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Abstract

The diffraction of a coherent, stationary, beam of atoms from a standing wave of light is considered.

Particular attention is paid to long interaction times for which the motion of the atoms inside the

light field must be taken into account. This is the regime of dynamical diffraction, and is treated

within the framework of a set of differential difference equations due to Raman and Nath. The

popular Raman-Nath approximation, in which the kinetic energy imparted to the atoms by the

light wave is ignored, is no longer valid and the full equations must be solved.

When the interaction between the atoms and the light is very weak then few beams are pro-

duced. To describe spontaneous emission from the atom one can invoke a complex potential as a

model for dissipation. If the atom beam is obliquely incident one finds anomalously high transmis-

sion close to the Bragg angles which is the physical manifestation of degeneracies in non-Hermitian

matrices.

The classical limit is approached when the atom-light interaction is strong, producing many

beams. The classical dynamics (geometrical rays) reveal that the farfield intensity pattern is

dominated by caustics. These proliferate with increasing interaction distance. Two methods are

presented for analytically treating the semiclassical limit of the wave mechanics. The first begins

with W.K.B. solutions to the continuised Raman-Nath equations. Mapping onto parabolic cylinder

functions removes the spurious divergences of the W.K.B. solutions, giving eigenvectors which are

uniformly valid for all scattering angles and may be summed to give the wavefunction. The second

method transforms the original W.K.B. eigensum, using the Poisson summation formula, giving

a new sum, each term of which has classical significance. This method shows that wave theory

decorates the classical caustics with an Airy function intensity profile, as predicted by catastrophe

theory.
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Introduction

This thesis concerns various aspects of the diffraction of atoms by gratings made of light. The

subject deserves attention not least because it is the reverse of the more usual situation. Whilst

the first experimental demonstrations were conducted only fifteen years ago, the subject has rapidly

evolved into an established field now referred to as ‘atom optics’. Early investigations relied on

exactly this novelty of the optics analogy: all the scalar wave properties of light can in principle

be reproduced with atoms; there are now experimentally realisable atom lenses, beam splitters,

interferometers and so on.

The idea that the external states of particles might be manipulated coherently1 by electro-

magnetic radiation began with Kapitza and Dirac [43] in 1933. They speculated that an electron

beam could be Bragg reflected from a standing light wave (formed from two progressive waves)

by stimulated Compton scattering. Light sources in their day, such as mercury lamps, were so

weak that they predicted only a fraction of the order of 10−14 of the electrons in the incident beam

would be scattered. Kapitza and Dirac conceded that “the experiment could scarcely be made with

ordinary continuous sources of light”, and indeed it took the invention of the laser, and the use

of atoms rather than electrons (atoms have a resonant interaction with light due to their internal

states, as realised by Kazantsev and Surdutovich [44] in 1975) to finally put Kapitza and Dirac’s

idea into practice. Nevertheless, the basis of Kapitza and Dirac’s scattering mechanism, whereby

a photon is absorbed by an electron from one of the progressive waves but is then emitted into

the other, counter propagating, wave, because of the stimulating action of this second wave mode,

holds true also for atoms. Thus, in honour of their original contribution, atomic diffraction from

standing light waves is often referred to as ‘Kapitza-Dirac scattering’.

However, demonstrations of de Broglie’s hypothesis (1923-1924) are not new: direct confirma-

tions came with experiments such as those by Davisson and Germer who succeeded in diffracting

electrons as early as 1927. Nor are atoms the first non-fundamental particles to be diffracted. Neu-

1‘Coherent’ is taken here to imply that all the relevant interactions are included in the Hamiltonian, and that

interference between the states of the particle is fully taken into account.

xiv



trons are known to ‘contain’ other more fundamental particles and yet diffract as a single entity

with a single centre of mass wavefunction (though of course there may be finer structure to be seen

at very high energies).

So once the initial excitement surrounding the diffraction of a new type of quantum particle

had subsided, there was a necessity for the subject to deliver new physics, not just reproduce that

of other fields. Being the most massive objects to have been diffracted so far2, combined with

the strength of the atom-light interaction, atoms provide an ideal method for coherently accessing

the small wavelength, or semiclassical regime. Semiclassical systems serve as a bridge between

the bizarre quantum and the more familiar classical worlds. Matching the two theories requires

the characterisation of emergent features, such as caustics, whose seeds are contained in the wave

theory, but which only become fully developed in the classical limit. However, this limit is not a

simple one, and necessitates the use of some semiclassical ‘techniques’ which will be introduced

and used as needed.

The focus will not be entirely upon the small wavelength behaviour: the versatility of the atom-

light interaction allows a brief excursion into a model for a dissipative potential. Counter-intuitive

features can be identified which are the physical manifestation of degeneracies in non-Hermitian

matrices.

Whilst the study is strongly physically motivated, the investigations described in this thesis

are almost entirely concerned with solutions of Mathieu’s equation [1]

d2y

dv2
+ (a− 2q cos 2v)y = 0. (1)

and so stand independently of atom optics. Indeed, once the governing Hamiltonian has been

found, only time independent solutions of Schrödinger’s equation will be considered. Then one is

solving a Helmholtz equation so there is not really any quantum mechanics in this thesis. Having

accepted that particles behave as waves, there is nothing further contained here that would surprise

a 19th century physicist (Schrödinger himself believed that real quantum mechanics begins with

entanglement).

Chapter 1 gives a brief overview of atom optics from the experimental perspective, showing

how this research fits into the rest of the field. Chapter 2 explains the nature of the atom-light

interaction and hence how Mathieu’s equation arises. The treatment of the classical mechanics is

given in Chapter 3 which is then used for comparison with the quantum behaviour described in

the rest of the thesis: in particular Chapter 4 introduces the Raman-Nath equation, a differential

difference equation, which is the principal tool used in developing the wave mechanics associated

with dynamical diffraction. The stationary Raman-Nath equation is nothing but a recursion rela-

2The diffraction of a Bose-Einstein condensate is eagerly awaited.
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tion for the Fourier coefficients of the Mathieu equation. Chapter 5 takes a step back and seeks to

justify the use of several greatly simplifying approximations, such as taking the atomic beam as

being infinitely wide.

The majority of this thesis requires that spontaneous emission from the atom be suppressed,

but Chapter 6 positively requires it to give a complex potential (q in Mathieu’s equation, (1),

becomes a complex number) which is a model for dissipation. The final three chapters all examine

the semiclassical limit of the Raman-Nath equation. Chapter 7 shows that in this limit the Raman-

Nath equation can be ‘continuised’, giving solutions analogous to the W.K.B. approximations to

ordinary differential equations. Stationary solutions to the continuised Raman-Nath equation are

then further developed in Chapter 8. These ‘uniform’ solutions remain valid even at the turning-

points where the W.K.B. solutions diverge. Finally, in Chapter 9, the sum of W.K.B. eigenvectors,

which together make up the wavefunction, is transformed using the Poisson summation formula,

giving terms which each have a classical interpretation.

Before confusion arises, it is worth pointing out that the term ‘semiclassical’ has two different

meanings in the two branches of physics which overlap in this thesis. The atomic physics commu-

nity commonly uses ‘semiclassical’ to describe an approximation whereby the atoms are treated

as quantum systems, but the radiation to which they are coupled is treated as classical. This ap-

proximation is indeed used in Chapter 2. Semiclassical analysis, on the other hand, is a collection

of methods and approximations appropriate when the de Broglie wavelength of a particle is very

small in comparison to the spatial variation of the potential in which it moves. It is then often

convenient to use Planck’s constant, h̄, as a parameter of quantum theory rather than a constant

of nature. In this work the context should always make the usage clear.
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Chapter 1

Atomic diffraction in practice

1.1 Motivation

The studies which will be described in this thesis were originally conceived in the light of a set of pi-

oneering experiments conducted from the mid 1980’ s onwards. These investigations really marked

the birth of a new field; atom optics. Although theoretical papers pointing out the possibilities had

appeared over ten years earlier, the technical difficulties associated with the manipulation of atoms

by light slowed experimental progress. Spurred by the success of the first experiments however,

the area exploded into life, and has frequently been in the healthy position of being experimentally

driven. It is fitting, therefore, to begin by presenting the basic experimental set-up used, this serves

to fix ideas and will provide the platform from which all developments will be made.

1.2 An Experimental set-up

The experimental scheme depicted in Figure 1.1 is taken from Moskowitz et al. [58]. Sodium

atoms emerge from a heated reservoir with a thermal distribution of velocities. An atom beam

with a velocity distribution is analogous to a light beam containing many colours. To control

the longitudinal (z) velocity, the sodium atoms were combined with an inert gas which expands

supersonically through a nozzle. As a result of the effusion, the sodium beam attains a velocity of

around 1000 m/s, with a measured velocity dispersion ∆v
v = 11% at FWHM.

Passage through a pumping laser beam (not shown) transfers the atoms into an internal elec-

tronic state suitable for the interaction with the standing wave laser field. Transverse (x) velocity

selection is then achieved via a number of collimating slits. Thus, it is a roughly ‘monochromatic’

beam of sodium atoms that passes through the waist of the standing wave laser field formed by

1
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Figure 1.1: A typical experimental set-up used in the investigation of atomic diffraction.

the reflection of the primary laser beam back onto itself by a mirror.

Finally there is a scanning detector in the farfield which measures the angular intensity distri-

bution of the diffracted atoms. To accomplish sufficient collimation and then angular resolution1,

there may be longitudinal distances of several metres between the various components of the ap-

paratus.

Following the initial demonstrations of atomic diffraction [57, 58, 39] there have been many

modifications to this basic theme, including:

• Angled incidence: Figure 1.1 demonstrates an atomic beam perpendicularly incident upon

the standing wave. However, one may just as easily tilt the atomic beam so the atoms have a

non-vanishing initial transverse velocity [65, 50, 51, 53, 52, 34]. Features analogous to those

found in x-ray diffraction in crystals, such as Bragg resonances and anomalous transmission

(to be described in detail in Chapter 6) can be seen.

• Atomic interferometers: the behaviour of the atoms in the standing wave can result in com-

plicated interference (diffraction)—as shall be shown in subsequent chapters. It is possible

however, by employing one or more standing wave lasers after the first, to spatially separate

1The deflection angles involved are very small. The transverse velocity conferred to a sodium atom by the

absorption of a single photon is approximately 2.6 cm/s. When the ratio of this transverse velocity is taken with

the longitudinal velocity of some 1000 m/s, it becomes clear that to detect a single photon momentum transfer the

detector must be capable of a resolution of some 26 µradians.
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by macroscopic distances, and then recombine, two specific diffracted beams which emerge

from each ‘light grating’. The simplest of interference patterns, a sinusoid, can then observed

[72, 33] between the two different classical paths along which the atoms could travel. Due to

the very small atomic de Broglie wavelength, such interferometers are extremely sensitive to

local differences in the environment between the two ‘arms’.

• Time dependent potentials: the standing wave can be modulated by moving the mirror back

and forth in the transverse direction. This induces a periodic (in time) displacement of

the standing wave. The Hamiltonian describing such a system is formally identical to that

of the kicked rotor—a famous example of classically chaotic motion. One of the features

often inherited by waves whose corresponding classical behaviour is chaotic, is dynamical

localisation. This is indeed what is observed experimentally [56].

• Cold atoms: firing atoms at the interaction region in a supersonic beam is relatively simple

and has the benefit of high atom fluxes. A far more elegant method though, is to first cool the

atoms, in a magneto optical trap for instance [46], or maybe, in the future, emit them from a

coherent source—the so-called ‘atom-laser’—and then drop them under gravity through the

laser fields. In this way, the velocity of the atoms can be precisely controlled—eliminating the

velocity dispersion. Another advantage of this method is the attainment of long interaction

times, as slowly moving atoms spend longer in the laser beam.

More complete summaries, containing further variations, may be found in the review article by

Adams, Sigel and Mlynek [2], and in the two books by Balykin and Letokhov [6], and Kazantsev,

Surdutovich and Yakovlev [45].

1.3 The system parameters

Using the basic layout described above it is now possible to identify the key parameters of the sys-

tem. Prior to this though, it should be mentioned that a fair proportion of the finer features of real

laboratory atomic diffraction, described below, will subsequently be ignored. The specific reasons

will be given in each case. As a general philosophy though, the models which will be used have

been stripped of as many ‘distractions’ as possible in order isolate the basic characteristics which

this thesis seeks to emphasise. The cost of this is absolute numerical accuracy. The fundamental

form of the behaviour will obviously be correct however, and Chapter 5 will try to address these

approximations more thoroughly.
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1.3.1 Properties of the atomic beam

A few words are necessary concerning the meaning of the words ‘atomic beam’. A complete

description would consider each atom as an individual wave packet. The farfield pattern would

then be time dependent (or an average over this time dependence); waxing and waning as the

leading edge, then main body, and finally the tail of the wavepacket, reached the detector. For the

purposes of this work, such details are an unnecessary complication and the essential behaviour

will be captured by treating the incident beam as a continuous plane wave. Although a beam

consists of many atoms, the interference pattern is considered to arise only from the interference of

each atom with itself. The individual atoms are quantum mechanical particles and so the detector

collapses each atomic ‘matter wave’ into a particular direction (diffracted beam) with a probability

given by the modulus squared of the amplitude to be travelling in that direction. Each atom acts

independently: a beam consisting of many identical atoms plays the rôle of an ensemble of identical

experiments and thus the complete interference pattern is eventually mapped out.

Choice of atom

Choosing a suitable species is a matter of the utmost importance and requires a fantastic knowledge

of the detailed electronic structures of the candidates. Most groups have their own favourites, based

on the perceived suitability of a particular transition. The early experiments [57, 58, 39] generally

used sodium, since careful use of the 3S 1
2
−→ 3P 3

2
transition results in a good approximation

to a two-level system. More recent investigations have favoured metastable neon [33, 34] and

rubidium [46], whilst the realisation of a complex interaction between atom and laser (modelling

dissipation—as will be discussed at length) requires an effective three level scheme such as that

found in argon [62].

Approximate masses2: Na 23 amu; Rb 85.5 amu; Ar 40 amu.

Spontaneous emission

As shall be discussed in Chapter 2, one way of understanding the diffractive action of the standing

wave on the atoms, is by the absorption and stimulated emission of photons from the two counter-

propagating laser beams. The atoms can also de-excite, however, by spontaneous emission. An

atom exhibiting spontaneous emission moves in an effectively random fashion which may be re-

garded as diffusive—a quite different pattern of behaviour from diffraction. Given a long enough

interaction time with the electromagnetic field, it is inevitable that the atom will eventually emit

spontaneously. A number of theoretical [78, 27, 77, 75] approaches have evolved to cope with

21 atomic mass unit = 1.66054× 10−27 kg
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the diffusive motion. They mainly assume the validity of the deterministic approach until some

threshold time, after which the system is treated statistically by using a Fokker-Planck equation

to simulate the spread of the momentum distribution. An experiment has also been carried out to

examine the transition from diffraction to diffusion [36].

The rate at which an atom spontaneously decays is the natural decay rate of the excited state,

Γ—the phenomenological decay constant introduced by Einstein for an excited atom sitting in a

vacuum—multiplied by the probability for the atom to be in that excited state. By detuning the

laser frequency from resonance with the atom, the probability of the atom to be in the excited

state is reduced (Chapter 2) and thus the deterministic region can extended.

Spontaneous decay rate for the stated transition in Na: ≈ 2π · 10 MHz.

Atomic wavelength

The very essence of wave-particle duality is the de Broglie wavelength of the atom which depends

on its mass and velocity:

λde Broglie =
h

mv

Typical value for Na in a supersonic beam: λde Broglie ≈ 0.17 Å.

Coherence

That the atoms have identical physical attributes, such as velocity, is important for producing

sharp diffraction patterns. Slight differences in the velocity of each atom cause the set of diffracted

beams belonging to each atom to lie in slightly different directions, and hence the final diffraction

pattern is blurred out. Deviations from the ideal are reflected in the coherence of the beam. A

plane wave is completely coherent. Coherence of the beam then, is synonymous with velocity

dispersion.

Typical dispersion for supersonic beam: ∆v
v ≈ 11%.

Width of the beam

As already alluded to, the laser standing wave acts as a grating. An essential property of the

standing wave is its periodicity, and this together with the atomic de Broglie wavelength, is all

that is required to determine the angular separation of the maxima and minima of the diffracted

beams, in accordance with the familiar Fraunhofer diffraction theory. The transverse width of

the atomic beam dictates the number of elemental ‘unit cells’ of the standing wave which are

illuminated. An infinitely wide illumination of a grating causes the diffracted beams to become
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infinitely narrow (in angle). A narrow illumination on the other hand, causes the emergence of

intermediate structure; subsidiary maxima and minima, so the beam width is an important factor.

The collimation slits are used to control the width of the atomic jet plume. It is a subtle question

as to how the slit gap determines the width of the atomic beam. Clearly the atom beam cannot be

wider than the gap (it being assumed that the gap is too wide to induce any significant diffraction

itself). However, just because a bunch of randomly arriving particles are confined to pass through

a gap, does not imply that the individual transverse width of the wave packet associated with each

atom is equal to the gap; it might be much less.

Taking the typical slit width to be 10−5 m and the longitudinal separation of the two slits as

0.9m [53], one can determine the maximum uncertainty in the momentum for the transmission of

classical particles to be:

∆p ≈ 2 · 103 · 23 · 1.66× 10−27 · 10−5

0.9
= 8.5× 10−28 kg m/s.

