Capacitance

Energy in a capacitor, examples

•Text sections 26.4, 26.5

Practice: Chapter 26, Objective Questions 7, 12 Conceptual Question 5 Problems 65, 68, 78

Energy Stored in a Capacitor

$$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QV = \frac{1}{2} CV^2$$

"Energy density"
$$u_E = \frac{U}{\text{volume}} = \frac{1}{2} \varepsilon_o |\mathbf{E}|^2$$

We can think of this energy as stored in the electric field set up when the capacitor is charged:

Parallel-Plate Capacitor:
$$C = \frac{\mathcal{E}_o A}{d}$$
 and $V = E \cdot d$

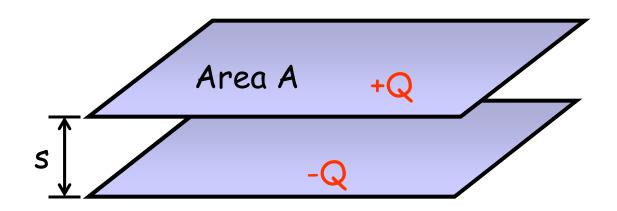
$$\Rightarrow U = \frac{1}{2}CV^2 = \frac{1}{2}\varepsilon_o E^2 \cdot (Ad)$$
Volume between plates

"Energy density"
$$u_E = \frac{U}{\text{volume}} = \frac{1}{2} \varepsilon_o |\mathbf{E}|^2$$
 (Units: J/m³)

This also applies to any electric field.

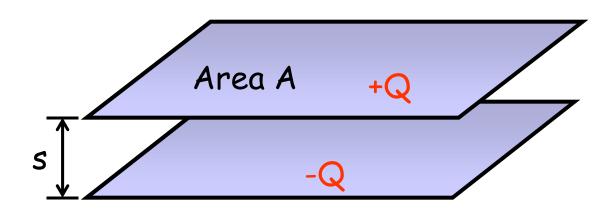
What are capacitors used for?

- -energy storage (small amounts, for short times)
- -delivering high current and power for short times
- -filtering out voltage fluctuations in power supplies
- -separating frequencies in electrical signals
- -time delay circuits

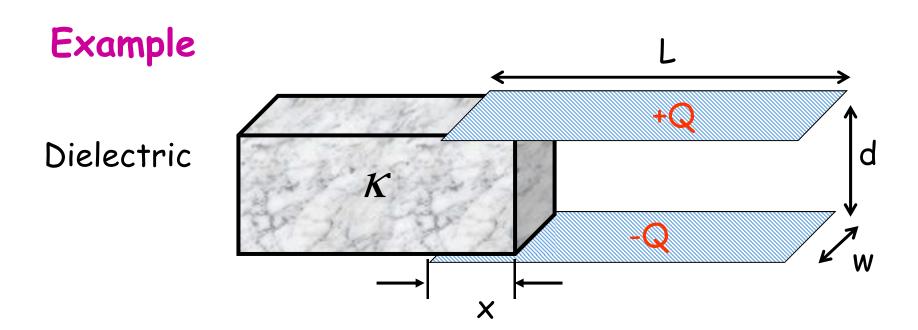

Exercise

Calculate:

- a) \vec{E} between plates
- b) ΔV between plates
- c) C between plates
- d) U of the system
- e) Force exerted on top plate (tricky...)


Quiz

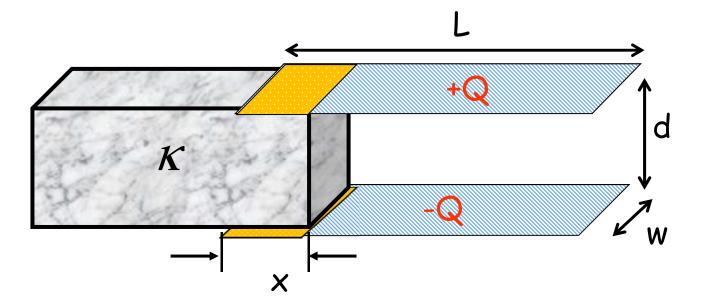
The plates are charged, and then disconnected from the battery. When they are moved apart an extra distance Δs , the potential energy


- A) increases
- B) decreases
- C) remains constant

Quiz

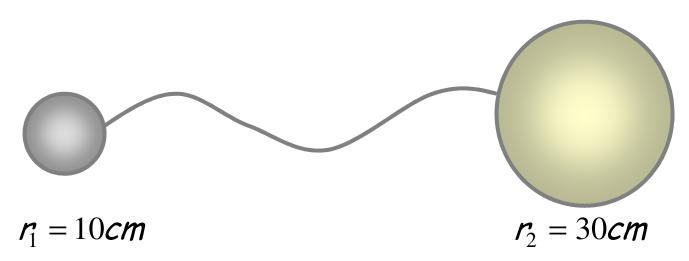
When the plates are moved apart an extra distance Δs , the work done by the electric forces is

- A) positive
- B) negative
- C) zero


A dielectric is slid into the space between the plates of a charged capacitor.

Find: 1) Capacitance as a function of x

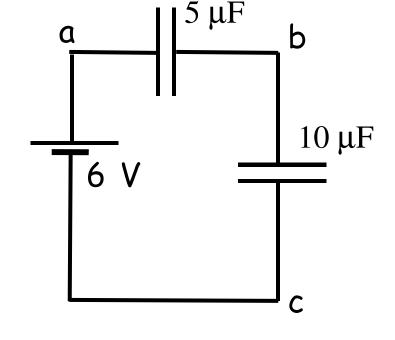
- 2) P.E. in capacitor as a function of x.
- 3) Force on dielectric due to field of capacitor.


Example

Dielectric

Quiz

Conducting spheres and a long wire:


A total charge +12 μ C is placed on one sphere. Some of the charge will move to the other sphere until

- A) the electric fields outside the spheres are equal
- B) the electric potentials on the spheres are equal
- C) the electric charges on the spheres are equal
- D) all of the above

Extra Quiz (review)

How does the potential difference V_{ab} between a and b compare to the potential difference V_{bc} between b and c?

(The capacitors were initially uncharged before the battery was connected.)

$$A) V_{ab} = V_{bc}$$

$$\mathsf{B)} \quad V_{ab} > V_{bc}$$

$$C) V_{ab} < V_{bc}$$