Kirchhoff's Circuit Rules

Text section 28.3

Kirchhoff's circuit rules

Practice: Chapter 28, Objective Question 12 Problems 31, 57, 66, 73

Kirchhoff's Circuit Rules

<u>Junction Rule</u>: total current in = total current out at each junction (from conservation of charge).

<u>Loop Rule</u>: Sum of *emfs* and *potential differences* around any closed loop is zero (from conservation of energy).

Junction Rule: conservation of <u>charge</u>.

<u>or</u>

$$I_1' + I_2' + I_3' = 0$$

Loop Rule: conservation of <u>energy</u>. Follow a test charge q around a loop:

→
$$\sum q \times (\Delta V_i) = 0$$
 around any loop in circuit.

Example

Find the current through each battery.

Quiz

The junction rule will give:

A)
$$I_1 + I_2 + I_3 = 0$$

B) $-I_1 + I_2 + I_3 = 0$
C) $I_1 - I_2 + I_3 = 0$
D) $I_1 + I_2 - I_3 = 0$
E) none of these

Quiz

The loop rule applied to loop *abcda* will give:

A) $9A - 18I_1 - 3I_3 = 0$ B) $9A + 18I_1 - 3I_3 = 0$ C) $9A + 18I_1 + 3I_3 = 0$ D) $9A - 18I_1 + 3I_3 = 0$ E) none of these

Quiz

The loop rule applied to loop *abda* will give:

A) $12A - 18I_1 + 6I_2 = 0$ B) $12A - 18I_1 - 6I_2 = 0$ C) $6A - 18I_1 - 6I_2 = 0$ D) $6A + 18I_1 + 6I_2 = 0$ E) $6A - 18I_1 + 6I_2 = 0$

What is V_{ab} (i.e., $V_a - V_b$) when the switch is open?

Exercise for fun: Find the current through the switch when it is closed.

Quiz:

The loop rule requires that V_{ab} (i.e., $V_a - V_b$) should obey:

A)
$$V_{ab} = (200\Omega)I_1 + (200\Omega)I_2$$

B) $V_{ab} = (200\Omega)I_1 - (200\Omega)I_2$
C) $V_{ab} = -(200\Omega)I_1 + (200\Omega)I_2$
D) $V_{ab} = -(200\Omega)I_1 - (200\Omega)I_2$

Example: Effective resistance

"Series and parallel" rules don't help in this case. You have to go back to the fundamentals—Kirchhoff's Circuit Rules.

(Answer: $R_{eff} = 1.4\Omega$)

Solution plan: $R_{eff} = V_{TOTAL}/I_{TOTAL}$

- 1) Use Kirchhoff's rules to write everything in terms of one variable (e.g., I_3).
- 2) Divide V_{TOTAL}/I_{TOTAL} .