Using ∆x∆p ≥ h̄/2 gives a minimum atomic wave packet width of ∆x = 6.2×10−8 m. The atomic

beam width must therefore lie between this and the value of the slit width itself. Section 1.3.2 gives

the dimensions of the elemental cell of the laser standing wave, and shows that the atomic beam

width covers between 1/5 and 33 of the elemental cells. The full range of diffraction behaviours

described above is therefore possible. Remaining faithful to the principle of absolute simplicity

wherever possible, the remainder of this work, with the exception of Chapter 5, will take the atomic

beam as being infinitely wide. Chapter 5 will consider the effects of more physically realistic beams.

Typical range for beam width: 6.2× 10−8—10−5 m.

1.3.2 Properties of the standing wave laser field

Wavelength

The requirement that the laser light has a frequency resonant or quasi-resonant with the chosen

atomic transition obviously provides a general constraint. So the size of each elemental cell of the

standing wave,

dsw = λlaser/2

(λlaser is the wavelength of the two individual counter propagating beams that form the standing

wave) is approximately set once the transition has been specified. The frequency difference between

the laser and the selected transition is known as the detuning, ∆. The strength of atom-field

interaction depends upon ∆, and as mentioned above, it can be used to control the spontaneous

emission rate of the atoms.

Typical values of ∆: 0–2πGHz.
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Typical wavelength: λlaser = 0.589µm.

Note that the detuning is very small compared to the frequency of the light: ∆/ωlaser ≈ 10−6.

Width of the standing wave laser field

As indicated in Figure 1.1, the laser beam can be focussed down from its initial width, and in

this way the interaction time of the atoms with the laser can be reduced. The smallest laser waist

to have been used is 25µm [58]. Conversely, the beam could also be telescopically expanded,

giving widths of up to 5cm [84], but no experiment has yet been performed with such a wide

interaction zone. When the beam is focussed right down, the light wave fronts have considerable

curvature. From the photon viewpoint, since the position of the photons is relatively well known,

their momentum is more uncertain. Either way, the momentum transferred is no longer solely in

the transverse direction and the diffracted beams will have some angular spread.

The longitudinal profile of the laser beam is often taken to be a Gaussian. When the beam is

expanded, the natural shape is likely to be a central flat plateau with smooth wings at either end,

see Figure 1.2. By physically masking the beam, one could in principle produce any (diffraction

A B

z z

Figure 1.2: A comparison of possible laser beam longitudinal profiles: A) Gaussian, B) Flat with

smooth wings.

limited) function of z one wanted; a linear ramp, a saw-tooth pattern etc.. Obtaining analytical

solutions with a smooth profile rapidly becomes difficult however. Once again, to keep things

simple, the transverse profile will henceforth be taken to be flat: the atoms will start already in

the laser at one end, and propagate for a fixed distance under the influence of the field. This ignores

the effect of the wings. Since the principal interest of this thesis is in long interaction times (a long

central plateau) this seems a sensible thing to do—it is assumed that the motion of the atoms is

not altered during the relatively short passage through the wings. Indeed, as shall be shown in the

next chapter, the potential seen by an atom whilst in the laser is very small (≈ 10−29 J) compared
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to the longitudinal kinetic energy of a supersonic atom (≈ 10−20 J)—the infinitesimal climb up

into the potential has a vanishingly small effect on the longitudinal motion, which will be taken

as a constant, and provided the wings are short, can only have a small effect on the transverse

motion. Chapter 5 contains a numerical examination of this.

One has to be a little careful though, as the effect on the internal states, which actually

determine the potential, is not so simple. A very sudden entry into the potential (short wings),

is like a hammer blow, fully exciting the atomic transition. A slower, more adiabatic, entry into

the potential allows the internal states of the atom to settle to a steady state before the potential

has changed by much, and the transition need be only slightly excited. Although interesting, such

effects will not be examined further, and it will be assumed that the switch-on of the potential

is slow enough to ensure adiabatic entry, but quick enough so as to have negligible effect on the

transverse motion.

Typical values of standing wave width: 25µm–15mm [34].

Power of the laser

As shall be shown in Chapter 2, the magnitude of the atom-laser interaction depends on the electric

field strength. The stronger the electric field, the more diffracted orders are produced. If the beam

is expanded, then the laser power must be increased to compensate for the increased area over

which the energy is spread.

Typical laser power: 0.5mW–100mW

1.4 Unexplored parameter ranges

Following the success of the early experiments, the shrewd manipulation of the parameters outlined

above has led to the observation of many distinct aspects of diffraction. In conjunction, theoretical

models have been derived whose numerical solutions accurately describe and sometimes predict

these developments; a few analytic solutions are also known. Experience with another physical

system, the diffraction of light by ultrasound, shows, however, that there exists a rich set of

phenomena associated with a long coherent interaction time [16, 61], an area which remains to

be explored in atom optics. ‘Coherent’ refers to the absence of spontaneous emission. This is the

regime of dynamical diffraction, where the motion of the atoms inside the laser potential must

be properly accounted for—in particular this is something that none of the established analytical

solutions consider3. The incorporation of long, coherent, propagation times into atom optics is

3Except for the rather special case of a very weak interaction and incidence at a Bragg angle: the so called “two

beam approximation” is then valid, and this is correct for arbitrary interaction times. This will be discussed and
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the main purpose of this thesis. The results have a wider applicability though since they hold for

any semiclassical (in the small de Broglie wavelength sense) system obeying Mathieu’s equation

(Equation 1). What makes atom optics so special is the versatility of the interaction between

the atom and the field, and the relative ease by which the various system parameters can be

varied: by simply changing the laser power, the transverse component of the de Broglie wavelength

can be taken from roughly equal to the standing wave cell (a very quantum situation) to being

many times less, and so begin to probe the classical limit; by changing the focussing of the laser

beam, different interaction times can be selected; by positively encouraging spontaneous emission,

rather than suppressing it, the interaction can be interpreted as being dissipative with a complex

representation, and so on. This is why atom optics is so unique.

used in Chapter 6.



Chapter 2

Light forces

2.1 Motivation

To calculate the motion of an atom subjected to an electromagnetic field clearly requires an un-

derstanding of the forces involved. An atom, of course, is not a fundamental particle. This at

once means that the potential seen by the atom is not so straight forward and will require some

explanation, and this chapter attempts that. Conversely, a more complicated interaction results

in richer behaviour. Sufficiently rich, in fact, that the understanding of ‘light forces’, and their

application to laser cooling, lead to the awarding of the 1997 Nobel prize to S. Chu, C. Cohen-

Tannoudji, and W. D. Phillips. The full, glorious, details required to understand how atoms can

be cooled to a few microKelvin will not be required here however1, so the treatment will be at a

more elementary level.

2.2 The basic mechanism

By way of introduction, it is useful to approach diffraction from a purely descriptive viewpoint

in terms of photons. Although the semiclassical approach will be used for the calculation of the

actual potential, particles (photons) exchanging momentum with particles (atoms) is perhaps more

intuitive. In fact, even in the midst of the semiclassical derivations, the term ‘photon’ will be used

(somewhat loosely) if it serves to clarify the discussion. Also, throughout this discussion, the

atom and the electromagnetic field will be treated as separate, but interacting, systems. Although

seemingly natural, this separation is perhaps arbitrary and it is worth pointing out that they

1For instance, polarisation gradients in the laser field were crucial to explain how such low temperatures were

attained, but the effects due to the polarisation of the standing wave used here will be neglected.

10
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Figure 2.1: How the microscopic processes deflect the atoms: A) absorption and stimulated emis-

sion moves the atoms about on a quantised ladder, each rung separated by 2h̄K; B) absorption

and spontaneous emission places the atom at a random position between the rungs.

may be considered as a single system (with overall eigenstates therefore) under the ‘dressed-atom’

picture of Cohen-Tannoudji [27].

A laser then, is a remarkable device which shall be considered here as capable of macroscopically

populating just one mode of the electromagnetic field with photons. The experimental set-up

shown in Figure 1.1 depicts the laser beam being reflected back on itself, so the mirror populates

the complementary, counter propagating mode. The infinite number of other, empty, modes make

up the vacuum. A simple two-level atom moving across the standing wave is a quantum system

coupled to every one of the modes. If the atom is initially in the ground state then it may ‘absorb’

a photon from one of the modes. The very high photon population of the laser filled modes makes

it much more probable that the atom will obtain a photon from one of these (and this is the only

energy conserving option), and in so doing, also taking up that photon’s momentum. Thus the

absorption process results in the atom receiving a 1h̄K kick in one of the two transverse directions,

where K is the wave-vector of the laser field. Now it is the turn of the excited atomic eigenstate to

feel the coupling to the external field. An interaction with either of the two filled modes gives rise

to stimulated emission, whereas a union with any of the vacuum modes delivers a spontaneously

emitted photon. As illustrated in Figure 2.1, the stimulated emission ejects the photon back into

one of the two laser modes—if it’s the mode from which the photon originated, then the momentum
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conveyed to the atom cancels the initial absorption recoil; if it’s the other, counter-mode, then the

net effect of the absorption-stimulated emission cycle is a 2h̄K momentum transfer in one of the

two transverse directions. The whole process may now repeat and thus populate higher diffraction

orders, each of which is separated by 2h̄K. By contrast, if the atom emits ‘spontaneously’ into

one of the vacuum modes, which are homogeneously directed, then the atom receives momentum

in an effectively random direction, and so moves out of the diffracted beam structure. The cycle

of absorption followed by spontaneous emission is, of course, put to good use in the most basic

form of laser cooling. An atom heading directly into a resonant laser beam continually accepts

photons from the oncoming beam, reducing its velocity in that direction, but emits in a random

direction. After many absorptions and emissions the overall effect is that the atom is cooled since

the average momentum transfer from all the spontaneously emitted photons is zero2, and so it is

as though there is a force acting only against the atom.

2.3 The Hamiltonian

The following arguments follow those presented in the books by Allen and Eberley [4], Loudon

[48], but especially the excellent text co-authored by Cohen-Tannoudji, Dupont-Roc and Grynberg

[25].

Consider a two energy-eigenstate atom, with ground state |a〉, and an excited state |b〉, sepa-

rated by h̄ω0

Hinternal |a〉 = 0 |a〉 (2.1)

Hinternal |b〉 = h̄ω0 |b〉 (2.2)

The total atomic Hamiltonian is the sum of contributions from the internal states, and, crucially

for the purposes of including atomic centre of mass motion, the external states

HA =
P2

2m︸︷︷︸
external

+ h̄ω0 |b〉 〈b|︸ ︷︷ ︸
internal

=
P2

2m
+

 h̄ω0 0

0 0

 . (2.3)

It can be assumed that the external electromagnetic field is not strong enough to significantly

alter the internal states themselves, but merely cause transitions between them. Alternatively, one

could just include such ‘radiative shifts’ in the atomic eigenfrequency ω0.

The incident radiation field due to the laser may be considered as classical, but all the other,

initially empty, modes, which collectively make up the vacuum, are quantum in nature—they are

2For each polarisation the probability to emit in opposite directions is equal, even though the angular dependence

of the emission is not uniform; it might follow the radiating Hertzian dipole’s pattern for instance. When the three

polarisations are considered together then the emission is spherically symmetric.
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dominated by quantum fluctuations. If the atom interacts with both of these fields, then within

the electric dipole approximation the total Hamiltonian is

H = HA +HR − d · (Ec + Eq)︸ ︷︷ ︸
dipole interaction

(2.4)

where Ec is the classical electric field due to the laser and Eq is due to the quantum modes, both

evaluated at the centre of the atom3. The classical field due to the laser has a frequency ωL , so

let

Ec = Ec(r, t) = E0(r) cosωLt. (2.5)

HR is the Hamiltonian of the quantum radiation field, and d is the electric dipole moment operator

belonging to the atom. It has a matrix representation written in the atomic internal eigenbasis as

d =

 0 db a

dab 0

 (2.6)

which, in accordance with the form of an interaction Hamiltonian, is purely off-diagonal4—that is

to say it induces transitions between the two atomic states. For simplicity let it be assumed that

the elements of Equation (2.6) are real so that

dab = 〈a|d|b〉 = db a = 〈b|d|a〉 . (2.7)

Notice that the Hamiltonian (2.4) does not take into account changes in the classical field due to

the interaction with the atom—these being negligible.

2.4 The atomic wavefunction

The total atomic wavefunction is constructed from all the different possible states in which the

atom can exist. When considering just the internal degrees of freedom, a general atomic state may

be written as a linear combination of the two energy eigenstates

|Ψ(t)〉 = Ca(t) |a〉+ Cb(t) |b〉 e−iω0t (2.8)

3Atomic electron radii are typified by the Bohr radius a0 = 4πε0h̄
2/melece

2 ≈ 5 × 10−11 m, which is much

smaller than the spatial variation of the Ec given by λlaser = 0.589µm.
4The off-diagonality arises because the dipole moment has odd parity: d = er and so when r→ −r, then d→ −d.

This means that when the matrix elements are found with respect to the atomic basis, the integrands of the diagonal

elements are odd functions of position and thus the integrals vanish: dbb =
∫

b∗(r) d(r) b(r) dr = daa = 0 .



CHAPTER 2. LIGHT FORCES 14

where the coordinate representations of the ket vectors in Equation 2.8 are

〈r|Ψ(t)〉 = Ψ(r, t) (2.9)

〈r|a〉 = a(r)

 0

1

 (2.10)

〈r|b〉 = b(r)

 1

0

 . (2.11)

By way of illustration, one might take a(r) and b(r) as the (n, l,ml) hydrogenic states ψ100(r, θ, φ)

and ψ211(r, θ, φ) for instance. The atom at rest is thus described by

Ψ(r, t) =

 Ca(t) a(r)

Cb(t) b(r)e−iω0t

 . (2.12)

Embracing the external degrees of freedom, the wave function is written

|Ψ(t)〉 =

∞∑
n=−∞

Ca,n(t) |a, n〉+

∞∑
n=−∞

Cb,n(t) |b, n〉 e−iω0t (2.13)

where n labels the external states with the discrete transverse momentum nh̄K. Transforming the

internal co-ordinates into the atomic centre of mass frame and treating them as independent5, the

wave function in the (external6) coordinate representation may now be expressed in a plane wave

basis

|Ψ(x, t)〉 =

∞∑
n=−∞

Ca,n(t) |a〉 einKx +

∞∑
n=−∞

Cb,n(t) |b〉 e−iω0teinKx . (2.14)

2.5 Adiabatic following

A considerable simplification of the problem of an atom moving in a spatially inhomogeneous

radiation field emerges upon the realisation that there are two distinct time scales involved. For a

‘slowly’ moving atom (referring to Figure 1.1, the relevant motion is in the transverse direction—for

which the atom is initially stationary—so the ‘slow’ condition is fulfilled) the internal degrees of

freedom evolve much more rapidly than the external ones. The time scale for the internal evolution

is determined by the Rabi frequency7, Ω, defined in Equation (2.24) below. The two-level atom

is a driven oscillator with damping (Γ), and Ω is the angular frequency of oscillation between the

internal states. Typical experiments have Ω/2π ≥ 30MHz [37]. So the internal states develop

5In other words, expressing the ket vector as a product state: |a, n〉 = |a〉 |n〉 .
6Eqn (2.14) is in a convenient form, but it can be unravelled further to include the explicit dependence on

the internal co-ordinates in the atomic centre of mass frame, % say, by taking 〈%|Ψ(x, t)〉. This gives Ψ(x, %, t) =∑
Ca,n(t)a(%)einKx +

∑
Cb,n(t)b(%)e−iω0teinKx .

7Or by Γ if Γ > Ω.
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over times Tint = 1/Ω seconds. During one internal cycle, the transverse position of the atom has

changed by

∆x = vx Tint = n
2h̄K

m
Tint ≤ n 2× 10−9m (2.15)

where n records the number of absorption-stimulated emission cycles accumulated, and upon exit

from the laser beam indexes the diffracted beams. Clearly, ∆x is much smaller than the optical

wavelength λlaser, so the external field that the atom feels barely alters over many internal tran-

sitions. This discrepancy allows the internal states to continually acclimatise to the new external

environment—the atom is always in a steady state since it can react to changes in the field so

quickly. Since the internal states adiabatically follow the external states, one may treat the two

independently: the external force on the atom, despite being dictated by the internal dynamics,

now becomes just a function of position.

As a result of the adiabatic shadowing of the external states by the internal ones, one may solve

for the internal dynamics regarding the external field strength as a parameter. If the external field

were weak, then one could try and solve for the coefficients Ca(t) and Cb(t) of Equation (2.8) using

time-dependent perturbation theory. The situation one is interested in here however, is where many

diffraction orders are produced: the field is strong enough to drive the atom through very many

absorption and emission cycles. Perturbation theory is then inappropriate. A non-perturbative

approach which also incorporates a relatively simple description of spontaneous emission is through

the optical Bloch equations.

2.6 The optical Bloch equations

2.6.1 Evolution equation for the atomic density matrix

In what follows it will be more convenient8 to represent the state of the atom in terms of bilinear

products of the coefficients Ca(t) and Cb(t), rather than by the bare coefficients themselves. This

leads to the definition of the atomic density matrix σ as

σ =

 σbb σba

σab σaa

 ≡
 C∗bCb C∗bCa

C∗aCb C∗aCa

 . (2.16)

8In fact particles forming a subsystem of a larger system are best described by a density operator. Even if the

global system is in a pure state described by a state vector (obeying a Schrödinger equation), the particle subsystem

is generally to be found in a statistical mixture of states. The density operator describing this mixture is obtained

by taking a partial trace over the global density operator to remove the variables not involved in the subsystem.

