Electric Fields II

-Electric field produced by point charges
-Continuous charge distributions

Text sections 23.4, 23.5

Practice: Chapter 23,
Objective Questions 11, 13, 14
Problems 23,27, 29, 39, 41, 45

Define:

\vec{F} is the force exerted on q_{o} by \vec{E}.

Field Produced by a Point Charge:

Coulomb: $\vec{F}=k_{e} \frac{q q_{0}}{r^{2}} \hat{r}$
But also: $\vec{F}=q_{0} \vec{E}$

$$
\Rightarrow \vec{E}=k_{e} \frac{q}{r^{2}} \hat{r}
$$

Field produced by a point charge q

Several Charges:

\vec{E} is the (vector) sum of the fields produced by the individual charges:

Example: Dipole

An electric dipole is a pair of equal and opposite charges placed a short distance (2a in the diagram) apart.

Derive an expression for \vec{E} at point B.

QUIZ

What will be the direction of the field at B?

A)

B)

C)

D)

E)

Answer: $\mathbf{E}=$

$$
\text { where } \quad r=\left(y^{2}+a^{2}\right)^{1 / 2}
$$

Note... $|\vec{E}| \propto \frac{1}{r^{3}}$
(dipole)

A note on "style": the final result is given in terms of the variables in the original problem (a, q, andy).

For fun: find E at point A, and show that it is approximately proportional to x^{-3}, at large distance x.

QUIZ

The electric field is also defined as force/charge.

For the field we have just calculated, the "charge" in this denominator should be

A) $-q$
B) $+q$
C) zero
D) None of the above

Continuous Charge Distributions

Source
-Cut source into small ("infinitesimal") charges dq

- Each produces

$$
\mathbf{d E}=k_{e} \frac{(d q)}{r^{2}} \hat{\mathbf{r}}
$$

$$
\mathbf{E}=\int_{\text {source }} k_{e} \frac{d q_{\hat{2}}}{r^{2}} \mathbf{\hat { \mathbf { r } }}
$$

Example: Uniformly-Charged Thin Rod

(length L, charge Q)

Charge/Length $=$ "Linear Charge Density" λ = constant $=Q / L$

$$
\mathbf{E}=\int_{\text {rod }} \mathbf{d E}=\int_{\text {rod }} k_{e} \frac{d q}{r^{2}} \hat{\mathbf{r}}
$$

Steps:

- Put a coordinate system on the diagram
- Draw an infintesimal element $d q$
-Choose an integration variable (e.g., x)
- Write r and any other variables in terms of x
-Write $d q$ in terms of $d x$
- Put limits on the integral
- Do the integral or look it up in tables.

Result: $\quad \mathbf{E}=\frac{k_{e} Q}{(b+L) b}(-\hat{\mathbf{i}})$

Solution:

$d q$: charge on piece between " x " and " $x+d x$ "

In 2D problems, integrate components separately:

$$
\begin{gathered}
E_{x}=\int d E_{x}=\int k \frac{d q}{r^{2}}(\underbrace{\text { x-component of } \hat{\mathbf{r}}}) \\
E_{y}=\int d E_{y}=\ldots \ldots .
\end{gathered}
$$

Bonus Example: Uniformly-Charged Semicircle

Charge/unit length, λ, is uniform
Find: \vec{E} at origin

Exercise: Uniformly-Charged Ring

Total charge Q, uniform charge/unit length, radius R

Find: E at any point $(x, 0)$ on the axis of the ring

Summary

- Field of several point charges q_{i} :

$$
\vec{E}=\sum_{i} k_{e} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i}
$$

- Field of continuous charge distribution:

$$
\vec{E}=\int k_{e} \frac{d q}{r^{2}} \hat{r}
$$

