges

Practice: Chapter 25,
Objective Questions 5, 7, 9, 10
Problems 18, 21, 27, 35

Review: Electric Potential

$$
V \equiv \frac{\text { potential energy }}{\text { charge }}
$$

So,

$$
d W=-q d V=q \mathbf{E} \bullet \mathbf{d s}
$$

$$
-d V=\mathbf{E} \bullet \mathbf{d s}
$$

$$
E_{x}=-\frac{d V}{d x}
$$

What is the electric potential near a point charge Q ?

Move another charge q in the field: its potential energy changes as the field does work.

$$
q\left(V_{B}-V_{A}\right)=-(\text { work })=-\int_{r_{A}}^{r_{B}}(q \mathbf{E}) \bullet \mathbf{d s}
$$

... then cancel q on each side.

Details: Move from A to B along a radial line,

Set $V=0$ as $r \rightarrow \infty$
Then...

$$
V=\frac{k_{e} Q}{r}
$$

(potential around a single point charge Q)

What shape are the equipotential sufaces near a single point charge?

What is the potential 10 cm from a (point) charge of 100 nC ?

How will the result change for a spherical charge (which is not a "point charge")?

QUIZ

What shape are the equipotential sufaces near a single positive point charge?
A) radial lines outwards
B) radial lines inwards
C) concentric spheres
D) vertical planes
E) horizontal planes

Equipotentials

Example: Rutherford Experiment

How close can a fast charged particle get to a gold nucleus?

Alpha particle:

$$
\begin{aligned}
& m_{\alpha}=6.67 \times 10^{-27} \mathrm{~kg} \\
& q=+2 e \\
& v_{o}=1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Find: a) Initial K.E. of α in electron-volts. (answer: 2.08 MeV) b) P.E. of α at $r=r_{0}$
c) V at $r=r_{0}$
d) r_{0}

Potential of Several Point Charges

- Potentials add (as scalars!)

$$
\text { At A: } \quad V=k\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}\right)
$$

In General:

$$
V=\sum_{i} k_{e} \frac{q_{i}}{r_{i}}
$$

Or...

$$
V=\int k_{e} \frac{d q}{r} \quad \begin{gathered}
\left(\begin{array}{c}
\text { continuous } c h \\
\text { distribution })
\end{array}\right.
\end{gathered}
$$

Quiz:

A single charge q produces a potential $V_{0}=1000 \mathrm{~V}$ at point 0 .

What is the potential at point O due to the two identical charges?
A) 1000 V

B) 1414 V
C) 2000 V
D) 2828 V

Electrostatic Potential Energy

What is the total potential energy of 3 (or more) point charges?
(Fine Print: assume $\mathrm{U}=0$ when all point charges are at infinity)

$$
U=\sum_{\text {pairs } i j} k \frac{q_{i} q_{j}}{r_{i j}}
$$

Derivation: Bring 3 charges in from infinity...
First Charge: no work needed (q_{1})
Second Charge: $U_{12}=\left(V\right.$ of $\left.q_{1}\right) \times q_{2}$

$$
=k \frac{q_{1} q_{2}}{r_{12}}
$$

Third Charge: Work needed

$$
=\left(\text { potential of } q_{1} \text { and } q_{2}\right) \times q_{3}
$$

$$
=k\left(\frac{q_{1}}{r_{13}}+\frac{q_{2}}{r_{23}}\right) q_{3}
$$

Total $=$
$U_{\text {total }}=k\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right)$

Quiz:

A single charge $q=1.0 \mu \mathrm{C}$ produces a potential $V_{0}=1000 \mathrm{~V}$ at point 0 .

What is the total potential energy of the four identical charges?
A) 4.0 mJ
B) 3.0 mJ
C) 6.0 mJ
D) none of the above