It might be possible to write a Schrödinger equation for the subsystem, but one would typically have to invoke a

complex potential which expresses the fact that certain quantities (such as the total energy of the subsystem for

instance) are not conserved. This is exactly the situation found in Chapter 6.
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Note that the diagonal elements σbb and σaa, are the populations of the upper and lower levels

respectively so that

σbb + σaa = 1. (2.17)

The off-diagonal elements are often referred to as the coherences between the states |a〉 and |b〉

and are related by

σba = σ∗ab. (2.18)

If there is no coupling to the quantum modes, Eq, then the time evolution of σ is given by the

Schrödinger equation

ih̄σ̇ = [HA − d · E0 cosωLt, σ] . (2.19)

Extending Equation (2.19) to properly include the effect of the vacuum modes would require

quantum field theory. However the appearance of the atomic populations in Equation (2.19) tempts

one into adopting Einstein’s procedure [30] of accounting for spontaneous emission by introducing a

phenomenological decay constant, Γ. The atomic spinor is formally identical to a spin-half system,

and it was in the context of the problem of a spin subjected to an oscillatory magnetic field that

Rabi [66] solved equations analogous to Equation (2.19). It was Bloch [18] however, who, when

considering nuclear spins, extended Rabi’s solutions by including the phenomenological damping

terms into the dipole oscillations. The various terms in the density matrix time evolution equation

become

σ̇bb = iΩ cosωLt (σba − σab)− Γσbb (2.20)

σ̇aa = −iΩ cosωLt (σba − σab) + Γσbb (2.21)

σ̇ab = iω0σab − iΩ cosωLt (σbb − σaa)− Γσab
2

(2.22)

σ̇ba = −iω0σba + iΩ cosωLt (σbb − σaa)− Γσba
2

(2.23)

with

Ω ≡ −dab · E0(r)

h̄
(2.24)

which is the Rabi frequency that characterises the strength of the coupling between the incident

wave and the atom.

The damping terms replace a more sophisticated treatment of the −d ·Eq coupling; by simply

adding them in it is as if the two couplings are uncorrelated. This is known as the ‘approximation of

independent rates of variation’. The inclusion of the damping terms for the populations is obvious,

but the half rates found in the coherences is less so. For the purposes of uncorrelated relaxation

of the excited atomic state into all the vacuum modes m, it is sufficient to assume

Γba = Γab =
1

2

∑
m6=a

Γa→m +
∑
m6=b

Γb→m

 =
Γbb
2

(2.25)
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since Γa→m = 0. More details can be found in [25].

2.6.2 The rotating wave approximation

Using Equation (2.7), the dipole operator may be expressed in terms of raising and lowering

operators

d = dab(

raising︷ ︸︸ ︷
|b〉 〈a|+ |a〉 〈b|︸ ︷︷ ︸

lowering

) ≡ dab(R+ L) . (2.26)

The interaction Hamiltonian can be rewritten in terms of these operators

−d · E0 cosωLt =
1

2
h̄Ω
(
Re−iωLt + LeiωLt + Le−iωLt +ReiωLt

)
. (2.27)

The exponentials, e−iωLt and eiωLt, are associated, respectively, with the absorption and emission

of a photon. The first two terms in Equation (2.27) therefore describe processes whereby the atom

rises from |a〉 to |b〉 by absorbing a photon or falls from |b〉 to |a〉 by emitting a photon. Close

to resonance, these processes are much more likely than the two remaining ‘antiresonant’ terms

whereby the atom de-excites by absorbing a photon and excites by emitting one. The rotating

wave approximation consists of the neglection of the last two terms in Equation (2.27).

2.6.3 The time-independent atomic evolution equation

Carrying through the rotating wave approximation on Equations (2.20–2.23) and making the

change of variables

σ̃ba = σbaeiωLt (2.28)

σ̃ab = σabe
−iωLt (2.29)

σ̃bb = σbb (2.30)

σ̃aa = σaa (2.31)

removes the explicit time dependence of the evolution equations for the internal atomic density

matrix. Thus Equations (2.20–2.23) become

d

dt
σ̃bb = i

Ω

2
(σ̃ba − σ̃ab)− Γσ̃bb (2.32)

d

dt
σ̃aa = −i

Ω

2
(σ̃ba − σ̃ab) + Γσ̃aa (2.33)

d

dt
σ̃ab = −i∆ω̃ab − i

Ω

2
(σ̃bb − σ̃aa)− Γ

2
σ̃ab (2.34)

d

dt
σ̃ba = i∆ω̃ba + i

Ω

2
(σ̃bb − σ̃aa)− Γ

2
σ̃ba (2.35)
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with

∆ ≡ ωL − ω0 (2.36)

being the detuning of the laser from the atomic transition.

2.6.4 The Bloch vector

The variables

u ≡ 1

2
(σ̃ab + σ̃ba) (2.37)

v ≡ 1

2i
(σ̃ab − σ̃ba) (2.38)

w ≡ 1

2
(σ̃bb − σ̃aa) (2.39)

are the components of the ‘Bloch vector’. Written it terms of the Bloch vector, Equations (2.32–

2.35) simplify to just three equations, known as the optical Bloch equations

u̇ = ∆v − Γ

2
u (2.40)

v̇ = −∆u− Ωw − Γ

2
v (2.41)

ẇ = Ωv − Γw − Γ

2
. (2.42)

Physically, w represents half the difference in the populations of the two levels. The meaning of u

and v becomes clear if the expectation value of the dipole d is calculated

〈d〉 = Tr(σd) = dab(σab + σba)

= dab
(
σ̃abe

iωLt + σ̃bae−iωLt
)

= 2dab (u cosωLt− v sinωLt) . (2.43)

Thus u and v are the components of 〈d〉 which are, respectively, in phase and in quadrature with

the incident driving field.

2.6.5 Geometric interpretation

It is worth briefly mentioning the well known, and highly illuminating, geometric interpretation of

the optical Bloch equations. In the absence of spontaneous decay, Equations (2.40–2.42) may be

written as a single vector precession equation

dΦ

dt
= Y ×Φ (2.44)

where the Bloch vector Φ is

Φ ≡ (u, v, w) (2.45)
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and the torque Y is

Y ≡ (Ω, 0,−∆). (2.46)

Figure 2.2 indicates how Φ precesses about the torque vector at a frequency

w

u

v

 

 

 

 

Figure 2.2: The precession of the (loss free) Bloch vector Φ about the torque vector Y.

|Y| =
√

Ω2 + ∆2 . (2.47)

Examining the geometric picture immediately yields a wealth of information. The precession

frequency is the frequency at which the undamped atom oscillates between the the states, Equa-

tion (2.47) shows how the detuning, ∆, modifies the exact on-resonance value which is given by
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the naked Rabi frequency, Ω. Further, when ∆ = 0 the atom completes full oscillations between

the ground and excited states (Y lies along the u axis and one then reads off the maximal values

of w which are attained—w being half the population difference, see Equation (2.42)). However,

at non-zero values of ∆, full excitation is no longer possible, and in the limit as |∆/Ω| → ∞, the

atom remains in the ground state.

Adiabatic following also has a satisfying representation here: the Rabi frequency, Ω, is a function

of the field strength (Equation (2.24)), so as an atom moves about in the field, the value of the

Rabi frequency changes and hence the torque vector, Y, moves around. The geometric picture

indicates that if adiabatic following is to occur, the precession of the Bloch vector must be much

faster than the movement of the guiding torque vector—the Bloch vector must really be able to

follow the torque vector around—allowing the atom to constantly adjust and remain in a steady

state.

Finally, the rotating wave approximation also has an interpretation: if the time dependency of

the density matrix elements is restored (Equations (2.28–2.31)), then the result is a more compli-

cated picture in which there are two counter rotating torques—one of which, at resonance, rotates

along with the Bloch vector (which rotates itself) and so is able to act efficiently upon it, whilst

the other, which rushes past twice each rotation, has a much smaller influence. The rotating wave

approximation consists of ignoring the counter-rotating component.

Despite clear strengths in describing the damping-free behaviour of the internal states of the

two-level atom, the geometric picture loses appeal when decay is included—in particular the simple

precessing vector model no longer holds, and so ultimately it is simpler to solve the optical Bloch

equations algebraically when the complete description is required.

2.6.6 Solving the optical Bloch equations

The optical Bloch equations (2.40–2.42) are linear differential equations with constant coefficients,

so the solution can be phrased in terms of a superposition of exponentials. The full solution to the

‘Bloch matrix’ was first given by Torrey [81]. However, because of the adiabatic following property,

it will be assumed that the atom has always achieved a steady state which is defined by the fixed

values of the detuning and decay constant, and the parametrically included field. The transient

response as the atom moves about in the spatially varying field will be ignored. Setting the time
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derivatives to zero in the optical Bloch equations (2.40–2.42) leads to the solutions

ust =
Ω

2

∆

∆2 + (Γ2/4) + (Ω2/2)
(2.48)

vst =
Ω

2

Γ/2

∆2 + (Γ2/4) + (Ω2/2)
(2.49)

wst +
1

2
= σst

bb =
Ω2

4

1

∆2 + (Γ2/4) + (Ω2/2)
(2.50)

where wst + 1
2 is the steady state population of the upper level. Note that the in quadrature

component of the dipole, vst, and the upper state population behave as a Lorentzian absorption

curve centred on ∆ = 0 when ∆ is varied. On the other hand, the in phase component, ust, varies

as a dispersion curve. This contrasting behaviour is depicted schematically in Figure 2.3.

A B

  

Figure 2.3: Contrasting behaviour as a function of ∆: A) Lorentzian absorption, B) dispersion.

2.7 The external degrees of freedom

2.7.1 An Ehrenfest equation

The assumption of adiabatic following allows the internal dynamics, now expressed as solutions

to the optical Bloch equations, to be separated from the external ones. The following method of

recombining the two came in a breakthrough paper by Cook [26].

Writing the total Hamiltonian in terms of P and R, which are the momentum and position of

the centre of mass of the atom respectively, gives

H =
P2

2m
+Hinternal +HR − d · (Ec(R, t) + Eq(R)). (2.51)
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The Heisenberg equations of motion are the quantum analogues of Hamilton’s equations, and when

applied to the Hamiltonian (2.51) give

Ṙ =
∂H

∂P
=

P

m
(2.52)

Ṗ = mR̈ = −∂H
∂R

=
∑

j=x,y,z

dj∇R(Ecj(R, t) + Eqj(R)). (2.53)

Cook’s contribution was to take the expectation value of Equation (2.53) over the atomic wave-

function, giving an Ehrenfest equation

m
〈
R̈
〉

=
∑
j

〈dj∇R(Ecj(R, t) + Eqj(R))〉 . (2.54)

Taking rG = 〈R〉 as the centre of the atomic wave packet, the left-hand side of Equation (2.54)

becomes mrG, which is the force applied upon the atom. The right-hand side of Equation (2.54)

also simplifies.

i) Small electron radius. As mentioned in Section 2.3, electron radii in the atom are charac-

terised by the Bohr radius which is much smaller than the spatial variation of the driving

field. It is justifiable then to replace the operator R with its mean value 〈R〉 = rG. Note that

the comparison scale here is the Bohr radius, and not the de Broglie wavelength associated

with the atom’s external motion.

ii) Averaging out Eq. It seems reasonable (and can be shown rigorously) that the expectation

of the gradient of the quantum radiation field at rG is zero.

iii) Average dipole. The very short time scale of the internal dynamics in comparison to the

external ones, implies that in the expression for the expectation of the dipole, 〈d〉, given by

Equation (2.43), u and v can be replaced by their steady state values given in Equations (2.48)

and (2.49), giving 〈d st〉.

Finally then, under these, and all the previous approximations, the Ehrenfest equation (2.54)

describing the force of the light upon the atom takes the form

mr̈G =
∑

j=x,y,z

〈
d st
j

〉
∇Ecj(rG, t). (2.55)

2.7.2 The dissipative and reactive forces

All that remains in the determination of the light force acting on the atom is the insertion of the

classical field

Ec = Ec(r, t) = PE0(r) cos(ωLt+ φ(r)) (2.56)
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into Equation (2.55). P is the polarisation. Both the amplitude, E0(r), and the phase, φ(r), vary in

space to allow for a very general situation. The time origin can however, without loss of generality,

always be arbitrarily chosen so that the phase, φ(r), is zero at the position of the atom r = rG
9:

φ(rG) = 0. (2.57)

The field (2.56) now coincides with that chosen for the derivation of the optical Bloch equations,

Equation (2.5). Taking the gradient of the electric field gives

∇Ecj = Pj (cos(ωLt)∇E0 − sin(ωLt)E0∇φ). (2.58)

The steady state, average, dipole is

〈d st
j 〉 = 2(dab)j(ust cosωLt− vst sinωLt) (2.59)

and its product with Equation (2.58) can now be integrated over an optical period (around a femto

second) to obtain the mean radiative force upon the atom

F =
∑
j

〈dj〉∇Ecj = (P · dab)(ust∇E0 + vstE0∇φ) (2.60)

which is composed of two terms; the so called reactive force which depends on the amplitude

gradient and the in-phase portion of the dipole,

Freact = (P · dab)ust∇E0 (2.61)

and the dissipative force, proportional to the phase gradient and the quadrature component of the

dipole

Fdissip = (P · dab)vstE0∇φ. (2.62)

2.7.3 Force due to a travelling wave

In the presence of a plane, travelling, wave, which has a phase gradient but no amplitude gradient,

Ec(r, t) = PE0 cos(ωLt−K · r). (2.63)

Only Fdissip survives and may be written,

Fdissip = Ωvsth̄K (2.64)

9A non-zero φ(rG) could always be retained (parametrically) throughout the derivation of the optical Bloch

equations, but it would just come along for the ride. As soon as the time integral over an optical period is taken in

Equation (2.60) the specific value of the phase becomes irrelevant.
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a force which acts in the direction of propagation of the wave. Comparison with Equation (2.50)

shows that the dissipative force may also be written

Fdissip = h̄K
Γ

4

Ω2

∆2 + Γ2/4 + Ω2/2
= Γσst

bbh̄K (2.65)

and this leads to the following physical insight: the dissipative force is associated with the absorp-

tion followed by spontaneous decay cycle of the atom. The rate at which this cycle proceeds is

governed by the probability for the atom to be in the upper state, σbb, multiplied by the sponta-

neous decay rate (which is the decay rate for an atom which, it must be remembered, is already

in the excited state). The rate of change of the momentum of the atom is therefore this modified

decay rate times the single photon momentum transferred upon absorption. An atom moving into

the travelling wave will have its forward momentum reduced by scattering light into random direc-

tions. The absorption of energy from the laser modes (and consequent loss into the vacuum) with

the familiar Lorentzian dependence on detuning from resonance, leads to the the label ‘dissipative’

force.

2.7.4 Force due to a standing wave

The superposition of two travelling waves results in a standing wave

Ec(r, t) = PE0 cosKx cosωLt. (2.66)

This time the phase is constant but the amplitude varies in space. Superficially then, it appears

that Fdissip is eliminated, and this is occasionally stated. One has to be careful though. It is

true that the average force Fdissip defined above does vanish, but this does not imply that there

is no force due to spontaneous emission in a standing wave. This situation is an artefact of the

symmetry of the two counter-propagating waves: being equally likely to take a photon from either

mode leads, after many absorptions, to an atomic momentum distribution equally arranged about

zero, but with a width corresponding to a random walk. One must not confuse an atom which

really does have zero momentum, and one with a symmetrical distribution about zero10. For the

purposes of spontaneous emission in the presence of symmetrical modes, such as in a standing

wave, the dissipative force must be treated separately for each mode.

The spatially varying amplitude of the standing wave means the reactive force is also present

Freact = − h̄∆

2

∇
(
Ω2/2

)
∆2 + Γ2/4 + Ω2/2

. (2.67)

10It is worth noting that the Ehrenfest equation, being a description of a local average itself, is unable to distinguish

between wavepackets which are for instance, symmetrically split say, from those with a monotonic profile. Such

splitting must occur, however, on the scale of the Bohr radius and so can be ignored here.
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Note that the sign of this force can be reversed by switching from red detuning, ωL < ω0, to

blue detuning, ωL > ω0, and vice versa. The dispersive (as opposed to Lorentzian absorption)

dependence of this force is because it stems from a redistribution of energy between the laser

modes, but with no loss to the vacuum. The atom takes photons from one mode and deposits

them in the other by absorption and stimulated emission cycles. Each cycle transfers 2h̄K of

momentum to the atom.

It is crucial for the work in subsequent chapters to observe that by operating with large enough

detunings, the dissipative force in a standing wave can be neglected in comparison to the reactive

force. If, and it’s a big if, atoms can be selected with an internal structure that will still admit a

two-level description despite larger and larger detunings (that is, other transitions are not excited),

then, the model of long interaction times mediated solely by the coherent reactive force advocated

by the majority of this thesis, becomes better and better.

