Magnetic Fields (II)

Text sections 29.4, 29.5

- Force on a current-carrying wire
-Torque on a current loop

For practice: Chapter 29, Objective Questions 7,11 Conceptual Questions 2,6 Problems 13, 15, 16, 27, 73

Magnetic Forces

Charged Particle: $\vec{F}=q \vec{v} \times \vec{B}$

Straight wire, Uniform $B: \vec{F}=I \vec{L} \times \vec{B}$

B not uniform, and/or wire not straight: the force dF on a short segment of vector length ds is

$$
\mathbf{d F}=I \mathbf{d s} \times \mathbf{B}
$$

The total force on the wire is

$$
\mathbf{F}=\int_{\substack{\text { along } \\ \text { wire }}} I \mathbf{d} \mathbf{x} \times \mathbf{B}
$$

Example

Find the force on:
a) The straight wire
b) The semicircular wire
c) The whole circuit

For (b): start with force dF due to an infinitesimal piece, and do the integral.

Quiz

The magnetic force on the straight wire is:
A) Into the page
B) Out of the page
C) Left \leftarrow

D) Right \rightarrow
E) Zero

Part b)

Exercise: set up the integrals and find F_{x}, F_{y}.

Theorem: For a closed current loop, in a uniform magnetic field,

Total magnetic force $=0$

Although there is no net force on a circuit in a uniform field, there may be a net torque. The torques due to equal and opposite forces applied at different locations do not necessarily cancel.

We can calculate the torque directly for a rectangular loop. There is also a simple rule, which applies to a loop of any shape. First we need to define the "magnetic dipole moment" (a vector) for a current loop.

Torque on a Current Loop (Uniform B)

Example: a rectangular loop

Exercise: Find the 4 forces on the 4 sides of the rectangle, and show that they produce a net torque equal to (Iwh)Bcos θ.

rectangular loop

Top view:

\rightarrow Torque (about any pivot; e.g., at a)

$$
\begin{aligned}
& =I h B \times w \cos \theta \\
& =(I h w) B \cdot \cos \theta \\
& =(I \times \text { area }) \times B \times \cos \theta
\end{aligned}
$$

Magnetic Moment $\vec{\mu}$

(or "magnetic dipole moment")
Define the magnetic moment of a current loop by

$$
\begin{gathered}
\vec{\mu} \equiv I \vec{A} \\
(\vec{A}=\text { "vector area" of loop })
\end{gathered}
$$

Then the torque on a circuit in a uniform field \vec{B} is

$$
\vec{\tau}=\vec{\mu} \times \vec{B}
$$

The magnetic dipole moment is a measure of the "magnetic strength" of a current loop or magnet.

bar magnet

current loop

Example

Find the torque on a flat, horizontal, circular coil due to the magnetic field of the Earth.

Circular loop, 200 turns, $R=1 \mathrm{~m}, \mathrm{I}=20 \mathrm{~A}$, CCW (from above)

Find: Torque (magnitude and direction)

Quiz

First step: What is the direction of the magnetic moment of the circuit?
A) North
B) South
C) Eas \dagger
D) West
E) $U p$

What is the direction of the torque vector?
A) North
B) South
C) East
D) West
E) $U p$

