Gauss's Law III

- Uniformly-charged plane
- Conductors in Equilibrium

Text section 24.4

Practice: Chapter 24,
Objective Questions 7, 9
Conceptual Question 8, 10
Problems 39, 41, 54, 56

Uniformly-Charged Thin Sheet

(3) Flux:

(4) $Q_{\text {enclosed }}=$

Using Gauss's Law...

$$
\frac{Q_{\text {enclosed }}}{\epsilon_{o}}=\Phi_{E}
$$

Infinite sheet of charge

Quiz

The electric field 10 cm above an infinite, uniformly-charged plane is 100 N/C. At a point 20 cm above the plane, the field would be
A) zero
B) $100 \mathrm{~N} / \mathrm{C}$
C) $50 \mathrm{~N} / \mathrm{C}$
D) $25 \mathrm{~N} / \mathrm{C}$

Conductors (in Electrostatic Equilibrium)

1) $\vec{E}=0$ in a conductor.
2) $\vec{E} \perp$ surface just outside a conductor.
3) Any charge on a conductor is on the surface only.
4) If $\vec{E} \neq 0$, charges would move!

5) If $\vec{E}_{\| \mid} \neq 0$, charges would move!

6) $\vec{E}=0$ inside, so any gaussian surface inside the conductor encloses no net charge.

Since $E=0$ everywhere.

Example:

- Metal ball $\left(R_{1}\right.$; + Q) with metal shell ($R_{2}, R_{3} ;-3 Q$)
- Find: charges on each surface. (and E)

Quiz:

The dashed green line represents a spherical gaussian surface inside the conducting material. The total electric flux through this surface (in units of
$\left.Q / \varepsilon_{0}\right)$ is
A) 0

B) $-Q / \varepsilon_{0}$
C) $+Q / \varepsilon_{0}$
D) $-2 Q / \varepsilon_{0}$
E) $3 Q / \varepsilon_{0}$

Quiz:

So, the charge on the inner surface of the outer shell is
A) 0
B) $-Q$
C) $+Q$
D) $-2 Q$
E) $+3 Q$

Surface Charge Density on a Conductor

GAUSSIAN SURFACE:

- infinitesimal cylinder with the bottom inside the conductor and the top just outside.
$E \perp$ top, $E \|$ curved side

FLUX:

- Through top, $d \Phi_{1}=$
- Through bottom, $d \Phi_{2}=$
- Through curved side, $d \Phi_{3}=$
- Total, $d \Phi=$

Charge enclosed, $d Q=$

Using Gauss's Law...

$$
\begin{array}{r}
\Phi=\frac{Q_{\text {enclosed }}}{\varepsilon_{o}} \\
\Rightarrow \quad E d A=\frac{\sigma d A}{\varepsilon_{o}} \\
\Rightarrow \quad|\mathbf{E}|=\frac{\sigma}{\varepsilon_{o}}
\end{array}
$$

(field just outside conductor)

Quick Recap:

$$
\text { Conductor: } \quad E=\frac{\sigma}{\varepsilon_{o}}
$$

Infinite Sheet of charge: $\quad E=\frac{\sigma}{2 \varepsilon_{o}}$

Quiz: Conductor with an infinite flat surface.

What is E equal to?
A) It's the surface of a conductor: $E=\sigma / \varepsilon_{0}$ B) It's an infinite plane of charge: $E=\frac{1}{2} \sigma / \varepsilon_{0}$
C) Both of the above.
D) Physics doesn't work.