2.7.5 The standing wave potential

The coherent nature of the reactive force implies that it might derive from some potential

Freact = −∇V (2.68)

and indeed Equation (2.67) is readily integrated giving

V =
h̄∆

2
ln

(
1 +

Ω2/2

∆2 + Γ2/4

)
. (2.69)

When the detuning is large in comparison to the Rabi frequency, the logarithm can be expanded

to give

V =
h̄∆

2

Ω2/2

∆2 + Γ2/4
(2.70)

where Ω(x) contains the spatial dependence

Ω(x) =
dabE0 cosKx

h̄
. (2.71)

This remarkable result supplies the external potential which a two-level atom in a detuned standing

wave experiences. All the complexities of the internal structure are hidden away within it. With

large detunings the atom is barely excited at all by the radiation field and is almost always in the

ground state (limiting the possibility of a spontaneous emission)—the above potential is really for

a ground state atom. Intuitively speaking, it is as if the potential results from a virtual transition

where the atom flashes up to the excited state and back again. Alternatively it may be viewed as

an AC Stark shift of the ground state [52] (but then the natural width of the upper state, Γ, does

not appear in the formula). Elaborate theories do exist describing the ‘bipotential’—one for the
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dressed ground state and one for the dressed excited state—which results when there is only a small

detuning, and the atom is frequently in the upper state. With a weak field, the Rabi frequency is

small and the atom spends a relatively long period of time in either the upper or lower state and

so really does move about in either of the two potentials. Transitions between these two potentials

only occur at the most intense parts of the standing wave—the antinodes. Such interpotential flips

can then be couched in the language of Landau-Zener transitions between the dressed states. This

fascinating behaviour forms a significant part of the book by Kazantsev, Surdutovich and Yakovlev

[45], but is of limited use if the interaction is long enough that spontaneous emission might occur

(likely because of the small detuning) and will not be discussed further here.



Chapter 3

Classical atomic motion

3.1 Motivation

Under the conditions discussed in Chapter 2, the external degrees of freedom of an atom moving

in a standing wave laser beam are governed by the potential given by Equation (2.70). This

was derived using a quantum mechanical internal structure for the atom, but that in itself sets

no restriction on whether the external motion of the atom should be considered as classical or

quantum. Indeed, the character of the external motion is determined by the de Broglie wavelength

of the atom, and this is in turn set by the strength of the potential. A strong potential can impart

a large momentum to the atom producing much more classical behaviour than a weak potential

capable of transferring only a small number of momentum quanta. A useful device for setting

the value of the de Broglie wavelength is to vary the magnitude of h̄. Of course h̄ really has the

value found in nature, so modifying h̄ must in practice be achieved by varying parameters in the

potential such as the electric field strength1, in line with the statements above. The smaller h̄

becomes, the smaller the resulting λdB. As λdB becomes significantly smaller than the scale of

variation of the potential (set by λlaser) one enters the realms of semiclassical mechanics and a

rich set of phenomena, caustics, begins to emerge. Geometrical optics (classical mechanics) is the

limit as λdB → 0. This limit is not a smooth one however, and the phenomena emergent at the

onset of the semiclassical regime come to dominate the behaviour, and in some regions are even

singular, demarking the failure of the classical mechanics. By examining the classical mechanics,

this chapter cuts straight to the chase and focuses upon the features which in this limit are singular,

and form the main preoccupation of this thesis.

1Confusion might arise because the potential (Equation (2.70)) itself contains h̄. This is a different h̄, pertaining

to the internal dynamics, and its value is fixed at 1.05457× 10−34Js.

27
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x

z

Figure 3.1: The washboard potential.

3.2 The classical Hamiltonian

Writing the potential given by Equation (2.70) out in full

V =
d2
abE2

0

4h̄

∆

∆2 + Γ2/4
cos2Kx (3.1)

leads to the definition

V0 ≡ −
d2
abE2

0

4h̄

∆

∆2 + Γ2/4
(3.2)

giving

V = −V0 cos2Kx. (3.3)

The minus sign is inserted for convenience so that motion near the origin is in a potential well.

The detuning, ∆, can be positive or negative so one is always at liberty to define things in this

way. The motion of a particle in a 2-dimensional region having the above potential in the x, or

transverse, direction, and a constant potential in the z, or longitudinal direction, is reminiscent of

the motion of a marble on a ‘washboard’, see Figure 3.1, and obeys the Hamiltonian

H =
P 2
x

2m
+
P 2
z

2m
− V0 cos2Kx = E. (3.4)

Since the potential does not explicitly contain z, motion in this direction is constant with time

and Pz is conserved. As explained in Chapter 1, the large atomic momentum in the longitudinal
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direction means the motion in this direction is largely ignorant of the existence of the potential

‘slab’, and so is almost unaffected by entry to, and exit from, the laser beam. The only influence of

the potential upon the longitudinal motion is taken to be the very slight increase in Pz depending

upon the transverse entry point, so that the energy is conserved for all the trajectories. If the

atom beam is perpendicular to the laser then, initially, Px = 0, so the longitudinal momentum of

the atoms is

Pz =
√

2m
√
E + V0 cos2Kx0 (3.5)

where x0 is the transverse entry point into the potential. The trajectory of the chosen atom is

labelled by x0.

The motion in the washboard potential is really only 1-dimensional—in the transverse direction.

The constant longitudinal progress of the atom is super-imposed on top of this. The transverse

motion is formally identical to that of an inflexible pendulum, and the Hamiltonian (3.4) is the

pendulum Hamiltonian.

3.3 Phase space

P
x

x

Figure 3.2: The phase space of a pendulum.

Before solving for the motion prescribed by the Hamiltonian (3.4), it is instructive to examine

the phase space structure it generates. Figure 3.2 shows some energy contours in the (x,Px) plane.
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There are three contours for which the atom is in libration—trapped in a particular well. The places

where the energy contours cut the x-axis are the turning points of the motion in configuration space

(x), and the gradient of the energy contour with respect to x becomes infinite. The places where

they cut the Px axis, although well behaved in configuration space, are the turning points in

momentum (Px) space, where the gradient of the energy contour w.r.t. Px becomes infinite.

The separatrix curve is at the exact border between libration and rotation. The turning points

of the separatrix occur at the potential’s maxima; the barrier tops. The motion of the particle at the

separatrix turning point is infinitely slow. For perpendicular incidence, the separatrix represents

the most energetic classical2 contour possible—it is impossible for the atom to go into rotation.

For non-perpendicular incidence, the atoms start with a non-zero transverse momentum and so

are able to roll over into the next well, which is rotation (for a pendulum this is the motion which

goes right over the top—through the upper, unstable, equilibrium point). Two rotation contours

are depicted in Figure 3.2

3.4 Geometrical ray optics

3.4.1 Solution of the trajectory equation

Particles subject to the Hamiltonian (3.4) execute pendulum motion independently in the trans-

verse direction, but this is stretched out along the longitudinal direction. Re-expressing the trans-

verse momentum in Equation (3.4) gives

m

2

(
dx

dt

)2

+
P 2
z

2m
− V0 cos2Kx = E. (3.6)

The conservation of Pz means that time and longitudinal distance z are proportional, for z =

tPz/m, and so time can be eliminated in favour of z

dx

dt
=
dx

dz

dz

dt
=
Pz
m

dx

dz
(3.7)

so solutions for the trajectories in the (x, z) plane can be sought. For perpendicular incidence, the

initial condition at the front edge of the slab (which is defined to be at z = 0) is

dx

dz
= 0. (3.8)

Inserting the value of the longitudinal momentum for a transverse entry point, x0, given by Equa-

tion (3.5), together with Equations (3.7) and (3.8) into the Hamiltonian (3.6), gives the trajectory

equation

P 2
z

2m

(
dx

dz

)2

= V0(cos2Kx− cos2Kx0) (3.9)

2Quantum mechanically the above barrier eigenstates are weakly excited even for perpendicular incidence.
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and so the problem is reduced to quadrature∫ x′=x

x′=x0

dx′√
cos2Kx′ − cos2Kx0

=

∫ z′=z

z′=0

√
2mV0

Pz
dz′ . (3.10)

The right hand side is integrated immediately, and the l.h.s. is soon converted into a standard

form, ∫ x′=x

x′=x0

dx′√
cos2Kx′ − cos2Kx0

=

∫ x′=x

x′=x0

dx′√
sin2Kx0 − sin2Kx′

=

√
µ

K

∫ Kx′=Kx

Kx′=Kx0

d(Kx′)√
1− µ sin2Kx′

(3.11)

with

µ ≡ 1

sin2Kx0

. (3.12)

The structure of the integrand matches that of an elliptic integral, but the integration range must

first be altered to give the correct limits∫ Kx

Kx0

(. . . ) d(Kx′) =

∫ Kx

0

(. . . ) d(Kx′)−
∫ Kx0

0

(. . . ) d(Kx′) (3.13)

then ∫ x′=x

x′=x0

dx′√
cos2Kx′ − cos2Kx0

=

√
µ

K
[F(Kx|µ)− F(Kx0|µ)] (3.14)

where F(φ|m) is the incomplete elliptic integral of the first kind [1], with amplitude φ and parameter

m. See Appendix A for a summary of the properties of the elliptic integrals.

To ensure that the integrand of Equation (3.11) is explicitly real throughout the integration

range, µ must satisfy

0 ≤ µ ≤ 1 (3.15)

which from the definition (3.12) is clearly not the case. This can be remedied by use of the

transformation [1]

F(φ|m) =
1√
m

F(θ|1/m) , sin θ =
√
m sinφ (3.16)

which, when applied to the two terms on the r.h.s. of Equation (3.14), gives

√
µ

K
F(Kx|µ) =

1

K
F(arcsin (

√
µ sinKx) |1/µ) (3.17)

√
µ

K
F(Kx0|µ) =

1

K
F(arcsin (

√
µ /
√
µ ) |1/µ)

=
1

K
K(1/µ) (3.18)

where K(m) = F(π/2|m) is the complete elliptic integral of the first kind. In this way the quadra-

ture Equation (3.10) becomes

K
√

2mV0

Pz
z = F(arcsin(

√
µ sinKx)|1/µ)−K(1/µ). (3.19)
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As it stands, Equation (3.19) is not very useful since one wants to express the transverse position

x as a function of longitudinal distance travelled, z, not the other way around as above. This

inversion can be accomplished using Jacobian elliptic functions [1], which are defined so that if

u ≡ F(φ|m) (3.20)

then the two elliptic functions sn(u|m) and cn(u|m) are

sn(u|m) = sinφ (3.21)

cn(u|m) = cosφ. (3.22)

Again, refer to Appendix A for more background information.

Administering these transformations to Equation (3.19), the transverse position as a function

of z gives the result (well known of course for a pendulum, and also in the diffraction of light by

ultrasound [16]),

sinKx =
1
√
µ

sn

(
K
√

2mV0z

Pz
+ K

(
1

µ

)∣∣∣∣ 1

µ

)
. (3.23)

The instantaneous angle between the trajectory and the z-axis, ϑ, is extremely small in super-

sonic beam atom optics, usually of the order of 10−5 radians, and is determined by the ratio of the

two components of the momentum, which is in turn equal to the gradient

ϑ ≈ tanϑ =
Px
Pz

=
dx

dz
. (3.24)

Since Pz is a constant, transverse momentum and angle are proportional, and the two terms will

often be used interchangably. The (transverse) momentum space description of the trajectories is

found by substituting the configuration space solution, Equation (3.23), into the original differential

trajectory equation, (3.9), and making use of the identity sn2(u|m) + cn2(u|m) = 1,

ϑ ≈ dx

dz
=

√
2mV0

Pz
√
µ

cn

(
K
√

2mV0z

Pz
+ K

(
1

µ

)∣∣∣∣ 1

µ

)
. (3.25)

It is convenient to define certain dimensionless quantities which may be referred to as the ‘classical

transverse position’, xc, and the ‘classical longitudinal position’, zc,

xc ≡ Kx (3.26)

zc ≡
√

2mV0Kz

Pz
. (3.27)

Strictly speaking, since Pz is a very weak function of x0, as given by (3.5), then zc should also

depend very slightly upon x0. The classical distance, zc, would then be different for each trajectory.

However, the complete domination of Pz over Px means that one is usually safe in neglecting this

fine adjustment. The exception comes when considering the phase along a ray, which involves
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exponentiating the momenta, as will be discussed in Section 3.4.3 and in Appendix B. Otherwise

zc will be assumed to be independent of x0. In terms of the ‘classical’ scaled distances, the

configuration space trajectory equation, (3.23), and the momentum space trajectory equation,

(3.25), reduce to

sinxc =
1
√
µ

sn(zc + K(1/µ) | 1/µ) (3.28)

ϑc ≈
dxc
dzc

=
1
√
µ

cn(zc + K(1/µ) | 1/µ) (3.29)

where the previous small angle approximation is taken to be an equality. Figure 3.3 shows a

selection of configuration space geometrical ‘rays’ for 41 different entry points x0 equally spaced

across one cell of the washboard potential. Figure 3.4 shows the same rays in momentum space.

Such pictures have appeared before in the context of the diffraction of light by ulrasound [16, 61, 49]

but not in reference to atom optics. The review article [2] does contain an example of a classical

atomic momentum distribution in a standing wave, generated by calculating the number of rays

which, at a particular depth z, have angles lying between ϑ and ϑ + dϑ. When these slices, each

of which is for a consecutive value of z, are laid next to one another, the result is a course grained

interpretation of Figure 3.4. Similar pictures, in the individual slice format, will also be presented

later in this chapter as they are the best way to make a quantitative comparison between the

quantum and the classical mechanics.

After comparing the picture of the momentum distribution as a function of z with the quantum

version and stating that it “illustrates that many of the features of the light atom interaction can be

understood classically”, reference [2] goes no further. The reason is that the essence of the classical

mechanics lies in the trajectories themselves, a full understanding of which cannot come from the

result of their summation, such as in a momentum distribution. In attempting to understand the

quantum mechanics however, it is indeed families of trajectories which are important.

3.4.2 Simple harmonic motion

The simple pendulum corresponds to the small angle solution of the Hamiltonian (3.6). The

equivalent situation for atoms follows in exactly the same way: by restricting x0 to be small. Then

the atoms roll around only in the very bottom of the washboard valleys, and the potential they

experience is well approximated by

V = V0(x2 − 1) (3.30)

which is of course, apart from the irrelevant constant, −V0, the simple harmonic potential. Os-

cillations in a harmonic potential are very special since they are all isochronous. The sine curve
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Figure 3.3: Configuration space ray trajectories
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Figure 3.4: Momentum space ray trajectories
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solutions

xc =
1
√
µ

sin(zc + π/2) (3.31)

in the potential (3.30) all have exactly the same period in z (∝ t). In particular this means the

atom rays are all focussed exactly onto the z axis at the points

zc = (2m+ 1)
π

2
, m = 0, 1, 2, . . . (3.32)

and indeed the small x0 trajectories of Figure 3.3 act in this way. This is why lenses are parabolic

of course, and if the atoms could be constrained to enter only the parabolic valley floors then the

standing wave would act as an atomic lens. Such a device might prove crucial in atom lithography

in the semi-conductor industry3 [54]. The interest here, however, is precisely the smearing of the

focus points by the non-harmonic parts of the standing wave. The orbits starting higher up the

valley sides miss the foci. The correct description of this apparent anomaly is through catastrophe

optics [17].

3.4.3 Caustics and catastrophe theory

Impossible symmetry

Focus points are the most intense parts of an optical field, and as such deserve special attention.

It is therefore an important paradigm shift to realise that the familiar focus point (or line . . . ) is

highly unlikely—perhaps even impossible for a macroscopic system. This is because they require

absolutely perfect symmetry: in the 2-dimensional case, the lens must be perfectly parabolic.

Clearly this is rarely the case, and, critically, foci are unstable to perturbations in the symmetry—

when the parabolic wells become a sinusoid, the foci burst into the cusped structures of Figures 3.3

and 3.4. The focus points have become caustics4. Like a focus point, caustics are intense, since they

are formed from the locus of points where rays touch—a finite amount of energy is concentrated

into an infinitely small region—and so both focal points and caustics are singularities of the ray

theory. Unlike focus points, caustics have an extended structure and their basic morphology

is stable to further perturbation. A focus is best thought of as the limiting form of a caustic

as the perturbation in the symmetry is taken to zero. Prior to catastrophe optics, caustics (or

‘aberrations’ as they are often referred to—a very revealing choice of terminology) were dealt

with in a piecemeal fashion—each geometry and the manner in which its symmetry is broken,

was treated, by and large, individually. Catastrophe optics systematically categorises the different

3The small de Broglie wavelength of atoms manipulated by laser standing waves potentially allows a much finer

pattern of tracks to be etched onto computer chips than conventional optical lithography, which is diffraction limited

to track spacings of about 100nm.
4The word caustic comes from the Greek ‘to burn’.
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types of caustics which can occur depending on the number of available parameters and variables

of the system. The concrete basis for the categorisation is through what is known in catastrophe

theory as the generating function, and will be referred to here as S; in optics this is just the optical

distance and in mechanics it is the action (in the sense of action-angle variables).

The generating function

Consider a plane wave propagating in two dimensions with a wave vector K = (Kx,Ky),

ψ = cos(Kxx+Kzz). (3.33)

The optical distance, µ, the wave has travelled measures the change in the phase of the wave along

its path, and in this case it is the sum Kxx+Kzz. In an inhomongeneous medium the wavevector

components depend on position, and the optical distance must be found by integrating along the

path of propagation. If dq is an infinitesimal configuration space path element, then

µ =

∫
K(q) · dq. (3.34)

The parallel quantity in mechanical systems is the action, S, which stems from the relation p = h̄K,

and so the total action in configuration space is given by a line integral along the classical path

(see [76], or Appendix B)

S = h̄µ =

∫ q

q0

n∑
j=1

pjdqj (3.35)

where q represents the configuration space co-ordinates. The weak x0 dependence of the longitu-

dinal momentum Pz is introduced through Equation (3.5), and the transverse momentum for an

atom entering the potential at position x0 is, from the energy equation (3.4),

Px =
√

2mV0

√
cos2Kx− cos2Kx0. (3.36)

Substituting the momenta into the expression for the action (3.35) gives

S =

∫
Pz(x0) dz +

√
2mV0

√
cos2Kx− cos2Kx0 dx (3.37)

where dx and dz are constrained to lie along the path of integration. However, the classical paths—

the rays—have already been figured out, as functions of z, directly from the energy equation (3.6).

