
5.1

5.Basic Gate Combinations

5.1 TTL NAND Gate

In logic circuits transistors play the role of switches. For those
in the TTL gate the conducting state (on) occurs when the base-
emmiter signal is high, and the non-conducting (off) when it is
low. Signals corresponding to logical variables x and y are applied
to the emitters of the input transistor T1 where the actual logic
is essentially performed. Transistor T2 plays the role of a phase
splitter. When it is off, the collector voltage is at essentially
V and the emitter is at 0. When it is conducting current I2 flows
through the series resistors. The collector voltage drops to V-I2R
and the emitter voltage rises to I2R, where R is the appropriate
resistor.
The collector and emitter voltages then vary in opposite phase.
Moreover each phase leads to only one of the two output transistors
being conducting. Note that if either x or y is low (ie =0) then
T1 is on and the base voltage is at its lowest value V-I1R. Here
again R is used generically, each element having distinct values in
practice. The collector of T1 and the base of T2 are low so that T2
is off. In this situation the base of T3 is high turning this
transistor on while the base of T4 is 0 and this transistor is off.
In this situation the output is connected to the high voltage line
V and goes high. When connected to a load it will deliver current.

In the case when both x and y are high then T1 is off, turning T2
on. This reduces the voltage on the base of T3 below its emitter
voltage so that it becomes non-conducting. The base of T4 on the
other hand is driven up by an amount I2R and becomes conducting. In
this case the output is connected to ground through T4 and the
output is low. Note that in this state, when connected to a load,
current will flow into the gate.

5.2

The operation is summarized in the following table.

x y T1 T2 T3 T4 output

0 0 on off on off 1

0 1 on off on off 1

1 0 on off on off 1

1 1 off on off on 0

The pair of transistors T3 and T4 constitute what is known as a
totem pole output. They are arranged so that only one of the two is
conducting in a steady state condition.

5.2 Tristate Drivers

A variation on the NAND gate in which a diode connects the base of
T3 to one input, labelled e, profoundly effects the operation. In
the normal gate the condition with one input low leads to the state
with T3 on and T4 off. In this case however if e is low, the base
of T3 is held low and both of these transistors are off. If one
thinks of the arrangement as a series of two switches then the
output is now connected to the centre of two disconnected switches,
so in essence the circuit is completely removed from the load. This
state is not one of the two logic conditions and is referred to as
the high Z state, since it represents a high impedance output
point. The system behaves normally when e is high, having a 0
output for x=1, and a 1 output for x=0. Thus the system may be
thought of as having three states and is referred to as a tristate
device. The behaviour is summarized in the table. The input e acts
as a control or more specifically enable signal. When the gate is
not enabled, the output is in the high Z state no matter what the
value of x. The entry X stands for either 0 or 1, referred to as
"don't care". When the gate is enabled the device behaves as a NOT

5.3

(5.1)

gate or logic inverter with respect to the x input.

e x T1 T2 T3 T4 output

0 X on off off off high Z

1 0 on off on off 1

1 1 off on off on 0

The circuit symbol for the tristate
is shown in the diagram. This circuit
is designed solely for the purpose of
connection to one of the conducting
paths of a bus. Since this conducting
path, or line, is shared by several
devices it is necessary to require
that only one device access the line
at any one time. This is achieved by
connecting the device output through
a tristate driver to the line. Only
one of the set of devices has a
tristate driver to which it is
connected enabled at any time. In
this way all other device outputs are in effect disconnected.

5.3 Truth tables and Karnaugh maps

An arrangement of gates which accepts a set of logical variables or
in other words a logical word as inputs and produces a set of
logical variables which are prescribed logical functions of the
input variables (constituting the output word) is a combinational
circuit. Since the properties of logical functions are completely
defined by the truth table, the table plays an important role in
the development of the circuit. A logical function of N variables
can be written f(X) where X is the N-bit word consisting of the
variables. Thus if the function is dependent on the states of
three variables and is thus written f(u,v,w), X is the three bit
word uvw. The domain of a function of N variables is the register
set úN. The truth table is constructed by entering the value
assumed by f for each word X in úN. The words are ordered according
to the value of ø10(X). It is convenient to indicate this by writing
the set as Xj,j=0,2

N-1, so that the subscript of Xj is the value
j=ø10(Xj). Special logical functions called minterms mj(X) are
defined by the relation

where *jk is the Kronecker delta. The explicit form is the AND of
each variable in the 1 state and the complement of each variable in
the 0 state.

