Kirchhoff's Circuit Rules

Text section 28.3

Kirchhoff's circuit rules

Practice: Chapter 28,
Objective Question 12
Problems 31, 57, 66, 73

Kirchhoff's Circuit Rules

Junction Rule: total current in = total current out at each junction (from conservation of charge).

Loop Rule: Sum of emfs and potential differences around any closed loop is zero (from conservation of energy).

Junction Rule: conservation of charge.

$$
I_{1}=I_{2}+I_{3}
$$

or

$$
I_{3}{ }^{\prime}\left(=-I_{3}\right)
$$

$$
I_{1}{ }^{\prime}+I_{2}{ }^{\prime}+I_{3}^{\prime}=0
$$

Loop Rule: conservation of energy.
Follow a test charge q around a loop:
$\rightarrow \quad \sum q \times\left(\Delta V_{i}\right)=0$ around any loop in circuit.
$\sim_{\sim}^{\text {R }}$
changes going from left to right
$\underbrace{R} \underbrace{I}$
${ }_{\varepsilon}^{-1} \mid+$

$-Q$	$\left.\right\|_{C} ^{+Q}$

$\Delta V=+I R$
$\Delta V=-I R$
$\Delta V=\varepsilon$
$\Delta V=Q / C$

Example

Find the current through each battery.

Quiz

The junction rule will give:

A) $I_{1}+I_{2}+I_{3}=0$
B) $-I_{1}+I_{2}+I_{3}=0$
C) $I_{1}-I_{2}+I_{3}=0$
D) $I_{1}+I_{2}-I_{3}=0$
E) none of these

Quiz

The loop rule applied to loop abcda will give:

A) $9 \mathrm{~A}-18 I_{1}-3 I_{3}=0$
B) $9 \mathrm{~A}+18 I_{1}-3 I_{3}=0$
C) $9 \mathrm{~A}+18 I_{1}+3 I_{3}=0$
D) $9 \mathrm{~A}-18 I_{1}+3 I_{3}=0$
E) none of these

The loop rule applied to loop abda will give:

A) $12 \mathrm{~A}-18 I_{1}+6 I_{2}=0$
B) $12 \mathrm{~A}-18 I_{1}-6 I_{2}=0$
C) $6 \mathrm{~A}-18 I_{1}-6 I_{2}=0$
D) $6 \mathrm{~A}+18 I_{1}+6 I_{2}=0$
E) $6 \mathrm{~A}-18 I_{1}+6 I_{2}=0$

Exercise

What is $V_{a b}$ (i.e., $V_{a}-V_{b}$) when the switch is open?

Exercise for fun: Find the current through the switch when it is closed.

Quiz:

The loop rule requires that $V_{a b}$ (i.e., $V_{a}-V_{b}$) should obey:
A) $V_{\mathrm{ab}}=(200 \Omega) I_{1}+(200 \Omega) I_{2}$
B) $V_{\mathrm{ab}}=(200 \Omega) I_{1}-(200 \Omega) I_{2}$
C) $V_{\mathrm{ab}}=-(200 \Omega) I_{1}+(200 \Omega) I_{2}$
D) $V_{\mathrm{ab}}=-(200 \Omega) I_{1}-(200 \Omega) I_{2}$

Example: Effective resistance

"Series and paralle/" rules don't help in this case. You have to go back to the fundamentals-Kirchhoff's Circuit Rules.
(Answer: $R_{\text {eff }}=1.4 \Omega$)

Solution plan: $R_{\text {eff }}=V_{\text {TOTAL }} / I_{\text {TOTAL }}$

$$
\begin{aligned}
& \text { Show that: } \\
& I_{1}=I_{5}=3 I_{3} \\
& I_{2}=I_{4}=2 I_{3} \\
& I_{\text {TOTAL }}=5 I_{3} \\
& V_{\text {TOTAL }}=(7 \Omega) I_{3}
\end{aligned}
$$

1) Use Kirchhoff's rules to write everything in terms of one variable (e.g., I_{3}).
2) Divide $V_{\text {TOTAL }} / I_{\text {TOTAL }}$.