The path integral (3.37) may thus be written as a simple integral in z, with

dx =
dx

dz
dz. (3.38)

Noting that Px may be written as a function of z from

Px
Pz

=
dx

dz
(3.39)
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where dx/dz is the solved momentum space trajectory (3.25), the configuration space action be-

comes

S =

∫ z

0

Pzdz
′ + Pz

(
dx

dz′

)2

dz′. (3.40)

So substituting in the scaled momentum trajectory solution (3.29), the scaling definitions (3.26),

(3.27), and the parameter (3.12), the action becomes

S =
P 2
z (x0)

K
√

2mV0

zc(x0)

+

√
2mV0

K
sin2 x0c

∫ zc

0

cn2
(
z′c(x0) + K(sin2 x0c)

∣∣ sin2 x0c

)
dz′c.

(3.41)

The remaining integral can be written in terms of the known result [1]

m

∫ u

0

cn2(t|m)dt = E( arcsin[sn(u|m)] |m) + (m− 1)u (3.42)

where E(φ|m) is an elliptic integral of the second kind (see Appendix A). So now the action

becomes

S(zc) =
P 2
z (x0)

K
√

2mV0

zc(x0)

+

√
2mV0

K

[
E
(
arcsin

[
sn(zc(x0) + K(sin2 x0c) | sin2 x0c)

] ∣∣ sin2 x0c

)
+ (sin2 x0c − 1)zc(x0)− E(sin2 x0c)

]
.

(3.43)

The action appears to be only a function of z and x0, and this is indeed true once a value of x0,

which labels the paths, has been chosen, since the transverse position x, as a function of z, is known

via the trajectory equation. However, one could also choose a position in configuration space, (x, z)

and ask what is the action along the allowed classical paths to that point. From this point of view,

x0 is a variable that labels a classical path compatible with the condition that the path goes to

(x, z). In general there may be more than one path—each labelled by its value of x0. Recognising

that the amplitude of the elliptic integral in Equation (3.43), sn(zc + K(sin2 x0c) | sin2 x0c), is

actually the configuration space trajectory equation (3.28), and rewriting the second of the zc

terms5 using the uninverted trajectory equation (3.19), the x dependence of the action can be

restored (one is in effect undoing the preordained knowledge of x—that comes from choosing a

5As explained in Appendix B, the total action is the sum of the two component actions—one depending only on

x, the other only on z.
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particular value of x0—and thus releasing x0 to be a variable)

S(x0c ;xc, zc) =
P 2
z (x0)

K
√

2mV0

zc(x0)

+

√
2mV0

K

[
E

(
arcsin

[
sinxc
sinx0c

] ∣∣∣∣ sin2 x0c

)
+ cos2 x0cF

(
arcsin

[
sinxc
sinx0c

] ∣∣∣∣ sin2 x0c

)
− E(sin2 x0c)− cos2 x0cK(sin2 x0c)

]
.

(3.44)

Reiterating, in Equation (3.44) it is understood that as soon as the values of xc and zc are specified

only certain values of x0 are allowed: these are of course the solved classical trajectories which con-

nect (x0c ,0) to (xc,zc). The notation S(x0c ;xc, zc) reflects this significance: x0c is a state variable

and the semicolon separates it from the control parameters xc and zc. The control parameters set

conditions on the rays: suppose, for instance, that the detector were positioned at (xc,zc), then

one is only interested in the rays which pass through that point. The ‘control space’, generally

spanned by co-ordinates C = C(c1, c2, . . .), but where here there are only c1 = xc and c2 = zc, is

the space in which the caustics live. Examining Figures 3.3 and 3.4 one can see that by choosing

different values of (xc,zc) one can search out the caustics. The state variable x0 labels the possible

rays which match the conditions set by the control parameters. In this case the ‘state space’,

s = s(s1, s2, . . .), has only one dimension, s1 = x0c , and the control space two, but in general they

may have more (or less). The codimension K is defined to be the dimensionality of the control

space minus the dimensionality of the caustic. K gives the minimum number of control space

co-ordinates which must be varied to find the caustic.

3.4.4 The fold and cusp catastrophes

A comprehensive introduction to the Arnol’d-Thom catastrophe theory [5, 80] is beyond the scope

of this discussion, but certain remarkable results6 will be loosely given here. In particular, catas-

trophe theory makes the following very powerful statement: subject to certain very reasonable

conditions, the only structurally stable catastrophes (caustics) which can occur in a 2-D control

space are the fold, which has K = 1, and the cusp, which has K = 2. Thus the two allowed types

of caustics are therefore lines (the folds) and points (the cusps) in the control space plane (x,z).

Furthermore, the generating function in the vicinity of these caustics maybe written, up to a dif-

feomorphism, as one of the normal forms: polynomials which are linear in the control parameters

C, but non-linear in the state variables s. A diffeomorphism is a smooth (differentiable), reversible

transformation of the co-ordinates; let C̄ and s̄ be the transformed variables. The diffeomorphism

6Reference should be made to the very readable review of catastrophe optics by M. V. Berry, [17].
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relates different actual realisations of catastrophes which are essentially the same—up to a rotation

or translation for instance. In general though, the transformation may be any which meets the

criteria of a diffeomorphism. In practice, this means finding the transformation which converts the

particular generating function one is dealing with into its normal form may be tricky. For the fold

one has the cubic normal form

S(s̄; C̄) =
s̄3

3
+ C̄s̄ (3.45)

whereas the cusp has a quartic normal form

S(s̄; C̄) =
s̄4

4
+ C̄2

s̄2

2
+ C̄1s̄. (3.46)

In reference to Figures 3.3 and 3.4, the folds form the majority of the caustic structure which is

along envelopes formed from the points where the rays just overlap. The cusps are the singular

points where the lower and upper arms of each fold meet. They are situated where the parabolic

focus points would be.

The classical trajectories are those along which the action is stationary w.r.t. infinitesimal

variations of the path. This may be interpreted as saying that the classical paths are the result of

the constructive interference of quantum waves propagating through the system. As the wavelength

is reduced, destructive interference channels all the intensity onto the classical paths. Within this

semiclassical view of the world, the significance of the action is that it acts as a phase for the

quantum waves. In specifying the normal forms (3.45) and (3.46), the machinary of catastrophe

theory has therefore specified the form of the wavefunction near these caustics.

The equivalence of the action (3.44) to the normal forms (3.45) and (3.46) will not be demon-

strated here—the algebra produced by the elliptic functions is too complicated. This will wait

until after the quantum mechanics has been introduced. The normal forms will then appear quite

naturally in Chapter 9. The significance of the normal forms will be discussed further in Section 3.6

3.5 Classical scattering

3.5.1 The angular intensity distribution

Upon emerging from the interaction region into free space, the atoms travel in straight lines

towards the farfield where they are detected. Thus the farfield scattering pattern produced after an

interaction distance zc = D is exactly that found at the position zc = D in Figure 3.4. Considered

as a probability distribution, the probability I dθ that a particle is scattered into an angle lying

between θ and θ+dθ is equal to the probability Gdx0c that it arrives at a transverse position lying

between x0c and x0c + dx0c , where all the x0c contained in this strip correspond to trajectories
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which at zc = D lie in the specified angular range. One writes

I(θ) dθ = G(x0c) dx0c . (3.47)

The goal is to find I(θ), which gives the relative intensity (probability) as a function of angle. So,

rearranging,

I(θ) = G(x0c)
1

| dθdx0c
|
. (3.48)

Generally though, more than one distinct classical path can have the same transerse momentum

at the point D, so the relative intensity becomes the sum over these paths, each labelled by its

entry point xq0c

I(θ) =
∑
q

G(xq0c)
1

|{ dθ
dx0c
}q|

(3.49)

where {dθ/dx0c}q means dθ/dx0c evaluated at xq0c .

3.5.2 Ray tubes

A classical trajectory is an infinitely fine path with no width in x0. A uniform, infinitely wide

atomic beam has G(x0c) equal to a constant determined by the normalisation. Thus there are

an infinite number of possible trajectories which are all equally pursued by point particles. In

deriving the angular intensity distribution one implicitly introduces the concept of a ray tube—

something which has an initial width dx0c and has associated with it an amplitude |dθ/dx0c |−1/2.

The amplitude quantifies the angular behaviour of the neighbouring rays which make up the tube:

if there is only a small angular variation at zc = D, so that the rays lying in the range dx0c about

x0c are mostly travelling in the same direction, then the amplitude is large and that direction will

consequently have large intensity. The square of the amplitude is actually the Jacobian of the

mapping between the state space and the control space.

Ray tubes are objects associated with families of rays: a ray tube constitutes the first intuitive

step towards a wave description. One can associate with each tube a phase given by the action

along the classical path taken by, say, the central ray of the tube. The intensity received at a point

is the modulus squared of the interfering ray tube sum

ψ(x, z) ≈ N
∑
q

1√
{ dθ
dx0c
}q

eiS̃q(x0c ;ϑc,zc)/h̄ (3.50)

where N is the normalisation, and the amplitude of the qth ray tube is

1√
{ dθ
dx0c
}q
. (3.51)
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The phase S̃q(x0c ;ϑc, zc) is the momentum space analogue of that given by Equation (3.44). Re-

markably then, an approximation to the wavefunction has been found using only classical mechanics

and some intuition. A much fuller derivation is given in Appendix B. Unfortunately though, the

interfering ray tube sum contains a serious flaw. Caustics have been defined as regions where the

individual rays touch—the envelope of a ray family—and are therefore places where a ray tube

is focused. All the constituent rays are travelling in the same direction. Referring to Figure 3.4,

along an angular caustic the contributing rays have no variation in angle, and each ray represents

an infinitesimal change in x0c . This implies that the amplitude is infinite on the caustics, so the

approximation (3.50), and the classical intensity distribution (3.49), break down at exactly the

most interesting parts of the scattering pattern.

Note that the modulus of the amplitude has not been taken in the wavefunction expression

(3.50). This is because the phase of the amplitude must also be taken into consideration. When a

ray takes part in a caustic the inverse of the square of the amplitude, dθ/dx0c has a simple zero,

and so the phase of the amplitude abruptly changes by π. This is sometimes referred to as ‘the

phase anomaly at focus’ [19]. If this phase is an increase then Equation (3.50) can be written

ψ(x, z) ≈ N
∑
q

1√
|{ dθ
dx0c
}q|

eiS̃q(x0c ;ϑc,zc)/h̄−imqπ/2 (3.52)

where mq is known as the Maslov index and is a positive integer recording the number of caustics

the qth ray has contributed to.

3.5.3 The deflection function

Clearly ϑc, as given by Equation (3.29), is responsible for determining the classical scattering

behaviour and is sometimes referred to as the deflection function. An examination of the behaviour

of this deflection function will lead to a better understanding of the scattering information contained

in Figure 3.4. An immediate consequence of Equation (3.29) (or indeed of Equation (3.9)) is that

the maximum angle to the z-axis that a ray can achieve is

ϑcmax = 1. (3.53)

Physically this corresponds to the maximum transverse momentum that an atom can gain by

rolling from the top of a barrier to the valley floor. Figure 3.5 depicts the behaviour of the

deflection function at various different depths through the interaction region. Each picture shows

the deflection angle achieved by atoms which, at zc = 0, had initial transverse position x0c . The

maxima and minima of these graphs are places where the derivative of the deflection w.r.t. x0c

vanishes and so show which x0c contribute to caustics at that depth. Each graph is separated from
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Figure 3.5: A series of plots of the deflection function ϑc(x0c , zc) as a function of the initial

transverse position x0c , for selected values of zc. The top left plot has zc = 0, then zc increases

in steps of 3π/2 to the bottom right picture which has zc = 27π/2. The maxima and minima

represent caustics.
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the next by a longitudinal depth, zc, of 3π/2. By taking the small angle limit of the deflection

function equation (3.29) (which corresponds to the parabolic well) the momentum-space-caustic

cusp tips, which lie along the z-axis, are found to be located at

zc = 0, π, 2π, 3π, . . . (3.54)

So the deflection graphs alternately lie on, and halfway between, depths at which new caustics are

born. This is reflected in the flatness of alternate graphs close to x0c = 0 which gives rise to the

very intense cusp tips. As one moves beyond the cusp tips, the caustics flow outwards as folds

and build up at the edges. As the folds move outwards their maxima and minima grow shaper—a

narrower range of x0c contribute to them and so they grow weaker. The second derivative of ϑc

with respect to x0c , evaluated at the caustic, gives a rough estimate of this behaviour.

3.5.4 A crude calculation of the intensity distribution

To calculate the intensity at a particular point in either configuration or momentum space, whether

using the classical or the interfering ray tube expressions, requires a knowledge of which trajectories

pass through that point. This is not a simple task as one must invert the deflection function (if it

is indeed the angular distribution in which one is interested) to find x0c as a function of ϑc and

zc. Referring to Equation (3.29), and noting that µ = 1/ sin2 x0c , it is evident that x0c appears

at three different positions in the expression so inversion is difficult. Methods for finding these

trajectories will be discussed in Section 3.5.5. If however, one simply requires a rough estimate

for the entire intensity distribution, then a crude but simple method is to take a sample set of

trajectories, spaced equally in x0c say, and propagate them for the required zc distance. Counting

the number that lie in the range θ → θ + dθ gives an approximation to I(θ). The accuracy of

this method depends both on the number, n, of angular ‘bins’ of width dθc = 2/n, into which

the total angular range of 2 (in units of ϑcmax , see Equation (3.53)) is divided, and the number of

sample trajectories used. Figures 3.6, 3.7, 3.8 were produced using this prescription, though they

show only half the angular range. For perpendicular incidence I(θ) is symmetrical about θ = 0.

Note that, classically, I(θ) diverges on the caustics. Despite the divergences however, the intensity

pattern is still normalisable. Very close to the caustic the intensity goes as 1/
√
θ and this is

integrable7. These figures of course have only finite peaks since, numerically, one can only include

a finite number of trajectories. The numerical binning procedure also leads to the fine ‘jitter’ that

appears in the intensity profiles—in reality they should be smooth (except at the caustic).

7From W.K.B. treatments for instance, to which the current method is closely related, the divergence of the

intensity at turning points of the motion, where the momentum P vanishes, goes as 1/P . Turning point divergences

are, however, features associated with a single trajectory, not a family such as with a caustic, so the two are not

quite the same. See Appendix B for more discussion.
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Figure 3.6: The classical angular intensity function calculated at zc = π/2 using 20, 000 trajectories

and 1001 angular bins.
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Figure 3.7: The classical angular intensity function calculated at zc = 7π/2 using 20, 000 trajecto-

ries and 1001 angular bins.
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Figure 3.8: The classical angular intensity function calculated at zc = 81π/2 using 50, 000 trajec-

tories and 1001 angular bins.
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3.5.5 The trajectories to a point

As mentioned in Section 3.5.4 above, the inversion of the trajectory equations (3.28) and (3.29) to

find the value(s) of x0c which satisfy the conditions (xc, zc) requires some thought. The classical

trajectories are given by Fermat’s principle which in this case reads

∂S

∂x0c

= 0 (3.55)

where the action S is expressed as a function of x0c as in Equation (3.44). However, to avoid

complicated algebra, a graphical method will be used instead. The following treatment will be for

configuration space trajectories for which xc > 0. For perpendicular incidence the solutions are

symmetrical about the z-axis so this will cover all the possibilities. The idea is to consider paths

in reverse, propagating from the desired point (xc, zc) back to entry face at zc = 0, subject to

the condition that at zc = 0, the gradient of the trajectory is zero in accordance with the initial

condition for perpendicular incidence. The value of xc at the entry face is in fact the required

value of x0c . The key to using a reversed trajectory is to realise that, for a generic starting point

(xc, zc), the trajectory can have a non-zero initial transverse momentum. Thus one must use the

trajectory solutions which are generalised to describe oblique incidence, and these are derived in

Appendix C. In particular, since the configuration space motion of the atom is bound to the cell

of the washboard potential in which it started, the confined trajectory of Equation (C.12) must be

used. There are two distinct possibilities which must be considered: situation A where the initial

transverse momentum is negative, and situation B for which the initial transverse momentum is

positive. Refer to Figure 3.9. The condition that the gradient be zero at zc is now applied via the

momentum space solution, Equation (C.13), giving

0 =
√
µcn

(
zc + F

(
arcsin

[
sinx0c√

µ

]∣∣∣∣µ)∣∣∣∣µ) (3.56)

where

µ = sin2 x̃0c + θ2
0c . (3.57)

The notation x̃0c is designed to distinguish the initial transverse position for the reversed trajectory

from the actual initial value x0c which is the desired quantity. As already mentioned above,

x̃0c = xc.

