Electric Fields II

Electric field produced by point charges
Continuous charge distributions

Text sections 23.4, 23.5

Practice: Chapter 23, Objective Questions 11, 13, 14 Problems 23, 27, 29, 39, 41, 45

 \vec{F} is the force exerted <u>on</u> q_o <u>by</u> \vec{E} .

Field <u>Produced by a Point</u> Charge:

Coulomb: **F**

$$\vec{r} = k_e \frac{qq_o}{r^2} \hat{r}$$

But also: $\vec{F} = q_o \vec{E}$

$$\vec{E} = k_e \frac{q}{r^2} \hat{r}$$

Field <u>produced</u> by a <u>point charge</u> q

Several Charges:

 \vec{E} is the (vector) sum of the fields produced by the individual charges:

Example: Dipole

An *electric dipole* is a pair of equal and opposite charges placed a short distance (2*a* in the diagram) apart.

<u>Derive</u> an expression for \vec{E} at point B.

QUIZ

What will be the direction of the field at B?

A note on "style": the final result is given in terms of the variables in the original problem (a, q, and y).

For fun: find E at point A, and show that it is *approximately* proportional to x^{-3} , at large distance x.

QUIZ

The electric field is also defined as force/charge.

For the field we have just calculated, the "charge" in this denominator should be

Continuous Charge Distributions

•Cut source into small ("infinitesimal") charges dq •Each produces $\mathbf{dE} = k_e \frac{(dq)}{2} \hat{\mathbf{r}}$

Total,

$$\mathbf{E} = \int_{\text{source}} k_e \, \frac{dq}{r^2} \hat{\mathbf{r}}$$

Example: Uniformly-Charged Thin Rod

(length L, charge Q)

Charge/Length = "Linear Charge Density" λ = constant = Q/L

$$\mathbf{E} = \int_{\text{rod}} \mathbf{dE} = \int_{\text{rod}} k_e \, \frac{dq}{r^2} \, \hat{\mathbf{r}}$$

Steps:

- •Put a coordinate system on the diagram
- ·Draw an infintesimal element dq
- •Choose an integration variable (*e.g.*, *x*)
- •Write r and any other variables in terms of x
- •Write dq in terms of dx
- Put limits on the integral
- •Do the integral or look it up in tables.

Result:
$$\mathbf{E} = \frac{k_e Q}{(b+L)b} (-\hat{\mathbf{i}})$$

dq: charge on piece between "x" and "x+dx"

In 2D problems, integrate components separately:

$$E_{x} = \int dE_{x} = \int k \frac{dq}{r^{2}} (\cos \theta)$$

×-component of $\hat{\mathbf{r}}$

$$E_y = \int dE_y = \dots$$

<u>Find</u>: \vec{E} at origin

<u>Find</u>: **E** at any point (x, 0) on the axis of the ring

• Field of several point charges q_i:

$$\vec{E} = \sum_{i} k_{e} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i}$$

• Field of continuous charge distribution:

$$\vec{E} = \int k_e \, \frac{dq}{r^2} \, \hat{r}$$