Inductance (II)

Text sections 32.2

- Inductors in circuits
- RL circuits

Practice: Chapter 32, Objective Questions 4, 7 Conceptual Questions 3, 4, 5 Problems 19, 21, 22, 31

Self-Inductance

$$
\varepsilon_{L}=-L \frac{d I}{d t} \quad \ldots m^{I}
$$

Potential energy stored in an inductor:

$$
U_{L}=\frac{1}{2} L I^{2}
$$

Energy density in a magnetic field:

$$
u_{B} \equiv \frac{U}{\text { Volume }}=\frac{B^{2}}{2 \mu_{0}}
$$

Example:

Initial: $I_{i}=10 \mathrm{~A}, \quad U_{i}=\frac{1}{2}(0.2 \mathrm{H})(10 \mathrm{~A})^{2}$

$$
=10 \mathrm{~J}
$$

Final: $I_{f}=0, \quad U_{f}=0 J$ (after switch is opened)

Where does the energy go?

Example:

a) The switch has been closed for a long time. Find the current through each component, and the voltage across each component.
b) The switch is now opened. Find the currents and voltages just afterwards.
c) How long does it take for the inductor current to drop to zero (after the switch is opened)?

Quiz

The switch has been closed for a long time. Which currents are zero?

A) I_{1}
B) I_{2}
C) I_{3}
D) All of them
E) None of them

Quiz

There is a 2A current through the inductor, and the switch is suddenly opened. What is the voltage across the inductor immediately after the switch is opened?
A) 12 V
B) 100 kV
C) zero
D) 10 V

Quiz

Suppose the switch 12 V had been open for a long time. What is the current I_{2}
 just after it is closed?
A) 2.0 A
B) 0.24 mA
C) zero

RL circuits: time dependence

The switch is closed at $t=0$;
Find I (t).
Kirchhoff's loop rule:

$$
\begin{aligned}
& \varepsilon-L \frac{d I}{d t}-I R=0 \\
& \Rightarrow \frac{d I}{d t}=\frac{\varepsilon-I R}{L}=\frac{R}{L}\left(\frac{\varepsilon}{R}-I\right)
\end{aligned}
$$

separate the variables: $\frac{d I}{(\varepsilon / R)-I}=\frac{R}{L} d t$

Integrate from time zero to time t, or zero current to current $I(t)$:

$$
\int_{0}^{I(t)} \frac{d I}{(\varepsilon / R)-I}=\int_{0}^{t} \frac{R}{L} d t
$$

$$
\text { But, } \int \frac{d x}{a-x}=-\ln (a-x)
$$

So $\quad-\ln \left(\frac{\varepsilon}{R}-I(t)\right)+\ln \left(\frac{\varepsilon}{R}-0\right)=\frac{R}{L} t$
and with a little work, $I=\frac{\varepsilon}{R}\left(1-e^{-(R / L) t}\right)$

Time Constant: $\quad \tau=\frac{L}{R} \quad \begin{gathered}\text { note } H / \Omega=\text { seconds } \\ \text { (exercise!) }\end{gathered}$

Time Constant: $\quad \tau=\frac{L}{R}$
Close switch at $t=0$:

$$
I(t)=\frac{\varepsilon}{R}\left(1-e^{-t / \tau}\right)
$$

Current decreasing:
Time Constant: $\left.\quad \tau=\frac{L}{R}\right\} L \quad R$

$$
I \uparrow \quad I(t)=I_{0}\left(e^{-t / \tau}\right)
$$

Inductor application: Filtering voltage spikes

What is the steady-state voltage across $R_{\text {Load }}$?

What is the maximum
voltage across $R_{\text {Load }}$ if the supply voltage is increased to 100 volts for 1
millisecond?

