Electric Field

- More continuous charge distributions
- Electric Field Lines
- Motion of charged particles

Text 23.6, 23.7
Practice:
Chapter 23,
Objective Question 13
Problems 39, 43, 49, 57, 63

- Field of several point charges q_{i} :

$$
\vec{E}=\sum_{i} k_{e} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i}
$$

- Field of continuous charge distribution:

$$
\vec{E}=\int k_{e} \frac{d q}{r^{2}} \hat{r}
$$

In 2D problems, integrate components separately:

$$
\begin{gathered}
E_{x}=\int d E_{x}=\int k \frac{d q}{r^{2}}(\underbrace{\text { x-component of } \hat{\mathbf{r}}}) \\
E_{y}=\int d E_{y}=\ldots \ldots .
\end{gathered}
$$

Example: Uniformly-Charged Semicircle

Charge/unit length, λ, is uniform
Find: \vec{E} at origin

Solution:

1) dE of charge element $d q$:

Exercise: Uniformly-Charged Ring

Total charge Q, uniform charge/unit length, radius R

Find: E at any point $(x, 0)$ on the axis of the ring

Electric Field Lines

Electric field lines are a way of visualising the field.

Rules for Drawing:

1) Lines start on (+) charges, end on (-) charges 2) (\# of lines) \propto charge
2) Lines never cross

Interpreting the picture:

- \vec{E} is paralle/ to the field line at each point.
- $|\vec{E}| \propto$ (number of lines/unit area)

Quiz:

Which way will the dipole start to move in the electric field shown?

A) up \uparrow
B) down \downarrow
C) left \leftarrow
D) right \rightarrow
E) nowhere - there is no net force.

Parallel Charged Plates

Parallel Charged Plates

$$
\sigma=\frac{\text { charge }}{\text { unit area }} \text {; uniform }
$$

E approx. uniform, \perp plates, except near the ends.

QUIZ:

A positive charged particle (e.g., a proton) is released from rest in the electric field shown (solid black lines).

Which path will it follow?

Motion of a charged particle

$$
\begin{aligned}
& \vec{F}=q \vec{E}=m \vec{a} \\
& \text { i.e: } \vec{a}=\frac{q}{m} \vec{E}
\end{aligned}
$$

If E is uniform, a is constant
\Rightarrow familiar kinematics
(but in general E is not uniform - check first!)

Example: Uniform E

Find: \vec{E} between plates to get a 20° deflection.

