Wave Motion (II)

Text sections 16.2 - 16.3, 16.6

Sinusoidal waves

Practice: Chapter 16, Objective Questions 1, 3, 8 Conceptual Question 5 Problems 9, 11, 13, 27 Non-dispersive waves:

$$y(x,t) = f(x \pm vt)$$

+ sign: wave travels towards -x
- sign: wave travels towards +x

f is any (smooth) function of <u>one</u> variable.

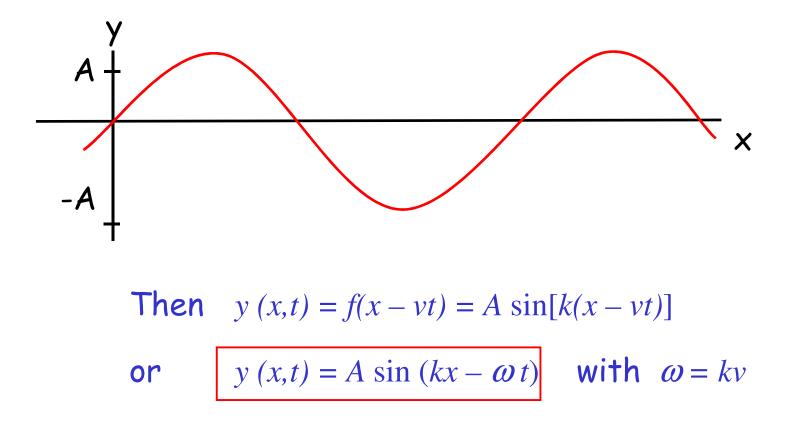
eg. $f(x) = A \sin(kx)$

Sine Waves

For a wave travelling in the +x direction, the displacement y is given by y(x,t) = f(x - vt)

For sinusoidal waves, the shape is a sine function, eg.,

 $f(x) = y(x,0) = A \sin(kx)$ (A and k are constants)

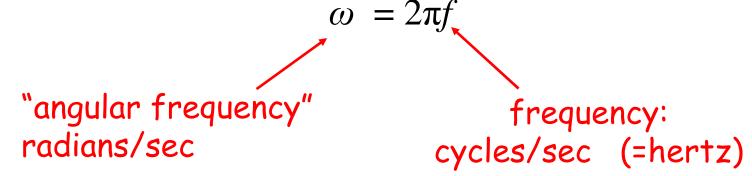


The displacement of a particle at a fixed location x is a sinusoidal function of time - i.e., simple harmonic motion:

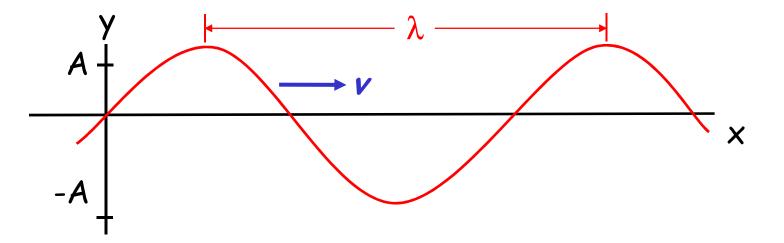
 $y = A \sin(kx - \omega t) = A \sin[\cosh(kx - \omega t)]$

The "angular frequency" of the particle motion is ω ; the initial phase is kx (different for different particles).

Review: Recall from last term, SHM is described by functions of the form $y(t) = A \cos(\omega t + \phi) = A \sin(\pi/2 - \phi - \omega t)$, etc., with



Sine wave: $y(x,t) = A \sin(kx - \omega t)$



 λ ("lambda") is the wavelength (length of one complete wave); and so (kx) must increase by 2π radians (one complete cycle) when x increases by λ . So $k\lambda = 2\pi$, or

$$k = 2\pi / \lambda$$

The most general form of sine wave is $y = A\sin(kx \pm \omega t + \phi)$

amplitude "phase"

$$y(x,t) = A \sin (kx \pm \omega t + \phi)$$

angular wavenumber
 $k = 2\pi / \lambda$
angular frequency
 $\omega = 2\pi f$

The wave speed is v = 1 wavelength / 1 period, so

$$v = f\lambda = \omega/k$$

Particle Velocities

particle displacement, y(x,t)

particle velocity, $v_y = dy/dt$ (x held constant)

(Note that v_v is not the wave speed v !)

Acceleration,
$$a_y = \frac{dv_y}{dt} = \frac{d^2y}{dt^2}$$

(actually, these are partial derivatives: $\frac{\partial^2 y}{\partial t^2}$, etc.)

