Beats
 Interference of waves, in 3D

Text sections 18.7; 18.1 again

Practice: Chapter 18,
Objective Questions 1, 6, 7
Conceptual Questions 3, 6
Problems 8, 13, 57

"Constructive interference:"

$$
A_{R}=A_{1}+A_{2}
$$

phase difference $=0,2 \pi, 4 \pi, \ldots$

"Destructive interference:"

$$
A_{R}=\left|A_{1}-A_{2}\right|
$$

phase difference $=\pi, 3 \pi, 5 \pi, \ldots$

Beats

Two waves of different frequencies arriving together produce a fluctuation in power or amplitude.

Since the frequencies are different, the two vibrations drift in and out of phase with each other, causing the total amplitude to vary with time.

in phase
180° out of phase
in phase

The math:

Same amplitudes, different frequencies:

$$
y_{1}=A_{0} \cos \left(\omega_{1} t\right) \quad y_{2}=A_{0} \cos \left(\omega_{2} t\right)
$$

Trigonometry:

$$
\cos a+\cos b=2 \cos [(a-b) / 2] \cos [(a+b) / 2]
$$

Result:

$$
\begin{aligned}
y & =y_{1}+y_{2} \\
& =\underbrace{2 A_{0} \cos \left(\frac{\omega_{1}-\omega_{2}}{2} t\right)}_{\begin{array}{c}
\text { slowly-varying } \\
\text { amplitude }
\end{array}} \underbrace{\cos \left(\frac{\omega_{1}+\omega_{2}}{2} t\right)}_{\begin{array}{c}
\text { SHM at average } \\
\text { frequency }
\end{array}}
\end{aligned}
$$

Note, maximum power when "amplitude" part is equal to either $+2 A$ or $-2 A$
$\Rightarrow 2$ beats per cycle of $\cos \left(\frac{\omega_{1}-\omega_{2}}{2} t\right)$
\Rightarrow \# beats/second $=2 \times\left(\frac{f_{1}-f_{2}}{2}\right)$

The beat frequency (number of beats per second) is equal to the difference between the frequencies:

$$
f_{b}=\left|f_{1}-f_{2}\right|
$$

Quiz

You drive past a radar trap at one ten-millionth the speed of light. The radar set sends out a 2 GHz beam, and picks up a reflection from the back of your car which is lower in frequency by 0.2 parts per million. When the two signals are mixed in the radar set, how many beats per second are there?
A) 2.0000004 billion
B) 1.9999996 billion
C) 100
D) 200
E) 400

Interference in Space

2 waves, of the same frequency, arrive out of phase.
Eg. $y_{1}=A_{0} \sin \omega t, y_{2}=A_{0} \sin (\omega t+\phi)$
Then

$$
y_{R}=A_{R} \sin \left(\omega t+\phi_{R}\right),
$$

and the resultant amplitude is $A_{R}=2 A_{0} \cos (1 / 2 \phi)$.
Identical waves which travel different distances will arrive out of phase and will interfere, so that the resultant amplitude varies with location.

Example:

Two sources, in phase; waves arrive by different paths:

Phase difference:

$$
\left(k r_{1}-\omega t\right)-\left(k r_{2}-\omega t\right)=k\left(r_{1}-r_{2}\right) \equiv k \Delta r
$$

$$
\text { Define } \begin{array}{r}
\phi \equiv k \Delta r=2 \pi \frac{\Delta r}{\lambda} \text { radians } \\
\text { (or } \frac{\Delta r}{\lambda} \text { cycles) }
\end{array}
$$

Then, at detector:

$$
\begin{aligned}
& y_{1}=A_{0} \sin (\omega t) \\
& y_{2}=A_{0} \sin (\omega t+\phi) \\
& \Rightarrow y_{R}=\left(2 A_{0} \cos \frac{\phi}{2}\right) \sin \left(\omega t+\frac{\phi}{2}\right)
\end{aligned}
$$

Intensity

For waves which spread out in 3 dimensions, define $I \equiv$ Power per unit area Units: W / m^{2} (the area is measured perpendicular to the wave velocity)

```
Intensity }\propto(\mathrm{ (amplitude)2
```

Two sources, amplitude A_{o}, intensity I_{o}, phase difference ϕ

$$
\begin{aligned}
\Rightarrow A_{R} & =2 A_{\mathrm{o}} \cos \left(\frac{1}{2} \phi\right) \\
I_{R} & =4 I_{\mathrm{o}} \cos ^{2}\left(\frac{1}{2} \phi\right)
\end{aligned}
$$

Notes:

1) Maximum I_{R} is $4 \times I_{O}$
2) Maxima when $\frac{1}{2} \phi=0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots$

$$
\begin{aligned}
& \phi=0, \pm 2 \pi, \pm 4 \pi, \pm 6 \pi, \ldots \\
& \Delta r=0, \pm \lambda, \pm 2 \lambda, \ldots \quad \text { (constructive interference) }
\end{aligned}
$$

Minima (zero intensity) when

$$
\begin{aligned}
\phi & = \pm \pi, \pm 3 \pi, \pm 5 \pi, \ldots \\
\Delta r & = \pm \lambda / 2, \pm 3 \lambda / 2, \pm 5 \lambda / 2, \ldots \text { (destructive interference) }
\end{aligned}
$$

4) These rules assume sources are in phase.

2 speakers, in phase; $f=170 \mathrm{~Hz}$ (so $\lambda=2.0 \mathrm{~m}$)
As you move along the x axis, where is the sound intensity
a) a minimum (compared to nearby points)?
b) a maximum (compared to nearby points)?

Quiz

At what position x on the x axis is the

A) 0
B) 4 m
C) 8 m
D) 16 m
E) ∞

Quiz

At $x=6 m$, the phase difference between 8 m the two waves is:

(2 speakers, in phase; $f=170 \mathrm{~Hz}, \lambda=2.0 \mathrm{~m}$)
A) π
B) 2π
C) 3π
D) 4π
E) 6π

