Capacitance (II)

Text sections 26.3—26.5

·Capacitors in circuits

Practice: chapter 26, Objective Questions 1, 8, 11 Conceptual Question 8 Problems 15, 19, 25, 35, 38, 48, 49

Capacitors in Circuits

Symbols:

Capacitor Combinations

What is the "effective capacitance" between A & B?

Parallel

Voltages are the same:
$$V_1 = V_2 = V_3 = \dots = V$$

Charges add:
$$Q_1 + Q_2 + Q_3 + ... = Q$$

But...
$$Q_1 = C_1 V$$
, $Q_2 = C_2 V$, ...

$$\Rightarrow C_{eff} = C_1 + C_2 + \dots$$

<u>Series</u>

Voltages add:
$$V_1 + V_2 + ... = V$$

Charges are equal:
$$Q_1 = Q_2 = Q_3 = Q$$

And ...
$$V = \frac{Q}{C_{eff}}$$
, $V_1 = \frac{Q_1}{C_1} = \frac{Q}{C_1}$,

$$\Rightarrow \frac{1}{\mathcal{C}_{eff}} = \frac{1}{\mathcal{C}_1} + \frac{1}{\mathcal{C}_2} + \frac{1}{\mathcal{C}_3} + \dots$$

Example

Find the capacitance between a and b.

Solution:

The capacitance between points b and d is

A) $12\mu F$ B) $6\mu F$ C) $2.4\mu F$ D) $24\mu F$ E) $60\mu F$

Exercise

Find the capacitance between points a and d.

4 plates, each of area A, are connected as shown. What is the capacitance between B and D?

- A) $\frac{1}{2}$ $\varepsilon_0 A/d$
- B) $\frac{1}{4} \mathcal{E}_0 A/d$
- C) $\frac{1}{3} \, \epsilon_0 A/d$
- D) 3 $\varepsilon_0 A/d$
- E) $4 \, \varepsilon_0 A/d$

Energy Stored in a Capacitor

Remove dq from lower plate and add to upper plate:

Increase in P.E.,
$$dU = Vdq = \frac{q}{C}dq$$

Start at q = 0, finish at q = Q:
$$U = \int_0^Q \frac{q \, dq}{C} = \frac{Q^2}{2C}$$

$$\Rightarrow \mathcal{U} = \frac{1}{2} \frac{\mathcal{Q}^2}{\mathcal{C}} = \frac{1}{2} \mathcal{Q} \mathcal{V} = \frac{1}{2} \mathcal{C} \mathcal{V}^2$$

We can think of this energy as stored in the electric field set up when the capacitor is charged:

Parallel-Plate Capacitor:
$$C = \frac{\mathcal{E}_o A}{d}$$
 and $V = E \cdot d$

$$\Rightarrow U = \frac{1}{2}CV^2 = \frac{1}{2}\varepsilon_o E^2 \cdot (Ad)$$
Volume between plates

"Energy density"
$$u_E = \frac{U}{\text{volume}} = \frac{1}{2} \varepsilon_o |\mathbf{E}|^2$$
 (Units: J/m³)

This also applies to any electric field.

A dielectric is slid into the space between the plates of a charged capacitor. What happens?

- A) The energy stored in the capacitor increases
- B) The energy stored in the capacitor decreases
- C) No change

What is the direction of the electrostatic force on the dielectric?

What is the magnitude of this force?

Quiz

Conducting spheres and a long wire:

A total charge +12 μ C is placed on one sphere. Some of the charge will move to the other sphere until

- A) the electric fields outside the spheres are equal
- B) the electric potentials on the spheres are equal
- C) the electric charges on the spheres are equal
- D) all of the above