"Standard" sine wave:

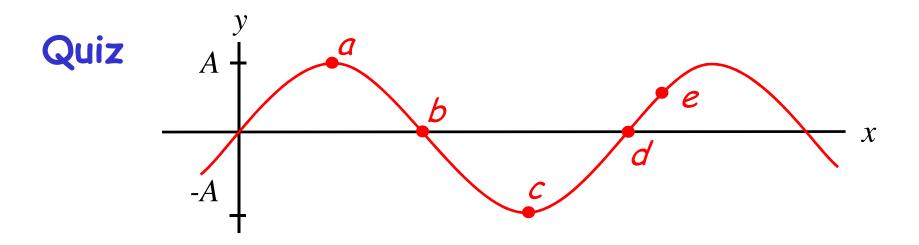
$$y = A \sin(kx \pm \omega t + \varphi)$$

$$v_{y} = \frac{dy}{dt} = \pm \omega A \cos(kx \pm \omega t + \varphi)$$

$$a_{y} = \frac{dv_{y}}{dt} = -\omega^{2} A \sin(kx \pm \omega t + \varphi)$$

$$= -\omega^{2} y$$

maximum displacement, $y_{max} = A$ maximum velocity, $v_{max} = \omega A$ maximum acceleration, $a_{max} = \omega^2 A$



Shown is a picture of a wave, $y=A \sin(kx - \omega t)$, at time t=0.

i) Which particle moves according to $y=A\cos(\omega t)$?

ii) Which particle moves according to $y=A \sin(\omega t)$?

iii) If $y_e(t) = A \cos(\omega t + \phi_e)$ for particle e, what is ϕ_e ?

Wave Velocity

The wave velocity is determined by the properties of the medium; for example,

1) Transverse waves on a string:

$$v_{\text{wave}} = \sqrt{\frac{\text{tension}}{\text{mass/unit length}}} = \sqrt{\frac{F_{\text{T}}}{\mu}}$$

(proof from Newton's second law)

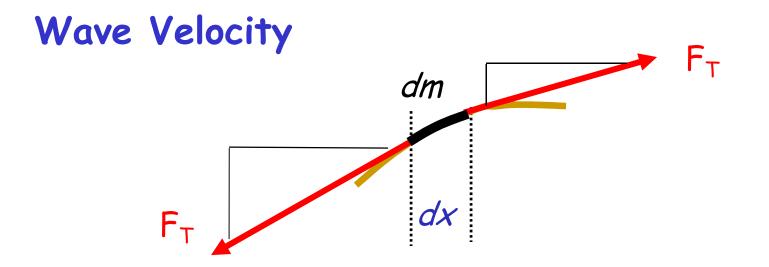
2) Electromagnetic wave (light, radio, etc.)

$$v = \sqrt{\frac{1}{\mu_{\rm o}\varepsilon_{\rm o}}} = c$$

(proof from Maxwell's Equations for E-M fields)

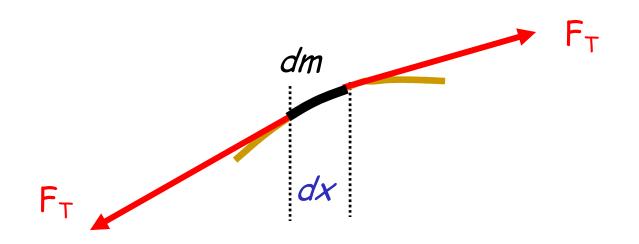
Exercise

What are ω and k for a 99.7 MHz FM radio wave?



Exercise: show that the net vertical force on the short element of rope (of length dx) is, approximately, given by

$$dF_{net} = F_T \frac{\partial^2 y}{\partial x^2} dx$$



Newton's second law is

$$dF_{net} = F_T \frac{\partial^2 y}{\partial x^2} dx = (dm)a = (\mu dx) \frac{\partial^2 y}{\partial t^2}$$

where μ is the linear mass density.

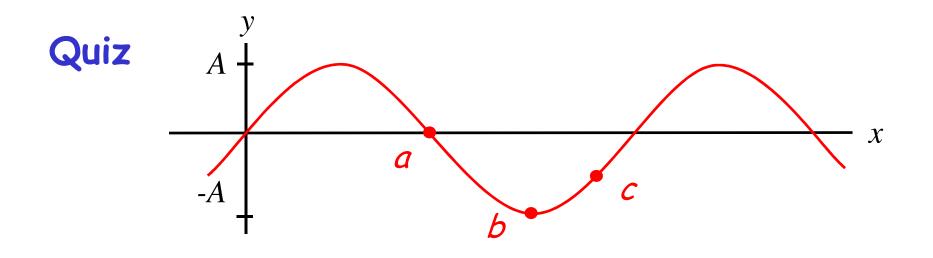
Wave equation

Rearranging, we get the wave equation:

$$\frac{\partial^2 y}{\partial t^2} = \left(\frac{F_T}{\mu}\right) \frac{\partial^2 y}{\partial x^2}$$

Exercise: apply this to our standard sine-wave expression for y(x,t), to show that

$$\frac{F_T}{\mu} = \frac{\omega^2}{k^2} = v_{wave}^2$$

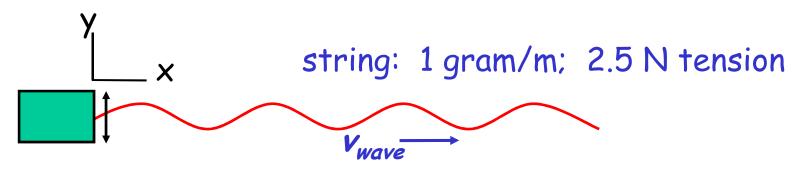


Which particle has the largest particle acceleration at this moment?

- A) A B) B
- *C*) *C*

D) they all have a=0 for a nondispersive wave.

Example



Oscillator: 50 Hz, amplitude 5 mm

Find: y(x, t) $v_y(x, t)$ and maximum speed $a_y(x, t)$ and maximum acceleration