
Interference effects for continuous sources:

i) Light bends around corners.
ii) “Shadows” fill in
iii) “Parallel” beams always spread
iv) Resolution of microscopes and telescopes is 

limited

Diffraction   
(38.1 – 38.4)

Practice: Chapter 38, 
Objective Questions 4, 5, 6
Conceptual Questions 2, 5, 9, 10
Problems 3, 7, 9, 10 



Fraunhofer Diffraction:  (easy math)

Source, screen “ at ∞”
eg. Laser & narrow slit.

Fresnel Diffraction:  (complicated math)

Source distance, object size, screen distance
all comparable.

eg.

Source Steel Ball  Screen

Shadow
Poisson
Spot



Huygens’s Principle
(Christiaan Huygens, ~ 1678)

e.g., parallel beam of light:  “Plane wave”

wavefronts:  flat planes for a parallel beam.

Wave propagation can be treated as if each point on a 
wavefront is a source of semicircular“wavelets” spreading out 
in forward directions. These wavelets overlap and interfere 
to form the wave at later times.



Flat wavefront (parallel rays) gives a new flat 
wavefront (EXCEPT near the edges).

Divide wavefront
into many point
sources

New wavefront



Single Slit, width = a

Add up rays in pairs:

Ray (4) is ½ cycle behind (1)  ->  Cancel
Ray (5) is ½ cycle behind (2)  ->  Cancel
Ray (6) is ½ cycle behind (3)  ->  Cancel

a/2

θ

a/2

1
2
3
4
5
6

First minimum: choose θ so 
that

(a/2) sin θ = λ / 2 

Use Huygens’s idea:Treat the slit as a 
large number of point sources.

∆r =½ a sin θ

∆r =½ a sin θ



When ½ a sin θ = ½ λ (i.e., a sin θ = λ), each ray from 
the top half of the slit interferes destructively with 
the ray a distance a/2 below; everything cancels, and 
there is zero total intensity. 



Increase θ until  
¼ a sin θ = ½ λ

(or a sin θ = 2 λ):

Now rays from points a/4 apart 
will be ½ cycle out of phase, and 
will interfere destructively: 

(1) cancels (2)
(3) cancels (4)

and we get another minimum.

(1)

(2)

(3)

(4)

∆r = ¼ a sin θ



Result:  Minima when

sin θ = m λ /a m = ±1, ±2, ±3, …

(but not m = 0)

For any non-zero integer m, there will be complete destructive 
interference at angle θ given by 

2
sin

2

λ
θ =

m

a



Single slit of width α

θ

slit

m = 3

m = 2

m = 1

m = -1

In
te
ns
it
y

Pattern on 
screen

Minima where a sinθ = m λ,  m =±1, ±2, …

m = -2

m = -3



Notes:
1) Central peak is twice as wide, much brighter 

(~ 90% of light)

2) Side peaks get fainter as we move to higher 
orders m

3) Minima are at 

4) Maxima are approximately halfway between 
the minima.

0,sin ≠= m
a

m    
λ

θ



λ = 600 nm;  central peak is 6cm wide on a screen 3m 
away.  How wide is the slit?

slit

Example

L=3.0 mθ1

θ1

3 cm =y1

3 cm



Quiz:

Above is the pattern on the screen from a single slit 
0.1 mm wide.  If we had two slits, each 0.1 mm wide, 
and separated by 0.3 mm (between centres), what 
would we see on the screen?

A
B
C
D



Diffraction through a circular aperture:

IntensityDiameter
D

Image on
Screen

The angle θ1 from the centre to first dark ring (“angular 
radius” of central spot) is about 1.22 λ/D radians.

θ 1 ≈ 1.22 λ /D



Quiz:

What would the central spot look like if white 
light were used for the beam?

A) Blue in the centre and red around the edge
B) Red in the centre and blue around the edge
C) White in the centre and red around the edge



Example: A telescope (diameter 1.2 m) is used in 
reverse to focus a laser (λ = 600 nm) on the moon. 

Find:  Minimum diameter of spot on moon.

Moon

R = 380 000 km

source
w

Answer: w = 460 m



Quiz:

The ruby laser used actually has λ = 694 nm,  
instead of 600 nm. So the actual spot 
diameter is closer to: 

A) 400 m          B) 500 m



Question:

What approximate (order of magnitude) spot 
diameter, on the moon, could we expect with 
the helium-neon laser used for the lecture 
demonstrations (pointed directly at the moon, 
without using a telescope), if the laser beam is 
limited only by diffraction?


