Electric Potential (III)

Text sections 25.5, 25.6

Fields, potential, and conductors

Practice: Chapter 25, Conceptual Question 1 Problems 31, 37, 41, 43, 45, 65

Read page 765, Van de Graaff generator

Potential and Continuous Charge Distributions

We can use two *completely different* methods:

1.
$$dV = k_e \frac{dq}{r}$$
, $V = \int_{source} k_e \frac{dq}{r}$

2. Find \vec{E} from Gauss's Law, then...

$$dV = -\vec{E} \cdot d\vec{s},$$
$$V_{B} - V_{A} = -\int_{A}^{B} \vec{E} \cdot d\vec{s}$$

Example: Thin Uniformly Charged Rod

Total charge Q, <u>uniform</u> linear charge density λ (So $\lambda = \frac{Q}{L}$)

<u>Find</u>: V at point O

Quiz: Charged Semicircle

Total charge Q, uniform linear density <u>Find</u>: V at centre C

(Homework exercise: review the calculation for the electric field **E**)

At the center of the semicircle, the potential is:

- A) less than kQ/R
- B) equal to kQ/R
- C) greater than kQ/R

Example: Spherical Charges

1) Find the electric field as a function of r using Gauss's Law.

2) Imagine pushing a "test charge" in from infinity along a radial line: the potential change with each small change dr in distance is

dV = -E(r) dr.

3) Integrate from R to infinity to find V(R) (relative to infinity) at any position R.

Example

Solid conducting sphere, radius R, total charge +Q

Find V(r).

Solid Conducting Sphere, radius R

Quiz

A charge +Q is placed on a spherical conducting shell. What is the potential (relative to infinity) at the centre?

A)
$$k_e Q/R_1$$

B) $k_e Q/R_2$
C) $k_e Q/(R_1 - R_2)$
D) zero

Example:

Fields $\geq 3 \times 10^6$ V/m will cause a spark in dry air. Find the maximum potential on a metal sphere of radius... a) 1 mm

b)1m

Conductors in Electrostatic Equilibrium (Again)

- 1) $\vec{E} = 0$ inside \Leftrightarrow conductor is an equipotential.
- 2) $\vec{E} \perp$ surface (just outside.)
- 3) Excess charge is on the surface; and $|\vec{E}| = \frac{\sigma}{c}$
- 4) <u>Empty</u> cavity inside a conductor, $\vec{E} = 0$ as well. 5) $|\vec{E}| \propto \frac{1}{\text{radius of curvature}}$

Homework Exercise: Charged Solid Ball

Radius a, total charge Q Uniform volume charge density ρ <u>Find</u>: V(r) for r<a

answer:
$$V(r) = -\int_{\infty}^{r} E dr = -\int_{\infty}^{a} E dr - \int_{a}^{r} E dr$$

$$\Rightarrow V(r) = \frac{k_e Q}{a^3} [\frac{3}{2}a^2 - \frac{1}{2}r^2]$$

Extra Quiz: Concentric Spherical Conductors

A conducting sphere of radius R_1 , carrying charge Q, is surrounded by a *thick* conducting shell with **no net charge**. What is the potential of the inner sphere, relative to infinity?

A)
$$V = zero$$

B) $0 < V < k_e Q/R_1$
C) $V = k_e Q/R_1$
D) $V > k_e Q/R_1$