Now, the incomplete elliptic integral of the first kind which makes up part of the amplitude of

the elliptic function in Equation (3.56),

F

arcsin

 sin x̃0c√
sin2 x̃0c + θ2

0c

∣∣∣∣∣∣ sin2 x̃0c + θ2
0c

 (3.58)
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Figure 3.9: Two distinct cases: A) has negative initial transverse momentum, B) has positive

initial tranverse momentum.

acts a phase term, capable of advancing the elliptic function somewhere between zero and one

quarter of a period (the complete elliptic integral of the first kind advances the elliptic function by

exactly one quarter—as can be seen when the configuration space and momentum space trajecto-

ries, Figures 3.3 and 3.4, are compared to Figure A.1). Thus in Equations (3.56)-(3.58) x̃0c is set

equal to the value of xc, and the initial angle, θ0c , must then be found which produces a trajectory

which has zero gradient at zc = 0. Examining Figure 3.10 shows how to apply the momentum

condition (3.56) to the two cases. The result is the two equations

A: zc + F

(
arcsin

[
sinx0c√
µ(x̃0c , θ0c)

]∣∣∣∣∣ µ(x̃0c , θ0c)

)
= (2n+ 1) K(µ(x̃0c , θ0c)) (3.59)

B: zc − F

(
arcsin

[
sin x̃0c√
µ(x̃0c , θ0c)

]∣∣∣∣∣ µ(x̃0c , θ0c)

)
= (2n+ 1) K(µ(x̃0c , θ0c)) (3.60)

where n is zero or a positive integer. Since x̃0c and zc are known, the problem of finding the

allowed values of θ0c is now reduced to finding the roots of these equations, w.r.t. θ0c , for each

value of n. This must be done numerically.

The next step is to realise that µ is a constant along the trajectory, whether reversed or not,

so the value of x0c that one was originally seeking comes from

sin2 x0c = sin2 xc + θ2
0c (3.61)

or explicitly

x0c = ± arcsin

[√
sin2 xc + θ2

0c

]
. (3.62)
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Figure 3.10: Situation A and B in momentum space: A) zc + F = (2n + 1) K(µ), B) zc − F =

(2n+ 1) K(µ).

As an example of this method, the configuration point (0.5, 3.1π) was chosen. The resulting

values of θ0c and x0c are listed in Table 3.1. A plot of all the possible classical trajectories is given

Case n θ0c x0c

A 0 −0.8775825507 1.5706564685

A 1 −0.8676031850 −1.4384410467

A 2 −0.6856705652 0.9911489172

B 0 0.8775824719 −1.5703988621

B 1 0.8568912153 1.3802016237

B 2 0.1806521096 −0.5378980014

B 2 0.3749815790 −0.6543634172

Table 3.1: The details of the trajectories passing through the configuration point (0.5, 3.1π).

in Figure 3.11.

3.5.6 Evaluating the amplitude

Even once the specific trajectories are known, the calculation of the scattering pattern still requires

the amplitude given by Equation (3.51). Thus one must be able to differentiate the deflection
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Figure 3.11: The classical trajectories that pass through the configuration point (0.5, 3.1π).
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function (3.29) by x0c

∂ϑc
∂x0c

=
∂

∂x0c

sinx0ccn
(
zc + K(sin2 x0c)

∣∣ sin2 x0c

)
=

∂

∂x0c

sinx0ccn (u(zc, x0c)| ν(x0c))

= cosx0ccn (u| ν) + sinx0c

∂cn(u|ν)

∂u

∂u

∂x0c

+ sinx0c

∂cn(u|ν)

∂ν

dν

dx0c

.

(3.63)

The various required differentiations can be found in Section A.3 of Appendix A, and give, after

some cancellation,

∂ϑc
∂x0c

= cosx0ccn(u|ν) + sn(u|ν)dn(u|ν)

(
E(am(u|ν) |ν)− E(ν)

cosx0c

− zc cosx0c

)
− sin2 x0c

cosx0c

sn2(u|ν)cn(u|ν).

(3.64)

Here, and throughout this section, the x0 dependence of zc has been ignored. Equation (3.64) can

be further simplified by using the transformation, see P.592 of [1],

E(am(u|ν) |ν)− E(ν) =
νsn(u|ν)cn(u|ν)

dn(u|ν)
− E(am(K(ν)− u |ν) |ν) (3.65)

and so Equation (3.64) becomes

∂ϑc
∂x0c

= cosx0ccn(u|ν)− sn(u|ν)dn(u|ν)

(
E(am(−zc|ν) |ν)

cosx0c

+ zc cosx0c

)
. (3.66)

This, together with the value of x0c calculated as in Section 3.5.5, can be used in conjunction with

Equation (3.51) to find the amplitude associated with a ray tube.

3.5.7 Positions of the caustics

The caustic condition is (see Section 3.5.3)

∂ϑc
∂x0c

= 0 = cosx0ccn(u|ν)− sn(u|ν)dn(u|ν)

(
E(am(−zc|ν) |ν)

cosx0c

+ zc cosx0c

)
(3.67)

which is just the equation which determines the maxima and minima of the plots in Figure 3.5.

Finding the set of roots {x0c} of Equation (3.67) for a particular value of zc, and then inserting

these x0c into the momentum space trajectory equation, gives the angles, θc, at which the caustics

occur for that value of zc. As an example, the depth zc = 9π/2 was chosen. Figure 3.12 contains

plots of the corresponding deflection function and its derivative.

The zeros of the derivative of the deflection function shown in Figure 3.12 together with the

predicted positions of the caustics are listed in Table 3.2.

A comparison of the predicted caustic positions with the crude calculation of Section 3.5.4 is

shown in Figure 3.13. The correspondence is clearly very good. Also shown, as dots, is a measure

of the expected strength of the caustic. The measure is taken to be∣∣∣∣∣
{
∂2ϑc
∂x2

0c

}
caustic

∣∣∣∣∣
−1

(3.68)
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Figure 3.12: A comparison of the deflection function (Equation (3.29))with its derivative w.r.t. x0c

(Equation (3.66)) as functions of x0c . The value of zc is 9π/2.

x0c ϑc(x0c , zc) |∂2ϑc/∂x
2
0c |
−1

−1.534817 −0.999353 0.000302

−1.325765 0.970047 0.006948

−0.957074 −0.814844 0.042735

−0.416882 0.326394 0.450015

0.416882 −0.326394 0.450015

0.957074 0.814844 0.042735

1.325765 −0.970047 0.006948

1.534817 0.999353 0.000302

Table 3.2: The values of x0c that give rise to caustics located at ϑc at the depth zc = 9π/2. The

third column gives a measure of the relative caustic strength (the numbers are normalised so their

sum equals one).
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that is, the second derivative of the deflection function evaluated at the caustic, which, as mentioned

in Section 3.5.3, gives an idea of the width of the maxima and minima of the deflection function.

In the Figure it is the relative heights of the dots which are important, though for convenience

they have been scaled so that the dot corresponding to the inner-most caustic lies at the tip of

that caustic. This is not a very fair comparison, since the widths (dots) should be matched with

an integral of the intensity under each caustic, not just the peak. In reality the actual value of the

intensity at the peaks has no classical meaning since the intensity diverges there. The expression

for the second derivative of the deflection function is very long and will not be written down here—

the derivatives of the elliptic integrals and functions needed to produce it from the first derivative

are given in Appendix A.

3.6 Looking ahead: Quantum scattering and the normal

forms

The major drawback of the classical and semiclassical results discussed so far is that they predict

the intensity on the caustics to be infinite which is physically unreasonable. This is, however, a

fundamentally classical problem which has its origin in the ‘point-particle’ view of nature.

A more sophisticated approach to finding the wave function, which goes beyond the ‘summing

over the discrete ray tubes’ approach, considers the infinitesimal contribution from every conceiv-

able route from the entry face to the point (x, z) where one wants to know the wavefunction. This

is achieved by integrating over all possible paths (whether classical or not) and leads to an integral

representation of the wave function. Following Berry [17], one writes

ψ(C) =

√
1

2πih̄

∫
a(s;C)eiS(s;C)/h̄ ds. (3.69)

As before, s and C are the state and control variables and a(s;C) is the ‘correct’, non-pathological,

amplitude. If a(s;C) were known then the problem would be solved.

If h̄ is small then the integral could be approximately evaluated using the method of stationary

phase, see Appendix B. This method is accurate as long as the stationary points of the phase

are well separated. Physically, the action is stationary for a classical path, so the method of

stationary phase picks out just those rays (and their immediate neighbours—a neighbourhood

which diminishes as h̄ is reduced) which make the ‘classical contribution’ to the wavefunction

(3.69). The requirement that the stationary points be well separated is violated on a caustic as

two or more classical paths converge there, so the method of stationary phase breaks down at the

caustics, but then so does the classically derived amplitude too.
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Figure 3.13: The positions of the caustics, for zc = 9π/2, as calculated using Equation (3.67)

(dashed line) superimposed over a crude calculation of the (half plane) intensity function. The

dots give a measure of the relative intensity of each caustic.



CHAPTER 3. CLASSICAL ATOMIC MOTION 56

Imagining, though, that the well behaved amplitude, a(s;C), of Equation (3.69) is known8, then

for small h̄ one might indeed attempt a form of stationary phase evaluation of Equation (3.69). In

the region of a caustic a(s;C) is approximately constant and so may be taken outside the integral.

This is because the contributing points, sq, are close together. Thus the integral becomes

ψ(C) =

√
1

2πih̄
a(sq;C)

∫
eiS(s;C)/h̄ ds. (3.70)

Now the true importance of catastrophe theory becomes clear: near the caustics S(s;C) is

given by one of the normal forms, and thus, as alluded to earlier, catastrophe theory predicts the

form of the wavefunction at and around these singular points. Only the fold normal form, a cubic,

corresponds to a well known integral, that of the Airy function (see Figure 3.14)

Ai(C) =
1

2π

∫ ∞
−∞

ei(t3/3+Ct)dt. (3.71)

The Airy function evaluation of the integral (3.69) constitutes a more advanced form of the

C

Ai (C)
2

Figure 3.14: The intensity on a (fold) caustic is given by |ψ|2 ∝ Ai2(C).

basic quadratic stationary phase method: one which is capable of dealing with two close, or even

coalescing stationary points. So, instead of a divergence, the intensity at a caustic is softened

by the wave behaviour into a set of intense fringes, the principal of which sits over9 the actual

8For instance one could use Maslov’s prescription of moving between momentum and configuration spaces to

avoid the caustics in either one.
9Note that the peak of the principal fringe does not lie directly at the singularity. Referring to Fig 3.14, the

classical divergence is at C = 0
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(classically) singular point.

Airy obtained his integral in 1838 [3] when studying diffraction near a caustic, so really the

Airy function intensity profile is no great revelation. The next integral in the catastrophe theory

classification scheme is based on the quartic normal form as mentioned earlier, and describes the

cusps. Incredibly, the quartic exponential integral does not appear to have been seriously studied

until the work of Pearcy [63] in 1946.

While much has been learned from the classical mechanics, the labour involved in locating

paths, correctly assigning Maslov indices, dealing with divergent amplitudes, and so forth, means

that the interfering ray sum will not actually be calculated here. A much simpler approach will be

introduced in the next chapter through the fully quantum set of equations due to Raman and Nath.

Throughout the following quantum treatment though, whenever h̄ becomes small, the underlying

classical strucure will begin to emerge. In particular, wherever the classical mechanics predicts a

(fold) caustic, one expects to find an Airy function. Finally, in Chapter 9, the classical paths will

be ‘retrieved’ from the quantum formalism by means of a remarkable transformation known as the

Poisson summation formula.



Chapter 4

The Raman-Nath equation

4.1 Motivation

Sir Chandrasekhara Venkata Raman (1888–1970) was not only one of the founding fathers of

modern science in India, but also a rather colourful character. Of his many brilliant contributions

to physics, he is chiefly remembered for his experimental discovery in 1928 of what soon became

known as the Raman effect. Subsequent to him being awarded the Nobel prize in 1930, he was made

director of the Indian Institute of Science in Bangalore, and with characteristic zeal immediately set

about reforming what had become a rather unproductive research institution as well as establishing

a physics department1. He soon had to resign his directorship in controversy in 1937 but continued

on as an active professor until his retirement in 1948, whereupon he took his work across the

road (literally) to the specially inaugurated Raman Institute. Despite his pre-eminence as an

experimenter, the high point of Raman’s research at the Indian Institute of science is considered

[82] to be his theoretical contribution to the study of the diffraction of light by ultrasound. As

Raman’s biographer, Venkataraman [82] (no relation), has put it:

Raman loved waves, and this problem had light waves as well as sound waves. What

more could he ask for?

1Prior to his arrival, there was only a biochemistry, an electro-technology, and two chemistry departments—

the institute had been founded in 1911 on the generosity of the Tata Institute, a charitable organisation named

after Jamshedji Nusserwanji Tata, an Indian industrialist and philanthropist, owner of the Tata Iron and Steel Co.

The reason for mentioning this is to point out that, during Raman’s life time, research in India relied on piecemeal,

meagre funds and the patronage of a few benevolent wealthy citizens. Raman had to spend much of his time fighting

for financial support, in stark contrast to his contemporaries in Europe, America and the USSR. This only makes

his achievements all the more remarkable. All the historical details in this section come from G. Venkataraman’s

biography of Raman Journey into Light [82]

58
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Together with his young collaborator, a twenty-year-old mathematics graduate N. S. Nagendra

Nath, they developed, in a series of seven papers published during 1935 [67, 68], 1936 [69, 70,

71, 59] and 1938 [60], a theory, now known as the Raman-Nath theory, which not only accurately

accounted for the experimental observations, but did so with great simplicity. The substitution of

atoms for light and a laser for ultrasound is formally irrelevant provided one is only considering

monochromatic beams (matter waves are self dispersive so wave packets will behave differently).

What does change though are the possible magnitudes of the various parameters. Principally, the

very small de Broglie wavelength of the atoms facilitates the study of emergent classical features.

4.2 From the Schrödinger equation

Whereas Raman and Nath were considering the ultrasonic diffraction of light, the relevant wave

equation to use here is the time independent Schrödinger equation

− h̄2

2m

(
∂2Ψ

∂x2
+
∂2Ψ

∂z2

)
− V0 cos2(Kx) Ψ = EΨ (4.1)

where Ψ is taken to be the ground state wavefunction of the stationary atomic beam of energy E,

as discussed in Chapter 2. V0 is given by Equation (3.2). The wavenumber of the two individual

counter-propagating members of the standing wave laser beam is K. The total wavenumber of the

atomic beam is k. Prior to entering the laser, the wavefunction is taken as being a plane wave

Ψ(z) = eikz (4.2)

where
h̄2k2

2m
= E. (4.3)

The periodicity of the potential implies a periodic wavefunction (Bloch’s theorem), and so an

ansatz is made

Ψ(x, z) = eikz
∞∑

n=−∞
An(z)e2inKx. (4.4)

It is assumed that, due to the paraxiality of the system, the behaviour of the wavefunction is

dominated by the exp(ikz) term. The remaining evolution is then contained in the complex Fourier

coefficients, An(z), which are assumed to be slowly varying functions of z (which, as before, plays

the rôle of time).

In the space beyond the laser the atoms travel freely as plane waves. The coefficients are

then constants, maintaining the values they had at the exit face, and the wavefunction, (4.4), can

therefore be interpreted as representing a set of diffracted beams travelling at an angle θ to the

z-axis where

θ ≈ tan θ =
2nK

k
. (4.5)
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Each An is then the amplitude for the beam to be in the nth diffracted order.

To solve the problem one must find the An(z). The diffraction pattern measured in the farfield

consists of discrete elements, lying at the angles given by Equation (4.5), each having an intensity

In ≡ |An(z = D)|2 (4.6)

where D is the width of the interaction region.

Substituting the trial wavefunction into Schrödinger’s equation and writing the cosine in terms

of complex exponentials gives

− k2eikz
∑

Ane2inKx + 2ikeikz
∑ ∂An

∂z
e2inKx

+ eikz
∑ ∂2An

∂z2
e2inKx − eikz

∑
4n2K2Ane2inKx

+
2mV0

4h̄2

(
e2iKx + 2 + e−2iKx

)
Ψ + k2Ψ = 0.

(4.7)

Given that the amplitudes are slowly varying with z, the term containing the second rate of change

of the amplitude, ∂2An/∂z
2, will from now on be ignored. This is further justified by noting that

its multiplicative constant coefficient is one, as opposed to the large coefficients present in all the

other terms. Appendix B cites a typical example where V0 ≈ 5 × 10−28J, K ≈ 107 metres−1,

k ≈ 1011metres−1, and for sodium m ≈ 10−26kg. This is all associated with the paraxiality of the

system.

To pick out the An from Equation (4.7), one equates the coefficients of equal exponentials to

zero, giving a differential difference equation

2ik
∂An
∂z
− 4n2K2An +

mV0

2h̄2 (An+1 + 2An +An−1) = 0. (4.8)

Dividing through by 4K2 and defining the dimensionless variables

ζ ≡ 2K2z

k
(4.9)

Λ ≡ mV0

4h̄2K2
(4.10)

one obtains

i
∂An
∂ζ
− n2An +

Λ

2
(An+1 + 2An +An−1) = 0 (4.11)

an equation which is central to the rest of this thesis and shall be referred to as the Raman-Nath

equation, although in their works they actually used a slightly modified version. A trivial phase

transformation of the amplitudes, An ≡ Ãn exp(iΛζ), removes the diagonal An term with the

constant coefficient Λ, leaving

i
∂Ãn
∂ζ
− n2Ãn +

Λ

2

(
Ãn+1 + Ãn−1

)
= 0 (4.12)
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Effecting the following changes of variables

χn ≡ (−i)nÃn (4.13)

η ≡ −Λζ (4.14)

ρ ≡ 2

Λ
(4.15)

gives

2
∂χn
∂η
− iρn2χn + χn+1 − χn−1 = 0 (4.16)

which is the original equation of Raman and Nath.

In either case, each of these differential difference equations represent just one member of an

infinite set of linked equations which must be solved for the amplitudes.

