Electric Potential (III)

Text sections 25.5, 25.6

Fields, potential, and conductors

Practice: Chapter 25,
Conceptual Question 1
Problems 31, 37, 41, 43, 45, 65
Read page 765, Van de Graaff generator

Potential and Continuous Charge Distributions

We can use two completely different methods:

1. $\quad d V=k_{e} \frac{d q}{r}, V=\int_{\text {source }} k_{e} \frac{d q}{r}$
2. Find \vec{E} from Gauss's Law, then...

$$
\begin{aligned}
d V & =-\vec{E} \cdot d \vec{s} \\
V_{B}-V_{A} & =-\int_{A}^{B} \vec{E} \cdot d \vec{s}
\end{aligned}
$$

Example: Thin Uniformly Charged Rod

Total charge Q, uniform linear charge density λ

$$
\text { (So } \quad \lambda=Q / L \text {) }
$$

Find: V at point O

Quiz: Charged Semicircle

Total charge Q, uniform linear density
Find: V at centre C
(Homework exercise: review the calculation for the electric field E)

At the center of the semicircle, the potential is:
A) less than $k Q / R$
B) equal to $k Q / R$
C) greater than $k Q / R$

Example: Spherical Charges

1) Find the electric field as a function of r using Gauss's Law.
2) Imagine pushing a "test charge" in from infinity along a radial line: the potential change with each small change $d r$ in distance is

$$
d V=-E(r) d r .
$$

3) Integrate from R to infinity to find $V(R)$ (relative to infinity) at any position R.

Example
Solid conducting sphere, radius R, total charge $+Q$ Find $V(r)$.

Solid Conducting Sphere, radius R

Quiz

A charge $+Q$ is placed on a spherical conducting shell. What is the potential (relative to infinity) at the centre?
A) $k_{e} Q / R_{1}$
B) $k_{e} Q / R_{2}$
C) $k_{e} Q /\left(R_{1}-R_{2}\right)$
D) zero

Example:

Fields $\geq 3 \times 10^{6} \mathrm{~V} / \mathrm{m}$ will cause a spark in dry air. Find the maximum potential on a metal sphere of radius... a) 1 mm
b) 1 m

Conductors in Electrostatic Equilibrium (Again)

1) $\vec{E}=0$ inside \Leftrightarrow conductor is an equipotential.
2) $\vec{E} \perp$ surface (just outside.)
3) Excess charge is on the surface; and $|\vec{E}|=\frac{\sigma}{\epsilon_{o}}$
4) Empty cavity inside a conductor, $\vec{E}=0$ as well.
5) $|\vec{E}| \propto \frac{1}{\text { radius of curvature }}$

Electrostatic Shielding

Homework Exercise: Charged Solid Ball

Radius a, total charge Q
Uniform volume charge density ρ

Find: $V(r)$ for $r<a$
answer: $\quad V(r)=-\int_{\infty}^{r} E d r=-\int_{\infty}^{a} E d r-\int_{a}^{r} E d r$

$$
\left.\Rightarrow V(r)=\frac{k_{e} Q}{a^{3}} \frac{3}{2} a^{2}-\frac{1}{2} r^{2}\right]
$$

Extra Quiz: Concentric Spherical Conductors

A conducting sphere of radius R_{1}, carrying charge Q, is surrounded by a thick conducting shell with no net charge. What is the potential of the inner sphere, relative to infinity?

A) $V=z e r o$
B) $0<V<k_{e} Q / R_{1}$
C) $V=k_{e} Q / R_{1}$
D) $V>k_{e} Q / R_{1}$

