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1. Proposed setup 

Pellizari [Phys. Rev. Lett. 79, 5242 (1997)] has previously proposed transferring photons between two optical cavities by using a STIRAP scheme to control the coupling of atoms in the two cavities 
to the cavity fields.  Here we analyze a variant of his idea and study the evolution of an electromagnetic field inside a double cavity when the difference in length between the two cavities is changed, 
e.g. by translating the common mirror. We find that this allows photons to be moved deterministically from one cavity to the other. We are able to obtain the conditions for adiabatic transfer by first 
mapping the Maxwell wave equation for the electric field onto a Schrödinger-like wave equation, and then using the Landau-Zener result for the transition probability at an avoided crossing. Our 
analysis reveals that this mapping only rigorously holds when the two cavities are weakly coupled (i.e. in the regime of a highly reflective common mirror), and that, generally speaking, care is 
required when attempting a hamiltonian description of cavity electrodynamics with time-dependent boundary conditions. Preprint available at: arXiv:1105.6071 

We consider a double cavity consisting 
of two perfectly reflecting mirrors, 
separated by a partially transmissive 
common central mirror which can 
move. The difference in length between 
the two cavities is ΔL = L1-L2  

This setup is similar to optomechanics experiments at Yale [1,2], except 
here the mirror position is controlled, e.g. using piezo-electric motors 
(v~1m/s). Alternatively, the mirror is fixed but the optical length of the two 
cavities is changed by making them out of dielectric waveguides whose 
refractive indices can be controlled via an electro-optic effect [3].  

References:  [1] J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, and J.G.E. Harris, Nature (London) 452, 72 (2008),   [2] G. Heinrich, J. E. Harris and F. Marquardt, Phys. Rev. A 81 011801 (2010) ,  
[3] S. F. Preble, Q. Xu, and M. Lipson, Nat. Photon. 1, 293 (2007),    [4] H. J. Kimble, Nature 453, 1023 (2008). 

2. Theoretical model 

ε(x) =

�
ε0(1 + αδ(x)) −L1 < x < L2

∞ elsewhere
Dielectric permittivity (mirror 
reflectivity is parameterized 
by α) 

∂2E(x, t)
∂x2

− µ0ε0(1 + αδ(x))
∂2E(x, t)

∂t2
= 0Maxwell wave equation 

for electric field 

Solutions: En(x, t) = Un(x) exp(−iωnt) n = 1, 2, 3, . . .

wavenumbers: 

global modes: 

3. Anticrossing nets 
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Eqn (11), (12)

Zoom in: 
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where: 

4. Transfer ratio 
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5. Time-dependence: the Landau-Zener problem 

Mirror transmission~ 10-4 

HLZ =

�
E(t) ∆
∆ −E(t)

�
E = ϑt/2where                    are the energies 

of the diabatic states. 

Eigenenergies: 
(energies of adiabatic states) E±(t) = ±

�
ϑ2t2/4 +∆2

Rate at which diabatic 
energies separate: 

ϑ ≈ 8π�cnv/L2

Probability of transition out 
of original adiabatic state 
 (t: -∞   ∞  ) 

PLZ = exp(−2π∆2/�ϑ)

However, these results are for the Schrödinger eqn, which is 1st order in time. 

6. From Maxwell to Schrödinger 

In order to apply the Landau-Zener result to the classical electromagnetic field 
modes we need to reduce the 2nd order in time Maxwell wave equation to the 
1st order in time Schrödinger equation. 
 
We work in the diabatic basis: 
 
 
Put:       , 
 
But: 
 
Then:    

E(x, t) = AL(t)φL(x, t) +AR(t)φR(x, t)

AL/R(t) ≡ �AL/R(t) exp
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� t
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7. Comparison of Maxwell and 
Schrödinger dynamics 

Above procedure leads to “Schrödinger-like” 
equation for classical amplitudes: 

τ ≡ ∆t/� ϑ̃ ≡ �ϑ/∆2

ωav = 1015s−1 � {∆/�, E/�}

Panels on right compare dynamics of this equation 
with that of full Maxwell equation. In each panel 
 
The “Schrödinger-like” eqn only depends on    , not 
             , but the Maxwell equation depends on both. 
We therefore see that the reduction holds when 

ϑ̃ = 1

θ̃
∆/�ωav

∆

�ωav
=

1

100

∆

�ωav
=

1

500

∆

�ωav
=

1

1000

∆

�ωav
→ 0

8. Regimes of validity 
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The Schrödinger-like equation is 
valid when �ωav

∆
≈ 2π√

T

ωav

ωFSR
� 1

where                        is the free spectral 
range, and T is the transmission.  

ωFSR ≡ 2πc/L

This condition is plotted as the dashed line on the plot. The adiabatic 
condition is plotted as the solid line, and according to the Landau-Zener 
theory is given by 
 δωdop ≡ 2kv ≈ 2ωavv/c

2π∆2

�ϑ ≈ T

2

ωFSR

δωdop
=

T

4

ωFSR

ωav

c

v
� 1

Doppler shift: 

Both conditions are valid in the shaded region of the plot.  

9. Conclusions 

ωav is the optical frequency 

•  By displacing the common mirror in a double cavity the electromagnetic 
field modes can be swapped from one side to the other. This system may be 
considered as a basic element in a quantum network [4]. 

•  Because the mode wavenumbers form a network of avoided crossings, the 
possibility exists to make the transfer adiabatic. 

•  By making a slowly varying envelope approximation the Maxwell wave 
equation (2nd order in time) can be reduced to a Schrödinger-like equation 
(1st order in time) for the classical electromagnetic field amplitudes. 

•  The mathematical apparatus of the Landau-Zener theory can then be 
applied to the Schrödinger-like equation in order to obtain the condition for 
adiabatic transfer of light. 

Un(x) =

�
An sin [kn(x+ L1)] −L1 ≤ x ≤ 0

Bn sin [kn(x− L2)] 0 ≤ x ≤ L2

tan(knL2) =
tan(knL1)

αkn tan(knL1)− 1