4.3 The Raman-Nath approximation

4.3.1 Bessel function recursion relation

The Raman-Nath equation in its original form, that is the second of the two presented above

(Equation (4.16)), is immediately amenable to an approximation, first made by Raman and Nath

in their original paper [67], and so it is known as the Raman-Nath approximation. Ignoring the

term containing ρn2 leaves

2
∂χn
∂η

+ χn+1 − χn−1 = 0 (4.17)

which is actually a well known recursion relation for Bessel’s equation [1]. Thus, within this

approximation, the solution for the amplitudes can at once be given as

χn(η) = Jn(η) (4.18)

a simple and remarkable result.

Immediately one must ask under what conditions this solution is valid. Firstly it is observed

that the origin of the ρn2 term in the derivation of the full Raman-Nath equation stems from the

action of the transverse part of the Laplacian, ∂2/∂x2, upon the wavefunction. So ignoring this

term corresponds to disregarding the transverse kinetic energy of the atoms, and in turn means

that the transverse motion of the atoms is not taken into account. Neglecting the ρn2 term in this

way appears to be a very specific, mathematical simplification, of relevance only to the Raman-

Nath equation. In their original paper however, Raman and Nath arrived at this approximation

by a more general approach with a much wider applicability which will now be briefly discussed.
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4.3.2 Phase gratings

It was Rayleigh [73] who first proposed the concept of phase gratings to describe a medium whose

effect upon a traversing wave is to induce a pure phase change without any influence upon the

amplitude. An incident wave

Ψ(z) = eikz (4.19)

passing through a phase grating becomes

Ψ(x, z) = eiγ(x,z)eikz (4.20)

where γ(x) is a real, periodic, function of x (the periodic condition is required for the medium to

qualify as a grating, for then it will produce diffracted beams). Raman and Nath were the first to

treat an ultrasonic standing wave as a phase grating for light. In a simplification of the ‘phase along

a ray’ treatments of Chapter 3 and Appendix B, they supposed that the rays travelled in straight

lines across the medium, undeviated by the presence of the modulated refractive index induced

by the ultrasonic wave. Hence the connection with the statements above concerning neglect of

transverse motion. The optical distance, µ(x, z), each ray travels depends on its transverse entry

point, x0, into the medium, for that determines the value of the refractive index along the straight

path. From Equation (4.20), γ may be written as the difference between the optical distance due

to the grating and the free space evolution of the wave that would have taken place had the grating

not been there

γ = µ− kz = µ−
√

2mE

h̄
z. (4.21)

Appendix B demonstrates that, due to the separability of the Hamiltonian (3.4), the optical dis-

tance is a conservative function of the configuration co-ordinates, and so depends only on the

end points of the trajectory across the interaction region. In particular, since the transverse co-

ordinate remains constant, the contribution arising from the transverse momentum is zero. Only

the longitudinal term remains so that, using Equation (3.5), one has

µ =
1

h̄

∫ D

0

Pz dz =

√
2m

h̄

∫ D

0

√
E + V0 cos2Kxdz =

√
2m

h̄
D
√
E + V0 cos2Kx. (4.22)

Employing the paraxial condition, the square root is expanded to just the first two terms and the

cos2Kx term transformed to its double-angle equivalent. Equation (4.21) is then

γ ≈
√

2mE

h̄
D

(
1 +

V0

4E
+
V0

4E
cos 2Kx

)
−
√

2mE

h̄
D =

√
2mV0

4h̄
√
E
D (1 + cos 2Kx) . (4.23)

Exploiting the x periodicity of γ(x, z) one writes

eiγ(x) =

∞∑
n=−∞

An(D)e2inKx (4.24)
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and then

An(D) =
K

π

∫ π/2

−π/2
ei(γ(x,z)−2nKx)dx. (4.25)

Inserting γ from Equation (4.23) gives

An(D) =
1

π
e
i
√

2mV0
4h̄
√
E
D
∫ π/2

−π/2
e
i(
√

2mV0
4h̄
√
E
D cos 2Kx−2nKx)

dKx (4.26)

which corresponds to an integral definition of the Bessel function of the first kind [1]. Replacing

E in favour of k via Equation (4.3) gives

An(D) = eimV0D/ (2h̄2k) inJn

(
mV0

2h̄2k
D

)
(4.27)

which, as anticipated, gives the same intensities as Equation (4.18).

The Raman-Nath Bessel function approximation has proved to be a very successful result.

Ultrasonic diffraction of light experiments, conducted by Sanders [74] in 1936, provided immediate

confirmation of Raman and Nath’s predictions (see Berry [16]). Using atoms, the first quantitative

experiment was conducted by Gould et al. [37] in 1986, giving ‘reasonable agreement’, whilst recent,

very refined experiments, such as those by Rasel et al. [72], gave spectacular agreement. However,

as mentioned above, the neglect of the transverse motion constitutes a fairly serious approximation.

In their fourth paper [70], Raman and Nath themselves pointed out that ρn2 must be small for

the Bessel approximation to hold. This is not an easy condition to satisfy since ρ contains the

ratio h̄2/V0: a small ρ is consistent with a strong laser field interaction, which, as stressed at the

beginning of Chapter 3, can also be understood in terms of a small value of h̄. A small ρ takes one

towards the classical regime: many diffracted beams are present. The classical mechanics gives a

firm limit on the maximum scattering angle and is stated in Equation (3.53). As one approaches

the classical limit by reducing h̄, it can be expected that such a condition is approximately obeyed,

and hence the number of diffracted beams can be estimated. Equation (3.53) reads

Pz√
2mV0

θ = 1. (4.28)

The classical and quantum worlds are linked through the value of θ. Inserting Equation (4.5) and

setting Pz = h̄k, the classical mechanics acting through Equation (4.28) predicts

N =
2
√
ρ

=
√

2Λ (4.29)

where N is the index of largest diffraction order present. Therefore, if one reduces ρ, the number

of beams grows in such a way as to thwart any attempt to meet the conditions necessary for the

Raman-Nath approximation since the largest orders present will have

ρn2 = ρN2 = 4. (4.30)
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How then, can the Raman-Nath approximation ever be valid? Firstly it should be noted that

Equation (4.29) is only valid in the classical limit; no indication has been given of the number of

beams generated in the quantum region where ρ is less than one but not significantly so. Secondly,

one can use the understanding that lies behind the phase grating approach, namely that the atoms

have no transverse motion during their interaction. Clearly this is really only valid for short

interaction times. The larger diffraction orders take some time (distance) to populate—via all the

intermediate orders—and so for short interactions the maximum value of n is sufficiently less than

that given by Equation (4.29). Going beyond the Raman-Nath approximation, that is, retaining

the ρn2 term is the province of dynamical diffraction; a regime in which the motion of the atoms

inside the laser induced potential is accounted for.

4.4 Perturbation series

Generally in physics, when one has a very weak interaction, it is natural to seek a perturbative

solution consisting of a rapidly converging series. The convergence is assured through an expansion

parameter which is a measure of the weakness of the interaction. The first such solution for

dynamical diffraction, in the context of the diffraction of light by ultrasound, was given by Brillouin

[21, 22] from the scalar Helmholtz wave equation (4.1) in 1921. Subsequently, a simpler derivation

has been given by Berry [16]. This section will present other, closely related approaches, based

directly on the Raman-Nath equation.

4.4.1 Oblique Incidence

To facilitate use in succeeding sections, the following derivations will encompass oblique incidence.

The atom beam may then have an initial transverse wavenumber, a, say. If the total wavenumber

is still given by k, then prior to entering the laser beam the wavefunction is

Ψ(x, z) = ei
√
k2−a2 zeiax (4.31)

and under the influence of the interaction with the standing wave becomes

Ψ(x, z) = ei
√
k2−a2 z

∞∑
n=−∞

An(z)ei(2nK+a)x. (4.32)

Substitution into the Schrödinger equation (4.1), and proceeding as in Section 4.2 gives

−(k2 − a2)An + 2i
√
k2 − a2

∂An
∂z
− (4n2K2 + a2 + 4naK)An

+
mV0

2h̄2 (An+1 + 2An +An−1) + k2An = 0.

(4.33)
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Slightly redefining ζ as

ζ ≡ 2K2z√
k2 − a2

(4.34)

and introducing

α ≡ a

K
(4.35)

leads to the Raman-Nath equation generalised for non-perpendicular2 incidence

i
∂An
∂ζ
− (n2 + nα)An +

Λ

2
(An+1 + 2An +An−1) = 0. (4.36)

The dimensionless parameter Λ remains the same as given in Equation (4.10). It is convenient to

simplify this Raman-Nath equation as before with the phase transformation An ≡ ÃneiΛζ so that

one has

i
∂Ãn
∂ζ
− (n2 + nα)Ãn +

Λ

2

(
Ãn+1 + Ãn−1

)
= 0. (4.37)

It is important to notice that under weak field conditions (when Λ is small), making the Raman-

Nath approximation (ignoring the second term) would be totally inappropriate.

4.4.2 The Raman-Nath evolution operator

The full set of Raman-Nath equations are readily amenable to being represented in matrix form.

One has

i
∂Ãn
∂ζ

= HnmÃm (4.38)

where the H is a square matrix with elements

Hnm = (n2 + nα)δn,m −
Λ

2
(δn,m−1 + δn,m+1) . (4.39)

The matrix equation (4.38) is reminiscent of a time-dependent Schrödinger equation (substitute ζ

for time) with time-independent Hamiltonian3 H, a feature which will be useful in the following

sections and chapters. This property whereby the Schrödinger type equation has the ‘quantum’

scaled distance, ζ, playing the rôle of time is common to paraxial systems in general.

The Schrödinger equation structure of Equation (4.38) suggests an evolution operator type

solution

Ã(ζ) = e−i
∫ ζ
0
H dζ′Ã(ζ = 0) (4.40)

for the vector Ã whose elements are the Ãn amplitudes. The initial condition that the atom beam

start in the zeroth order means that one can take

Ãn(ζ = 0) = δn,0. (4.41)

2Just to be clear, note that whenever angled incidence is being considered, the notation used will consider the

diffracted beam basis as rotating with the angle of incidence. So, for example, the nth beam travels at an angle

sin θ = (2nK + a)/k to the z-axis.
3H is Hermitian.
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So one requires ∫ ζ

0

H dζ ′ =

[
(n2 + nα)δn,m −

Λ

2
(δn,m−1 + δn,m+1)

]
ζ

≡ P(ζ)− ΛQ(ζ).

(4.42)

So the exponentiated operator of Equation (4.40) now becomes

Ãn = e−i(Pn,m−ΛQn,m)δm,0. (4.43)

A weak interaction has a small value of Λ, so this will be chosen as the expansion parameter.

Expanding the perturbative part of the exponential gives

Ãn = e−iPn,m
[
δn,m + iΛQn,m −

Λ2

2
Q2
n,m − i

Λ3

3!
Q3
n,m + · · ·

]
δm,0. (4.44)

When finding powers of the matrix operators one makes use of relations such as

Q2
n,m = Qn,jQj,m. (4.45)

Noting that the P matrix is diagonal, so that its δnm operator is redundant when multiplying other

Kronecker delta operators, gives

Ãn = e−i(n2+nα)ζ

[
δn,m +

iΛζ

2
(δn,m−1 + δn,m+1)− Λ2ζ2

8
(δn,m−2 + 2δn,m + δn,m+2)

− iΛ3ζ3

48
(δn,m−3 + 3δn,m−1 + 3δn,m+1 + δn,m+3) + · · ·

]
δm,0

(4.46)

Applying the power series to the initial condition δm,0 yields

Ã0 = 1− Λ2ζ2

4
+O

(
(Λζ)

4
)

(4.47)

Ã±1 = e−i(1±α)ζ

[
iΛζ

2
− iΛ3ζ3

16
+O

(
(Λζ)

5
)]

(4.48)

Ã±2 = e−i(4±2α)ζ

[
−Λ2ζ2

8
+O

(
(Λζ)

4
)]

(4.49)

Ã±3 = e−i(9±3α)ζ

[
− iΛ3ζ3

48
+O

(
(Λζ)

5
)]

(4.50)

where the higher diffraction orders require the Q4 term and above. These solutions serve to

illustrate the way the diffracted beams fill out as the interaction region is traversed. Unfortunately

they suffer from being doubly perturbative in the sense that, to obtain solutions valid for longer

interaction times but with a constant value of the interaction strength Λ, one must find the higher

order terms.

4.4.3 The Born perturbation series

Methods that treat the interaction between the quantum wave and the potential as a perturbation

on top of the free-space evolution give what is known as a Born series. This section reproduces



CHAPTER 4. THE RAMAN-NATH EQUATION 67

the approach due to Berry [16], where the Laplace transform of the Raman-Nath equation is used,

but incorporates oblique incidence. Defining

Sn(p) ≡
∫ ∞

0

Ãn(ζ)e−pζ dζ (4.51)

and noting that ∫ ∞
0

∂Ãn
∂ζ

e−pζ dζ = −Ãn(0) + pSn(p) (4.52)

the Laplace transformed Raman-Nath equation is written

i(pSn(p)− δn,0) = (n2 + nα)Sn −
Λ

2
(Sn+1 + Sn−1) (4.53)

or [
(ip− n2 − nα)δn,m +

Λ

2
(δn,m−1 + δn,m+1)

]
Sm = iδn,0 (4.54)

where the advantage of the Laplace transformed Raman-Nath equation is that it not only incorpo-

rates the initial condition that the beam is in the zeroth state, but also renders the R-N equation

into an algebraic difference equation. As before, Equation 4.54 can be written in terms of two

operators, one of which is perturbative,

Un,m ≡ (ip− n2 − nα)δn,m (4.55)

Vn,m ≡ Λ

2
(δn,m−1 + δn,m+1) (4.56)

and becomes

[U + V]n,mSm = iδn,0. (4.57)

Operating on both sides with the inverse of U would give

(δn,m + [U−1V]n,m)Sm = iU−1δn,0 (4.58)

or

Sm = −[U−1V]m,nSn + i[U−1]m,nδn,0. (4.59)

For small Λ, and hence V, the solution Sm may therefore be approximated by

Sm = i[U−1]m,nδn,0. (4.60)

This can be considered as a first guess which is then itself substituted into the r.h.s. of Equation

(4.59) giving the second guess

Sm = −i[U−1VU−1]m,nδn,0 + i[U−1]m,nδn,0. (4.61)

Continuing this iterative process generates a series solution to the problem. For the purposes of

this and Chapter 6, only one more iteration will be required so that

Sm = i
[
U−1VU−1VU−1 − U−1VU−1 + U−1

]
m,n

δn,0. (4.62)
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Of course, the inverse of the operator U must be known, but from its definition (4.55) this is simply

[U−1]m,n =
1

ip−m2 −mα
δm,n. (4.63)

The zeroth term (first guess) when applied to the initial condition δn,0 accordingly gives

[U−1]m,nδn,0 =
1

ip
δn,0. (4.64)

Multiplying out the operators as before in Section 4.4.2 one has[
U−1VU−1

]
m,n

=
Λ

2

(
δm,n+1

[ip−m2 −mα] [ip− (m− 1)2 − (m− 1)α]

+
δm,n−1

[ip−m2 −mα] [ip− (m+ 1)2 − (m+ 1)α]

) (4.65)

and so

[U−1VU−1]m,nδn,0 =
Λ

2

(
δm,1

[ip− 1− α] ip
+

δm,−1

[ip− 1 + α] ip

)
. (4.66)

The second order term is[
U−1V U−1V U−1

]
m,n

=

Λ2

4

(
δm,n+2

[ip−m2 −mα] [ip− (m− 1)2 − (m− 1)α] [ip− (m− 2)2 − (m− 2)α]

+
δm,n−2

[ip−m2 −mα] [ip− (m+ 1)2 − (m+ 1)α] [ip− (m+ 2)2 − (m+ 2)α]

+
δm,n

[ip−m2 −mα] [ip− (m− 1)2 − (m− 1)α] [ip−m2 −mα]

+
δm,n

[ip−m2 −mα] [ip− (m+ 1)2 − (m+ 1)α] [ip−m2 −mα]

)
(4.67)

giving[
U−1V U−1VU−1

]
m,n

δn,0 =
Λ2

4

(
δm,2

[ip− 4− 2α] [ip− 1− α] ip
+

δm,−2

[ip− 4 + 2α] [ip− 1 + α] ip

+
δm,0

ip [ip− 1 + α] ip
+

δm,0
ip [ip− 1− α] ip

)
.

(4.68)

Taking the inverse Laplace transform of the various terms, one finds, up to second order in Λ,

the following amplitudes

Ã0 = 1− iΛ2

4

(
− ζ

(1− α)
− ζ

(1 + α)

+ 2
e−i(1−α)ζ/2

(1− α)2
sin

[
(1− α)

2
ζ

]
+ 2

e−i(1+α)ζ/2

(1 + α)2
sin

[
(1 + α)

2
ζ

]) (4.69)

Ã±1 = iΛ
e−i(1±α)ζ/2

(1± α)
sin

[
1± α

2
ζ

]
(4.70)

Ã±2 = −Λ2

4

(1± α)e−i(4±2α)ζ − (4± 2α)e−i(1±α)ζ + (3± α)

(1± α)(4± α)(3± α)
. (4.71)
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It is apparent that for very weak potentials the zeroth beam dominates except for certain special

angles of incidence. As one moves away from perpendicular incidence (α = 0), the first of these

special angles occurs when α = ±1. These are the first order Bragg angles and obey Bragg’s law

2dsw sin θ = mλdB (4.72)

with m = ±1. Substituting in dsw = λlaser/2 (the periodicity of the standing wave), λdB = 2π/k,

and sin θ = a/k, Bragg’s law then reads

α = m (4.73)

where m is a positive or negative integer. Bragg angles correspond to specular reflection from the

I
1

I
-1

I
0

I
2

  

Figure 4.1: The intensities of the zeroth, first, and second order diffracted beams, as given by

perturbation theory, as a function of the scaled angle α. The Bragg angles lie at α = −1,−2,−3, . . ..