5.4

(5.2)

(5.3)

(5.4)

(5.5)

For convenience a general OR of several terms will be designated as
EN. It then follows that

This is the logical analogue of the statement

for continuous real functions.

A rearrangement of the presentation of
the truth table is the Karnaugh map,
useful in simplifying expressions. The
evolution of this arrangement may be
understood by examining the Venn
diagram for two sets x and y. Note that
in terms of logical variables a natural
order is equivalent to 00, 01, 11, 10
in contrast to the order based upon the
integer code, that is 00, 01, 10, 11.
Here it is understood that, for example
01 represents (NOT x) AND y. The reason
for the usefulness of this ordering is
that it makes obvious the presence of
terms in which a common factor is in
the AND condition with a variable OR
its complement. Since the OR of a
variable and its complement is always
1 then this variable may be removed
from the expression. Thus one has

The Karnaugh map presentation highlights the existence of such
redundancies allowing simplification based upon the truth table
rather than algebraic manipulation. This becomes more important for
more than two variables. As an example consider the von Neumann
function of three variables which is 1 when at least two of the
three variables is 1. The truth table is given below. From Eqn(5.2)
the function could be written

In the second line of the equation the explicit functions for each
minterm, ie each table entry Xj, is given. Because these are ANDed

5.5

with the corresponding fnction value only those entries appear for
which the function is 1.

x y z f(X)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

The Karnaugh map is arranged in a 2x4 matrix form with the 4
combinations of the variables y and z arranged in the order
mentioned from the Venn diagram and x as a single variable having

only the two possibilities.
Only those combinations, 011,101,111 and 110 for which f(X)=1 are
entered as is standard practice. Because of the arrangement
adjacent pairs represent simplification. Thus the pair labelled a
represent the combination yz since x may be 0 OR 1, the pair
labelled b correspond to xz since these are only 1 while y may be
0 OR 1 and c produces xy since for this pair x and y are 1 but z is
0 OR 1.

5.6

(5.6)

(5.7)

(5.8)

The function may be thus written

Clearly it must be possible to simplify Eqn(5.5) to the above form
since both expressions are based upon the same truth table. The
four terms in Eqn(5.5) correspond to the four entries in the map.
If one were to attempt to simplify the expression as given, one
could factor the last two terms according to

While this expression is reduced to three terms it is still not as
simple as possible and further simplification does not appear
possible. Note that the grouping leading to the last term is the
pairing labelled c in the map, and makes use of the term xyz. Also
notice that in the map reduction the term xyz is used in all three
pairs. This points to the resolution of the dilemma.

The method of algebraic simplification in this case relies on the
obvious fact that any logical variable a satisfies awa=a. Then it
is possible to augment the expression in Eqn(5.5) by two more xyz
terms giving

 The terms in the second and third lines of Eqn(5.8) correspond to
the pairings indicated as a,b and c respectively in the Karnaugh
map of f(X). This example illustrates the power of the Karnaugh map
approach in simplification of expressions. Algebraic simplification
in this case would only have been possible if the required trick of
augmenting the expression with redundant terms had been employed.
This procedure was only made evident in this context by prior
reduction using the map approach, and it is doubtful that it would
otherwise have been recognized.

The major groupings are exemplified in the figure following. The
structure of the map is indicated in terms of the corresponding
minterm explicit functions rather than the binary words which they
select. The shaded areas represent those input words for which the
output is one. Each single variable occupies 4 contiguous
positions. Note from the map for the complement of z that the end
regions are contiguous so that one must treat the map as if it
wrapped around.

5.7

A four variable map is formed as a symmetrical 4x4 array, with the
4 rows generated by two variables and the 4 columns the remaining
two. This approach becomes difficult for more than 4 variables.

