## **PHYSICS 1E3**

Dr. N. McKay, Sections C01 and 5 Office: ABB-261 e-mail: *mckay@physics.mcmaster.ca* Office Hours: to be posted with lecture notes

Course web page (all sections): www.physics.mcmaster.ca/PHYS1E03

Avenue to Learn: *avenue.mcmaster.ca lecture notes, announcements, lab schedules,...*  -Labs: *no labs this week (labs begin Jan. 19)* (apply for exemption if you are repeating the course)

-Tutorials: no tutorials this week (tutorials begin Fri. Jan. 16)

-LONCAPA: Assignment 1 will be posted, due Thursday, Jan. 15

### Homework

Before each lecture, download and print the lecture slides from the course web page or Avenue. Add notes directly onto the slides during the lecture. **Read the text**, either just before or just after the lecture, and add to your notes as you read.

For most lectures, I will list a few suggested practice problems from the text. For this first lecture, simply read sections 23.1 and 23.2 carefully. Read 23.3 and 23.4 to prepare for the next lecture.

### New Student?

If you weren't in Physics 1D3 last term:

-Read the 1E3 course outline.

-Read the preliminary chapters of the Lab Manual carefully. You must hand in the completed pre-lab quiz on entering the lab, and you must be on time.

-Read the "CAPA Help" page on Avenue, to understand how to enter answers and units.

### Grades

20%: Midterm tests (Feb. 5 and March 11, 7:00 p.m.) 15%: Labs 6%: Tutorials 3%: CAPA

Up to 5%: i>clicker Up to 56%: Exam (3 hours) (Exam plus clicker combined will be 56%)

# PHYSICS 1E3

- I. Electrostatics (4 weeks)
- II. DC Circuits (2 weeks, plus labs)
- III. Magnetism (3 weeks)
- IV. Waves (3 weeks) -includes electromagnetic waves

### Introduction (Text 23.1-23.2)

### How do things interact?

### 1) <u>Gravity</u>

- a force between <u>masses</u>
- holds planets, stars, galaxies together

### 2) <u>Electromagnetism</u>

- a force between <u>charges</u>
- responsible for all *familiar* forces (except gravity)
- 3) <u>"Weak Nuclear Force"</u>
- 4) <u>"Strong Nuclear Force"</u>
  - holds nuclei together

# ELECTROMAGNETISM: the interaction between charges

"*Electric*": for stationary or moving charges

"*Magnetic*": for moving charges only

However: To a *moving* observer, a "purely electric" field will appear to be a *mixture* of electric and magnetic fields.

 $\therefore$   $\implies$  Special Relativity (1905)

## Electric Charge

- A scalar
- Comes in "positive" and "negative" types



<u>Units</u>: coulomb, C

and also "electronic charge unit",  $e \approx +1.602 \times 10^{-19} C$ 

## **Electric Charge** (continued)

 Charge is "quantized": appears in nature only\* in units of "e".

| eg: | <u>Particle</u> | <u>Charge</u> |
|-----|-----------------|---------------|
|     | electron        | -e            |
|     | proton          | +e            |
|     | alpha particle  | +2e           |

•Charge is a <u>conserved quantity</u>:

 $Q_{TOTAL} \equiv |positive charge| - |negative charge|$ 

and  $Q_{TOTAL}$  never changes.





## Movement of charge

<u>Insulators</u>: charges do NOT move (much) <u>Conductors</u>: (some) charges move freely

Add negative charge to a ball...





### Quiz

Suppose, in a particular **conducting** material, *ONLY the negative charges can move*. What is the final picture of the **net** charge if excess POSITIVE charge is sprayed onto one side?





#### Questions:

1) Some conductors have mobile positive charges, some have mobile negative charges, some have both. How would this affect their behaviour?

2) What happens when a conductor is connected to the earth ("grounded")? Can a grounded conducting object have a net charge?

### Quiz

The conductor is neutral (no net charge). When a charged rod is brought close to it (without touching) the **net force** on the conductor will be:



- A) attractive
- B) repulsive
- C) zero
- D) it depends whether the rod is positive or negative



## Coulomb's Law

Point charges  $q_1, q_2$  exert forces on each other:



$$\vec{F}_{21} = k_e \frac{q_1 q_2}{r^2} \hat{\mathbf{r}}$$

 $\hat{\boldsymbol{r}}$  is a unit vector parallel to  $\boldsymbol{r}$ 

$$\boldsymbol{k_e} = 8.988 \boldsymbol{x} 10^9 \, \boldsymbol{N} \bullet \boldsymbol{m}^2 / \boldsymbol{C}^2$$

(Coulomb's Law constant)

#### Notes:

- for <u>point</u> charges only
- *F* ||*r*

• 
$$|\vec{F}| \propto q_1$$
  
 $|\vec{F}| \propto q_2$   
 $|\vec{F}| \propto \frac{1}{r^2}$ 

• Also define

$$\mathcal{E}_0 \approx 8.85 x 10^{-12} \frac{C^2}{N \bullet m^2}$$

#### ("permittivity of vacuum")

$$\Rightarrow k_e \equiv \frac{1}{4\pi\varepsilon_o}$$