Make-Up Labs Next Week Only

Monday, Mar. 30 to Thursday, April 2

Make arrangements with Dr. Buntar in BSB-B117

If you have missed a lab for any reason, you must complete the lab in make-up week.

Energy; Superposition

Text sections 16.5, 18.1, 8.2

Practice: Chapter 16, Problems 32, 39, 40; Chapter 18, Objective Questions 4, 9, 12 Conceptual Questions 2, 9 Problems 1, 2, 4, 5, 15, 16

Energy, Power, etc. \propto (amplitude)²

Stretched rope, energy/unit length:

Ignore difference between "ds", "dx" (small A, large λ): $dm = \mu dx$ (μ = mass/unit length) The mass dm vibrates in simple harmonic motion. Its maximum kinetic energy is

$$dK_{\max} = \frac{1}{2}(dm)(v_{\max})^2$$
$$= \frac{1}{2}(dm)(\omega A)^2$$

The **average** kinetic energy is half this maximum value, but there is also an equal amount of potential energy in the wave. The total energy (kinetic plus potential) is therefore

 $dE = \frac{1}{2}(dm) \omega^2 A^2$

To get the energy per unit length, replace the mass dm with the mass per unit length μ :

$$\frac{Energy}{length} = \frac{1}{2}\mu\omega^2 A^2$$

<u>Power</u>: Energy travels at the wave speed v,

So
$$P = \left(\frac{\text{Energy}}{\text{length}}\right) \times v$$

waves on a string,
$$P = \frac{1}{2} \mu \omega^2 A^2 v$$

Both the energy density and the power transmitted are proportional to the **square** of the amplitude. This is a general property of sinusoidal waves.

Quiz

A radio station produces oscillating electric fields of $20\mu V/m$ at your house during the day. At night, the station turns its transmitters down to half power. What is the electric-field amplitude at night?

A) 5.0μV/m B) 10μV/m C) 14μV/m D) 20μV/m

Intensity

For waves which spread out in 3 dimensions, define Intensity \equiv Power per unit area

Units: W/m²

(the "area" is measured perpendicular to the wave velocity)

Example: Sunlight, $I \approx 1400 \text{ W/m}^2$, above the atmosphere $I < 1000 \text{ W/m}^2$, at sea level

For these waves (light, sound, ...),

Intensity \propto (amplitude)²

Quiz

An outdoor concert produces sound waves with an an amplitude (of the motion of the air molecules) of 4mm at a distance of 50 m. What would the amplitude be at a distance of 100 m?

A) 4 mm
B) 2 mm
C) 1 mm
D) 0.5 mm
E) 0.25 mm

Principle of Superposition

2 Waves In The Same Medium:

The observed displacement y(x,t) is the sum of the individual displacements:

 $y_1(x,t) + y_2(x,t) = y(x,t)$ (for a "linear medium")

What's Special about Sine Waves?

2 waves, of the same frequency, arrive out of phase:

Eg.
$$y_1 = A \sin(kx - \omega t)$$

 $y_2 = A \sin(kx - \omega t + \phi)$
Trigonometry:
 $\sin a + \sin b = 2 \cos [(a-b)/2] \sin [(a+b)/2]$

Result:
$$y = y_1 + y_2$$

= $2A \cos\left(\frac{\phi}{2}\right) \sin\left(kx - \omega t + \frac{\phi}{2}\right)$
amplitude

"Constructive interference:" phase difference =0, 2\pi, 4\pi, ...

 $A_R = A_1 + A_2$

"Destructive interference:" phase difference = π , 3π , 5π ,...

 $A_R = |A_1 - A_2|$

Exercise

What do you get if you add two identical (but out-of-phase) square or triangular waves?

Sine Waves In Opposite Directions:

Total displacement, $y(x,t) = y_1 + y_2$ is a "standing wave".

where waves arrive in phase: \rightarrow constructive interference ("antinode")

where waves arrive 180° out of phase: \rightarrow destructive interference ("node")

Antinodes form where the waves always arrive in phase ("constructive interference"); nodes form at locations where the waves are 180° ($\frac{1}{2}$ cycle) out of phase ("destructive interference").

The wave travelling from left to right is delayed by 1/10 of a period before the waves interfere. The pattern of nodes and antinodes will:

A) disappear

- B) shift sideways to the left
- C) shift sideways to the right

At the antinode in the middle, the two waves arrive in phase. How far away is the nearest point where the waves are $\frac{1}{2}$ cycle out of phase with each other?

- A) $\frac{1}{4}$ wavelength
- B) $\frac{1}{2}$ wavelength
- C) 1 wavelength
- D) 2 wavelengths
- E) 4 wavelengths

Question

The energy density in a travelling wave is proportional to the square of the amplitude (e.g., for a wave on a stretched string, the energy per unit length is $(\frac{1}{2} \mu \omega^2 A^2)$). Does the energy density add up properly at each point when two travelling waves combine to form a standing wave? Does the power transmitted add up?

Sine Waves In Opposite Directions:

Total displacement, $y(x,t) = y_1 + y_2$

Trigonometry:
$$\sin a + \sin b = 2 \sin \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$$

 $(kx + \omega t) \rightarrow "a"$
 $(kx - \omega t) \rightarrow "b"$

Then: $y(x,t) = 2A_0 \sin kx \cos \omega t$