5.4 Adders

The fundamental arithmetic operation is addition of two bits
corresponding to two logical variables. In this case the outcome
must in general be a two-bit word. Consider 1+1=10. The resultant
word is 10. The 0 is referred to as the sum bit and will be
designated here by s and the resultant 1 is referred to as the
carry bit,c. When adding words of more than one bit, the operation
commences with the two least significant bits and proceeds in
sequence to higher order bits. For all but the LSB this requires
that the sum of the two bits together with the carry from the
operation performed on the bits of one less order be added. An
adder element is thus a device with a three-bit input word and a
two-bit output word. Consider the addition of two N-bit words
X={xi,i=1,N} and Y={yi,i=1,N}. Then N adder elements will be
required. For the ith element, the input word is xiyici+1 and the
output word is sici. The following truth table defines the output
functions. In principle Karnaugh maps may be constructed for each
of the outputs, or the functions may be obtained directly from the
minterms. In either case scrutiny of the behaviour of ci reveals
that it is true when at least any two inputs are high and hence is
the von Neumann function discussed in the previous section.
Similarly the sum bit is the parity of the input word. This is of
course realized as the XOR of the input variables. Hence the
solution may be obtained by inspection and a detailed analysis is

5.8

(5.9)

not really necessary.

xi yi ci+1 ci si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

In summary the input-output relations for an adder element are

The relationships in Eqn(5.9)
define the gate arrangements
required. The sum bit is the
output of a 3-input XOR gate,
the inputs of which are the
circuit inputs. The carry bit is
the output of a 3-input OR gate
the inputs of which are in turn
outputs of three, 2-input AND
gates. The inputs to the AND
gates are the three possible
pairs of the three device input
variables. A short form symbol
for an element is shown in the
figure. One such element is
required for each bit of the
words to be added. The elements
are interconnected at the carry
inputs. The device is often
referred to as a full adder since a half adder is defined as one
which does not take into account the carry.

5.9

A circuit which can add or subtract three-bit numbers using the
twos complement code is shown above. Recall that the XOR gate
behaves as a controlled inverter. When sub=0, the outputs of the
three XOR gates equal the inputs so the device forms a normal
addition. When sub=1 however, the output of each XOR gate is the
complement of the input. This accomplishes the addition of X and
the complement of Y. The sub signal is also coupled to the input
carry of the lowest order element so one is also added.

5.5 Propagation delay

The objective of a combinational circuit is to produce an output
word from an input word according to a defined logical function.
This is achieved in the steady state. Of course the systems in
which the circuit operates are dynamic and the input word changes.
The transition from the old word to the new word, or from the
initial to the final state is somewhat problematic in several
respects.

First consider a single bit of the word. In changing say from a one
to a zero, there is a time period during which the voltage level is

5.10

not consistent with either of the two states. During this period
the value is indeterminate.

Second suppose the bits
undergo the transitions at
different times. There will
then be a series of
incorrect transient words.
Clearly synchronization of
the transition across bits
is desirable.

Finally no system can
respond instantaneously to a
stimulus. In the case of a
logic gate the response is
characterized by a time
del a y be t ween the
application of a new level
at the input and the
formation of that level at
the output. This is referred
to as the propogation delay.
The effect of such a delay may be illustrated by the simple circuit
shown for which the output logic function for input x is x ANDed
with NOT x and hence should be 0 at all times. As shown in the
figure however, the output of the inverter, labelled a requires a
time td before the final state level is established. Thus if x
undergoes a transition from 0 to 1 at t=0, the output remains at 1
for 0#t#td. During this period the inverter input-output relation
is not satisfied, and since both inputs to the AND gate are high,
the output b is 1. After the propogation delay, the inverter output
transition to the correct level, 0, is completed and the AND gate
output returns to the expected value. Thus there is a transient
period during which the truth table for the circuit is not in
accord with its actual performance. The aberrant output pulse at b
is called a glitch. Clearly it is necessary to allow for such
delays in using the outputs of circuit elements in a digital
system.

