Magnetic Induction (chapter 31)

- an emf is induced in a circuit placed in a magnetic field which is changing with time
- An emf is induced in a circuit which moves in a magnetic field

Serway and Jewett sections 31.1, 31.2

```
Practice: Chapter 31,
Objective Questions 1, 2, 5,6
Conceptual Questions 1, 5,7
Problems 11, 13, }2
```


Magnetic Flux

Flux through a surface S: $\Phi_{\mathrm{B}}=\int_{S} \overrightarrow{\mathbf{B}} \cdot \mathbf{d} \overrightarrow{\mathbf{A}}$
(dA is the "area vector", perpendicular to the surface.)

- a scalar; units, $1 \mathrm{~T} \cdot \mathrm{~m}^{2}=1$ weber (Wb)
- represents "number of field lines through $S^{\prime \prime}$

Induction

Move a magnet at constant speed through a coil attached to a voltmeter:

voltmeter reading

Rule (Faraday's Law):

When the magnetic flux through a circuit changes, the emf induced in the circuit is:

$$
\mathcal{E}=-\frac{d \Phi_{B}}{d t}
$$

(for a coil with N turns: $\mathcal{E}=-N \frac{d \Phi_{B}}{d t}$)
Note Φ_{B} changes if:

1) B changes
2) the area of the circuit changes
3) the orientation of the circuit changes

The "-" sign:

"Area vector" A

Choose a direction for A; then the R.H. rule defines a corresponding "positive" direction for ε.

So, $\quad \boldsymbol{B} \mid$, and increasing:
ε is -ve $>$
$B \dagger$, and decreasing:
ε is $+v e$
3
$B \mid$, and increasing:
ε is +ve
$B \mid$, and decreasing:
ε is -ve $>$

Quiz

The circular wire moves at constant speed through the region of magnetic field. The induced emf in the wire during this time
A) is clockwise
B) is counterclockwise
C) changes from clockwise to counterclockwise
D) changes from counterclockwise to clockwise
E) is zero

${ }^{\mathcal{E}}$

Motional emf

eg., space shuttle tether experiment (Feb. 1996).

Find: emf in cable (= V between ends). Which end is positive?

The shuttle, wire, and sphere act like a battery
Quiz (the circuit is completed by currents flowing directly through the ionosphere between the shuttle and the sphere). Which way is the "battery" oriented?

A)

B)

Conductor moving in uniform B :

Force on charge carrier: $F_{m}=q v B$

As the electrons move slowly along the conductor, parallel to F_{m}, the work done on each charge is

$$
W=F_{\mathrm{m}} \ell=q v B \ell
$$

The emf (work per unit charge) is

$$
\mathcal{E}=W / q=v \ell B
$$

(uniform field; $\mathbf{B}, \boldsymbol{v}$, and length all mutually perpendicular)

Flux enclosed by circuit $=B \ell x$

$$
\varepsilon=-\frac{d \Phi}{d t}
$$

Example

Find:
i) emf
ii) current
iii) force to keep bar moving
iv) power to keep bar moving

Quiz

The magnetic force on the bar will be:
A) up the page
B) down the page
C) left
D) right
E) zero.

Quiz

A circuit of area A is made from a single loop of wire connected to a resistor of resistance R. It is placed in a uniform external field B (at right angles to the plane of the circuit). B is reduced uniformly to zero in time Δt. The total charge which flows through the resistor is:
A) independent of Δt
B) proportional to Δt
C) inversely proportional to Δt
D) zero

Summary

Faraday's Law:
A changing magnetic flux induces an emf in a circuit:

$$
\mathcal{E}=-\frac{d \Phi_{B}}{d t}
$$

Moving Conductor:

The induced emf in a straight conductor moving through a uniform field is equal to $B L v$, if \mathbf{B}, \mathbf{L}, and \mathbf{v} are all mutually perpendicular.

