Limits on Resolution (38.3)

- angular resolution of telescopes
- resolution of microscopes

Practice: Chapter 38, Objective Questions 8, 12 Problems 14, 15, 17, 19

Diffraction

1) Narrow slit:

"angular width" of central peak is
2 (λ / a) (radians).

Diffraction through a circular aperture:

The angle θ_{1} from the centre to first dark ring ("angular radius" of central spot) is about $1.22 \lambda / D$ radians.

Resolution of a Telescope

A "perfect" telescope only magnifies the diffraction pattern of the circular "hole" it looks through.

Rayleigh Criterion

Images are just resolved when the centre of one pattern overlaps the first dark line of the other pattern.

"Just resolved"
(or "just not resolved")

Resolved if $\theta \geq 1.22 \frac{\lambda}{D}$

Quiz:

Compared to a visible-light telescope, an infrared telescope, for the same angular resolution, would need a mirror diameter that is:
A) larger
B) smaller
C) the same

fleas, $s=2 \mathrm{~mm}$ apart
$\mathrm{R}=200 \mathrm{~m} \longrightarrow$ (o)

Find: Minimum lens diameter to resolve fleas.
($\lambda \approx 500 \mathrm{~nm}=1 / 2000 \mathrm{~mm}$)

Quiz:

If you moved the camera closer to the rhinoceros, the angular separation of the fleas would:
A) increase
B) decrease
C) stay the same

What telescope diameter would you need to get a resolution of 1 arc minute?

$$
\text { of } 1 \text { arc second? }
$$

Answers: about 2.5 mm and 15 cm

Resolution of microscopes:

We are interested in the linear size of the smallest details that can be resolved. If the object is placed close to the lens, the angular size of these details increases (and so they are more easily resolved).
However, when the microscope lens is close to the sample, the simple Fraunhofer diffraction theory breaks down. But we can get an approximate limit on the resolution by assuming the maximum useful lens diameter is about equal to the distance between the lens and the sample:

Assume $r \approx D$
minimum resolved angle,

$$
\theta_{\min } \approx 1.2 \lambda / D
$$

size $s_{\text {min }}$ of smallest resolved details,

$$
s_{\min }=r \theta_{\min }
$$

We assume $r \approx D$; then $s_{\min } \approx 1.2 \lambda$
This is only approximate. A complete calculation gives $s_{\text {min }}$ typically about $\frac{3}{4} \lambda$ for a sufficiently wide lens very close to the object. The usual rule of thumb is: You can resolve details down to about one wavelength in size.

For a small lens far from the object, calculate the angular resolution, as for a telescope.

Limits on Resolution - Summary

Because of diffraction, images formed by "perfect" optics are fuzzy.

Microscope: Smallest visible details are ≈ 1 wavelength in size.

Telescope: Angular size of finest details is $\approx 1.2 \lambda / D$ radians.
where $D=$ lens diameter