Consider the case of the adder discussed above. The correct sum
output will not occur until the carry has propogated through all
higher order bits. This can take up to Ntd for an N-bit adder, and
thus this time imposes a limitation on the speed at which the
addition operation may be performed.

5.6 Decoders

A decoder is a device with N inputs which may have up to 2N

outputs. A given output becomes high when the input word is a
specific word of úN. Thus each output is a minterm. A two input
four output decoder is shown in the following diagram. The outputs,

5.11

in order of top to bottom correspond to m0(X), m1(x), m2(X) and m3(X)
where X=xy. The most common application of a decoder is in decoding

instructions. The example indicated in the diagram corresponds to
the situation in which the input is taken from the fourth and fifth

bits of a NOVA memory reference instruction without accumulator. A
00 input coding for an unconditional jump would then activate the
m0 line. This signal would be used to
load the program counter with the
address of the next instruction to be
performed. Similarly, for each of the
4 possible instructions the
corresponding output line would be
arranged to initiate the appropriate
action when in the 1 state. As another
example, when outputting ASCII code
words to a device such as a printer
each output line of the decoder
initiates the required action to form
the corresponding character.

A simple symbol for a decoder is shown
in the accompanying illustration. The
double arrows indicate the set of
lines corresponding to a given word.
These would number N for an N-bit
input word and up to 2N for the M-bit
output. In cases where it is necessary
to avoid confusion the number of bits represented by the double

5.12

(5.11)

arrow can be written explicitly.

5.7 Multiplexers

The multiplexer is named such since it is designed to perform the
process known as multiplexing. In this process several input lines
of information are brought to-gether to share a common single line.
A separate control input determines which input line is connected
to the otput at any given time. As can be seen from the figure the
multiplexer is based upon the decoder function which responds to
the control input by enabling the appropriate AND gate. The data
input lines are labelled di where i=ø10(X) is the binary coded
integer of the control word X=xy. Thus if X=10, ø10(X)=2 and the two
upper inputs to the third AND gate from the top are set to 1. This
gate then acts like a connected switch passing the information
contained on d2 to the output. The connected input line may also be
thought of as selected by the minterm of corresponding subscript.

It is easy to see by inspection that the general expression for the
output which formally summarizes the above discussion is

This equation may be made identical to Eqn (5.2) if the
substitution dj=f(Xj) is made. As mentioned above the data bit is
ANDed with the corresponding minterm. Of course while this example
is based upon a 2/4 decoder it can be generalized to the case N/2N.
This is an extremely important result because it means that any
logical function f(X) can be generated using a multiplexer in a

5.13

straight forward manner. The control word assumes a minterm value
so that if the associated data line is set to the corresponding
value of the truth table, then this
value appears at the output for the
appropriate X. For example XOR is
realized by setting the data lines to
d0=0, d1=1, d2=1 and d3=0. The use of a
multiplexer to
realize an arbitrary function in such a
straightforward manner avoids the
intricacies of function simplification,
particularly important for functions of
many variables. Since multiplexers are
readily available function generation is
easily accomplished. The symbol shown to
the right makes clear that the
multiplexer requires two input words and
produces a one-bit word output. Note
that the subscripts used for the bits of
the data lines differ from the convention for the bits of the input
word Y.

From the discussion above it would appear that realization of a
function of N variables would
require a multiplexer with an N-
bit control word X. In fact
however a carefule examination of
the structure of the truth table
indicates that the function can
be generated by a multiplexer
with a contol input word of
length N-1.

Suppose one wishes to realize the
von Neumann function for the
variables x,y,u. Consider the
truth table decomposed as shown
below. The N variables are
decomposed into a control word of
the N-1 MSBs and a single bit,
the LSB. In this example N=3. The
truth table is decomposed into
2N-1 subtables, based upon the
words of úN-1. Each subtable is a
truth table for the single
variable comprising the LSB,
designated u in this example. Since the control word connects the
output to the corresponding data line the solution z(u) for each
subtable, which can be obtained by inspection, defines the signal
on that data line. Again in this example the data lines are
connected low for d0, to the LSB for lines d1 and d2 and high for d3.

