Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem
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Pellizari [Phys. Rev. Lett. 79, 5242 (1997)] has previously proposed transferring photons between two optical cavities by using a STIRAP scheme to control the coupling of atoms in the two cavities
to the cavity fields. Here we analyze a variant of his idea and study the evolution of an electromagnetic field inside a double cavity when the difference in length between the two cavities is changed,
e.g. by translating the common mirror. We find that this allows photons to be moved deterministically from one cavity to the other. We are able to obtain the conditions for adiabatic transfer by first
mapping the Maxwell wave equation for the electric field onto a Schrodinger-like wave equation, and then using the Landau-Zener result for the transition probability at an avoided crossing. Our
analysis reveals that this mapping only rigorously holds when the two cavities are weakly coupled (i.e. in the regime of a highly reflective common mirror), and that, generally speaking, care is
required when attempting a hamiltonian description of cavity electrodynamics with time-dependent boundary conditions. Preprint available at: arXiv:1105.6071
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