Electric Field

- Coulomb's Law
- Electric Field

Text sections 23.3, 23.4
Practice: Chapter 23 Objective Questions 1, 3, 5, 7 Problems 4, 11, 13, 15

Coulomb's Law

Point charges q_{1}, q_{2} exert forces on each other:

$$
\mathbf{F}=k_{e} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}
$$

$\hat{\mathbf{r}}$ is a unit vector parallel to \mathbf{r}
$k_{e}=8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \quad$ (Coulomb's Law constant)

Exercise: (How big are ordinary charges?)

(equilibrium)

GIVEN:

-Identical Masses, m=1.0 gram

- Equal charges q
- $\mathrm{L}=60 \mathrm{~cm}$

FIND: q

Review Quiz

(equilibrium)
The tension in each string is
A) $m g$
B) $m g \cos 30^{\circ}$
C) $m g / \cos 30^{\circ}$
D) $m g \tan 30^{\circ}$
E) None of the above; it depends on the charge.

Quiz:

> What happens to each angle if the charge on the left is doubled, and the other one is halved?
A) Both increase
B) both decrease
C) θ_{1} increases, θ_{2} decreases
D) θ_{1} decreases, θ_{2} increases
$E)$ both stay the same

Example:

Find: Force (vector) on q_{3}, in Cartesian form.

Electric Field \vec{E}

Coulomb's Law: "action at a distance"

Field Picture:

1) The "source" charge q produces an electric field in space.
2) Then the field pushes on the "test" charge q_{0}.

Definition:

Electric Field $\equiv \frac{\text { observed force on "test charge" } q_{0}}{\text { charge } q_{0}}$

$$
\vec{E} \equiv \frac{\vec{F}}{q_{o}} \quad \text { Units: } N / C
$$

- A vector
- Exists before test charge is introduced
- Is produced by other charges (not q_{0})

Example:

Calculate the force on an alpha particle $(q=+2 e)$ if it is placed in the field.

Repeat for an electron.

Discussion:

Suppose we do something similar for gravity, and introduce a "gravitational field" to transmit the gravitational force.

1) What would be the units?
2) What would be a typical magnitude and direction of the gravitational field in everyday life?
3) What would be a good algebraic symbol to use?
