Wave Motion (II)

Text sections 16.2-16.3,16.6

- Sinusoidal waves

Practice: Chapter 16, Objective Questions 1, 3, 8
Conceptual Question 5
Problems 9, 11, 13, 27

Non-dispersive waves:

$$
y(x, t)=f(x \pm v t)
$$

+ sign: wave travels towards $-x$
- sign: wave travels towards +x
f is any (smooth) function of one variable.

$$
\text { eg. } f(x)=A \sin (k x)
$$

Sine Waves

For a wave travelling in the $+x$ direction, the displacement y is given by

$$
y(x, t)=f(x-v t)
$$

For sinusoidal waves, the shape is a sine function, eg.,

$$
f(x)=y(x, 0)=A \sin (k x) \quad(A \text { and } k \text { are constants })
$$

Then $y(x, t)=f(x-v t)=A \sin [k(x-v t)]$

$$
\text { or } \quad y(x, t)=A \sin (k x-\omega t) \text { with } \omega=k v
$$

The displacement of a particle at a fixed location x is a sinusoidal function of time - i.e., simple harmonic motion:

$$
y=A \sin (k x-\omega t)=A \sin [\text { constant }-\omega t]
$$

The "angular frequency" of the particle motion is ω; the initial phase is kx (different for different particles).

Review: Recall from last term, SHM is described by functions of the form $y(t)=A \cos (\omega t+\phi)=A \sin (\pi / 2-\phi-\omega t)$, etc., with

Sine wave: $y(x, t)=A \sin (k x-\omega t)$

λ ("lambda") is the wavelength (length of one complete wave); and so ($k x$) must increase by 2π radians (one complete cycle) when x increases by λ. So $k \lambda=2 \pi$, or

$$
k=2 \pi / \lambda
$$

The most general form of sine wave is $y=A \sin (k x \pm \omega t+\phi)$

phase constant ϕ
angular wavenumber $k=2 \pi / \lambda$
angular frequency
$\omega=2 \pi f$

The wave speed is $v=1$ wavelength / 1 period, so

$$
v=f \lambda=\omega / k
$$

Particle Velocities

particle displacement, $y(x, t)$
particle velocity, $v_{y}=d y / d t$ (x held constant)
(Note that v_{y} is not the wave speed $v!$)
Acceleration, $a_{y}=\frac{d v_{y}}{d t}=\frac{d^{2} y}{d t^{2}}$
(actually, these are partial derivatives: $\frac{\partial^{2} y}{\partial t^{2}}$, etc.)

"Standard" sine wave:

$$
\begin{aligned}
& y=A \sin (k x \pm \omega t+\varphi) \\
& v_{y}=\frac{d y}{d t}= \pm \omega A \cos (k x \pm \omega t+\varphi) \\
& a_{y}=\frac{d v_{y}}{d t}=-\omega^{2} A \sin (k x \pm \omega t+\varphi) \\
& \quad=-\omega^{2} y
\end{aligned}
$$

$$
\begin{aligned}
\text { maximum displacement, } & y_{\max }=A \\
\text { maximum velocity, } & v_{\max }=\omega A \\
\text { maximum acceleration, } & a_{\max }=\omega^{2} A
\end{aligned}
$$

Quiz

Shown is a picture of a wave, $y=A \sin (k x-\omega t)$, at time $t=0$.
i) Which particle moves according to $y=A \cos (\omega t)$?
ii) Which particle moves according to $y=A \sin (\omega t)$?
iii) If $y_{e}(t)=A \cos \left(\omega t+\phi_{e}\right)$ for particle e, what is ϕ_{e} ?

Wave Velocity

The wave velocity is determined by the properties of the medium; for example,

1) Transverse waves on a string:

$$
\begin{aligned}
v_{\text {wave }}= & \sqrt{\frac{\text { tension }}{\text { mass/unit length }}}=\sqrt{\frac{F_{\mathrm{T}}}{\mu}} \\
& \text { (proof from Newton's second law) }
\end{aligned}
$$

2) Electromagnetic wave (light, radio, etc.)

$$
v=\sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}=c
$$

(proof from Maxwell's Equations for E-M fields)

Exercise

What are ω and k for a 99.7 MHz FM radio wave?

Wave Velocity

Exercise: show that the net vertical force on the short element of rope (of length dx) is, approximately, given by

$$
d F_{n e t}=F_{T} \frac{\partial^{2} y}{\partial x^{2}} d x
$$

Newton's second law is

$$
d F_{n e t}=F_{T} \frac{\partial^{2} y}{\partial x^{2}} d x=(d m) a=(\mu d x) \frac{\partial^{2} y}{\partial t^{2}}
$$

where μ is the linear mass density.

Wave equation

Rearranging, we get the wave equation:

$$
\frac{\partial^{2} y}{\partial t^{2}}=\left(\frac{F_{T}}{\mu}\right) \frac{\partial^{2} y}{\partial x^{2}}
$$

Exercise: apply this to our standard sine-wave expression for $y(x, t)$, to show that

$$
\frac{F_{T}}{\mu}=\frac{\omega^{2}}{k^{2}}=v_{\text {wave }}^{2}
$$

Quiz

Which particle has the largest particle acceleration at this moment?
A) A
B) B
C) C
D) they all have $a=0$ for a nondispersive wave.

Example

Oscillator: 50 Hz , amplitude 5 mm

Find: $y(x, t)$
$v_{y}(x, t)$ and maximum speed
$a_{y}(x, t)$ and maximum acceleration