These plots were made with Λ = 0.03, ζ = 45. Note the different scale on the ordinate of I2.

parallel ‘planes’ (running in the z direction) of the periodic ‘lattice’ of the standing wave. Thus,

when α = −1, sin θin = −K/k and sin θout = K/k, which is the result of a 2h̄K momentum transfer,

and so the atoms have been deflected from the zeroth to the first diffracted beam. The second

diffraction order is also excited when α = −1. This is not Bragg scattering, and is consequently

weaker. This process requires a momentum transfer of 4h̄K. Figure 4.1 quantitatively shows how,

as the angle of incidence is varied, the first diffracted beam flashes out at the expense of the zeroth

beam when the angle sweeps through the first Bragg angle. The most right-hand of the three peaks

of I2 shows the diminutive second order excitation which accompanies the vastly dominant Bragg

scattering.

The next angle to give a resonance is registered as the largest of the I2 peaks and this is

centered at the second Bragg angle, α = 2. The third Bragg angle also appears as a small peak
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in the second order (but again this is not Bragg scattering). Figure 4.2 illustrates the favoured

scattering processes that occur when α = −1 and α = −2 as if the atoms were being reflected from

‘Bragg planes’. It is clear that as soon as the symmetry associated with perpendicular incidence

is broken, then so too is the symmetry of the scattering into the positive and negative diffraction

orders. In particular, Bragg diffraction (back-scattering from the ‘planes’) is greatly preferred over

von Laue diffraction (transmission- scattering).

The ζ dependence of the perturbative solutions displays an oscillatory behaviour; intensity

‘wanders’ (in the original terminology of Raman and Nath) among the orders. Such behaviour

with increasing depth is known in the field of electron diffraction as ‘pendellösung’ (pendulum)

oscillation. As ζ becomes larger, the angular dependence of the beams becomes sharper. A range of

input angles around the Bragg angle are channelled into an ever narrower output range. Examining

Ã1, when ζ gets very large, the limiting values of the amplitude at the Bragg angle diverges as

ζ, so, like the previous perturbation series, there are problems for long interaction times, but in

this case only at the Bragg angles. Despite this deficiency, these solutions are certainly useful for

illustrative purposes, and, crucially, indicate that for weak potentials, if one restricts attention to

incidence close to the first Bragg angle, only two beams really need be considered—the zeroth and

first diffracted orders. When dealing with just two beams the problem can be solved exactly, giving

the correct coupling between the two waves and no divergences. This is the well known ‘two-beam’

solution and will be taken up in Chapter 6.

When the atoms have a transverse velocity, one might wonder if there are any Doppler effects

which should be taken into account due to the atoms seeing a shifted laser frequency in their frame

of reference. Such effects are certainly ignorable for Sodium travelling at 1000m/s at an angle of

incidence corresponding to the first Bragg angle. For then

vx = 1000× sin θ = 1000× K

k
= 1000× 107

3.7× 1011
≈ 0.03ms−1 (4.74)

and so
vx
c
≈ 10−10. (4.75)

As long as the detuning from resonance is large (necessary for the validity of all the treatments so

far) it seems that even if the atoms acquire substantial transverse velocities the Doppler effect need

not be considered. Chapter 6 examines a slightly different scheme in which the laser is assumed

to be tuned close to resonance. Providing one remains firmly in the quantum realm of small total

transverse momentum transfer inside the laser beam, and small angles of incidence, such as the

first Bragg angle, then one is still safe in ignoring Doppler shifts.
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Figure 4.2: Two diagrams showing the resonant diffraction processes which take place when the

angle of incidence is set at the first and then the second Bragg angles. The solid lines correspond

to processes with an amplitude proportional to Λ or greater (Bragg diffraction), and the short

dashed lines represent those occuring with an amplitude of order Λ2.
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4.5 Towards the classical limit

4.5.1 Numerical diagonalisation

The perturbative approach of the last section is useful for weak potentials. Weak potentials repre-

sent the very quantum end of the (transverse) energy scale. As the potential increases in strength,

Λ becomes a large number and the system moves into the semiclassical regime—wave properties

such as interference, remain, but the classical skeleton, which contains the turning point stucture,

begins to show through. The set of R-N equations may then be truncated so that they include

only a few more amplitudes than the classical maximum (one expects tunnelling into the non-

classical region, but this is exponentially small) given by N , see Equation (4.29). Solving the R-N

equations now becomes a real challenge. One might try to simultaneously integrate (numerically)

the equations from ζ = 0 to the required depth ζ = D. However, when the interest is in long

interaction times then it becomes more economical to find the eigenvectors of the Raman-Nath

matrix. Defining

Ãn ≡ Bne−iEζ (4.76)

the perpendicular incidence R-N equation (4.12) becomes

EjBjn = n2Bjn −
Λ

2

(
Bjn+1 +Bjn−1

)
(4.77)

where Ej is the eigenvalue belonging to the jth eigenvector whose elements are Bjn. It is no

surprise that this stationary R-N equation is just the recurrence relation between the coefficients

of even solutions of the Fourier analysed Mathieu equation [1], since it is from Fourier analysing the

Schrödinger equation (4.1), that is also an example of a Mathieu equation, that the R-N equation

is obtained. In the theory of the Mathieu equation, the eigenvalues Ej are referred to as the

‘characteristic values’. The tridiagonal R-N matrix given by Equation (4.77) is

E



B−N
...

B−1

B0

B1

...

BN


=



−Λ
2 N2 −Λ

2

. . .
. . .

. . .

−Λ
2 1 −Λ

2

−Λ
2 0 −Λ

2

−Λ
2 1 −Λ

2

. . .
. . .

. . .

−Λ
2 N2 −Λ

2





B−N
...

B−1

B0

B1

...

BN


. (4.78)

The eigenvectors describing quantum particles subject to periodic potentials are known as Bloch

waves. Being eigenvectors, the Bloch waves propagate undisturbed through the laser beam. The

farfield interference pattern generated by the interaction is given by the superposition of these
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Bloch waves (each multiplied by its individual phase (4.76)) which matches the initial conditions.

Denoting the jth momentum space Bloch wave as |χj〉, the total wavefunction is written

|Ψ〉 =

N∑
j=0

cj |χj〉 e−iEjD (4.79)

where

cj = eiEjD〈χj |Ψ(ζ = 0)〉 = 〈χj |δn,0〉 = Bj0 (4.80)

is the overlap of the jth Bloch wave with the initial condition that the atoms are all in the zeroth

beam. Both |χj〉 and cj can be taken as real. The convention will be adopted whereby the Bloch

waves are indexed so that the smallest eigenvalue corresponds to j = 1. ‘Smallest’ means the

negative eigenvalue with the largest absolute magnitude. In the standard theory of the Mathieu

equation [55], the solutions Bjn corresponding to the characteristic value Ej can be developed using

continued fractions (and this approach is also taken by Berry [16]—though there the continued

fraction technique is applied to the Laplace transfomed R-N equation (4.54)). Here however, the

Bloch waves will be obtained by numerical diagonalisation of the R-N matrix (4.78); Figures 4.3–

4.7 were constructed in this way. They all have the same classical mechanics in that they each

correspond to the same classical depth of zc = 3π/2. In reference to the classical picture, Figure 3.4,

the intensity patterns are vertical slices, from the z-axis up, that record the probability distribution

for the atom beam between the second and the third cusp, so just two caustics are expected.

Figure 4.3 is the most quantum, with relatively few beams being produced, and each successive

picture shows the effect of making the system more classical by increasing Λ. The relatively short

interaction distance was chosen to keep the pictures simple. In particular, the first, outer, caustic,

whose cusp is at zc = 0, is ‘clean’ in the sense that there are no trajectories contributing to that

part of the distribution which are not taking part in the caustic. And, as predicted, the caustic

is decorated with a beautiful Airy function. While the second, inner caustic, that was born at

zc = π is clearly discernable, the Airy distribution has been disrupted by interference with orbits

not taking part in the caustic (see Figure 3.4). In contrast to the carefully orchestrated phases

of the caustic trajectories, a non-caustic trajectory effectively has a discordant ‘random’ phase

which wreaks havoc with the ordered oscillations of the Airy function. The caption to each figure

also states the number of beams that the classical mechanics predicts using Equation (4.29). The

degree to which this prediction is obeyed provides another measure of how classical each picture

is.

The final two pictures, Figure 4.8, show the momentum space intensity as function of distance

into the laser beam for two different values of Λ. These were created by combining slices at

successive distances. If, rather than just illustrating the classical momentum space trajectories,
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n

I

Figure 4.3: The farfield intensity calculated by numerical diagonalisation of the R-N matrix (4.78)

for Λ = 25 and zc = 3π/2. Each dot is the actual intensity of the nth order and the continuous

line joins them. Predicted number of beams: 7.
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I

n

Figure 4.4: The farfield intensity calculated by numerical diagonalisation of the R-N matrix (4.78)

for Λ = 250 and zc = 3π/2. Each dot is the actual intensity of the nth order and the continuous

line joins them. Predicted number of beams: 22.
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n

I

Figure 4.5: The farfield intensity calculated by numerical diagonalisation of the R-N matrix (4.78)

for Λ = 2500 and zc = 3π/2. Each dot is the actual intensity of the nth order and the continuous

line joins them. Predicted number of beams: 71.
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I

n

Figure 4.6: The farfield intensity calculated by numerical diagonalisation of the R-N matrix (4.78)

for Λ = 25×103 and zc = 3π/2. Each dot is the actual intensity of the nth order and the continuous

line joins them. Predicted number of beams: 224.
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n
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Figure 4.7: The farfield intensity calculated by numerical diagonalisation of the R-N matrix (4.78)

for Λ = 25×104 and zc = 3π/2. Each dot is the actual intensity of the nth order and the continuous

line joins them. Predicted number of beams: 707.
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Figure 3.4 had shown the intensity resulting from their summation, then these pictures would be

the quantum equivalent, though only for zc between 3 and 4.

4.5.2 The range of the eigenvalues

A related prediction to the maximum possible number of diffracted beams, is the range of the

eigenvalues satisfying the stationary R-N equation (4.77). The R-N equation is actually an equation

for the transverse motion—the constant longitudinal evolution having been separated out by the

inclusion of the eikz term in the wavefunction. Clearly the range of transverse energies that an atom

can extract from the washboard potential is 0–V0 Joules. The energy operator acting on the bound

transverse eigenvectors would therefore give eigenvalues also lying in this range. Taking advantage

of the fact that Pz = h̄k is a constant of the motion, the energy operator can be expressed as

ih̄
∂

∂t
= ih̄

dz

dt

∂

∂z
= i

h̄2k

m

∂

∂z
. (4.81)

Therefore, using the definition (4.9) for ζ,

i
∂

∂ζ
=

m

2h̄2K2
· ih̄ ∂

∂t
(4.82)

and, noting the definition of Λ (4.10), the eigenvalues generated by the ∂/∂ζ operator naturally

lie between 0 and 2Λ, since ∂/∂t on an eigenvector pulls down a factor lying between 0 and iV0/h̄.

However, the removal of the constant diagonal term by the phase transformation An = Ãn exp(iΛζ),

means that when the R-N equation is expressed in terms of Ã, and hence Bn, the bound state

eigenvalues lie in the range

−Λ < Ejbound < Λ. (4.83)
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Figure 4.8: An atomic cusp and folds; the momentum space intensity as a function of depth. A)

Λ = 25, B) Λ = 250. Note that the angle co-ordinate has also been scaled in terms of the classical

angle, and the higher intensity areas are lighter in colour.



Chapter 5

A realistic model?

5.1 Motivation

The Raman-Nath equations (4.12) describe the stationary scattering of an infinitely wide wave

from a one dimensional potential. This is the simplest possible model for diffraction from a thick

grating. Chapter 1 indicated that while a number of investigators have already gone on to probe

more complicated situations, the more modest behaviour associated with this most basic situation

has received little attention.

However, before too much effort is expended in studying the plain Raman-Nath equations,

it is important to check that this is a realistic model. Of the many refinements that might be

addressed, it seems reasonable to single out the presence of a longitudinal profile for the potential,

and a finite width of atomic beam, as being two features inherent in any experiment which might

have significant effects. It is not the purpose of this chapter to give a detailed account of the

influence of these extra parameters; the treatment will be as brief as possible. The intention

is merely to indicate that experiments can be conducted in regimes where either the effects are

negligible or at worst only modify the details; the basic form of the structures contained in the

solutions of the Raman-Nath equations remain intact.

5.2 Finite atomic beam

The presumption so far has been that the atom beam is a plane wave of infinite transverse extent.

If the atom beam is to be limited in x in some way, then this necessarily introduces some spread

into the transverse momentum. The question then becomes, to what extent are the diffracted

beams blurred?

81
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5.2.1 A Gaussian beam

A reasonable model for a coherent, normalised, incident atomic wavefunction is the Gaussian

Ψincident = Ψ(x, z = 0) =
1√

L(2π)1/4
e−x

2/(4L2) (5.1)

where L gives a measure of the width of the beam. This can itself be represented as an integral

over transverse plane waves, exp(iax), each weighted by the Gaussian factor exp(−a2L2)

Ψ(x, 0) =
1√

L(2π)1/4
e−x

2/(4L2) =
1√

L(2π)1/4
e−x

2/(4L2) L√
π

∫ ∞
−∞

e−[aL−ix/(2L)]2 da

=

√
L

π
√

2π

∫ ∞
−∞

eiax−a2L2

da.

(5.2)

In order that all the component waves should have the same total wavenumber, k say, (recall also

Section 4.4.1) the longitudinal wavenumber is taken as
√
k2 − a2. Assuming that the beam is not

too narrow, so L is of reasonable size, then the most important contributions to the wavefunction

come from waves with small values of the transverse wavenumber a—especially when compared to

the magnitude of k. One therefore expands the longitudinal wavenumber as√
k2 − a2 ≈ k − a2

2k
. (5.3)

Incorporating the z dependence of the initial wavefunction gives

Ψ(x, z) =

√
L

π
√

2π
eikz

∫ ∞
−∞

eiax−a2L2

e−ia2z/(2k) da. (5.4)

Inside the interaction region the wavefunction develops side beams as before

Ψ(x, z) =

√
L

π
√

2π
eikz

∫ ∞
−∞

e−ia2z/(2k)−a2L2
∞∑

n=−∞
An(a, z)ei(a+2nK)x da. (5.5)

This is just a weighted integral over partial waves, each of which corresponds to a particular value

of the initial transverse wavenumber a

ψ(a) = ei
√
k2−a2z

∞∑
n=−∞

An(a, z)ei(a+2nK)x (5.6)

and obeys its own independent Raman-Nath equation; the a dependence in the notation for the

amplitudes An(a, z), is intended to reflect this. The wavefunction (5.5) has a continuous momentum

distribution and is no longer periodic in x. The diffraction amplitude which has the transverse

momentum s (direction θ ≈ s/k) after traversing the potential for distance z = D, is given by the
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Fourier transform of the wavefunction (5.5)

B(s,D) =
1

2π

∫ ∞
−∞

Ψ(x,D)e−isx dx

=

√
L

π
√

2π
eikD

∫ ∞
−∞

e−ia2D/(2k)−a2L2
∞∑

n=−∞
δ(a+ 2nK − s)An(a,D) da

=

√
L

π
√

2π
eikD

∞∑
n=−∞

e−i(s−2nK)2D/(2k)e−(s−2nK)2L2

An(s− 2nK,D)

(5.7)

where the Dirac delta function representation

δ(t− t0) =
1

2π

∫ ∞
−∞

eiα(t−t0) dα (5.8)

has been used. The amplitude B(s,D) is made up from a sum of contributions from the different

diffraction orders labelled by n; but these contributions are weighted by a Gaussian centred at s.

Alternatively, viewed as a function of s, the pattern is a series of Gaussians centred at each of the

angles θ = s/k = 2nK/k. Each of the diffracted beams has inherited the Gaussian dependence

of the incident beam—this is not surprising since the Fourier transform of a Gaussian is another

Gaussian.

A necessary condition for the infinite beam to be a reasonable model for any experiment may

now be stated as the requirement that the individual diffracted beams should be clearly visible.

That is, the Gaussians, as functions of s, should not overlap to any great extent. From Equation

(5.7), this condition is seen to be

L� 1

2K
. (5.9)

Now, since the width of each well of the sinusoidal potential is x = π/K, the individual beam

visibility requirement translates into ensuring that the initial beam, which is vaguely of width L,

must illuminate many wells of the standing wave laser. The numbers given in Section 1.3.1 suggest

that the majority of experiments would indeed fulfil this condition. Indeed it would be quite a feat

to perform an experiment on a single well.

5.2.2 The rocking curves

The non-overlapping condition greatly simplifies the task of finding the intensity pattern, for then

one can approximate the diffraction probabilities by

|B(s,D)|2 ≈ L

π
√

2π

∞∑
n=−∞

e−2(s−2nK)2L2

|An(s− 2nK,D)|2 (5.10)

so that the intensity of the nth beam is

|Bn(s,D)|2 ≈ L

π
√

2π
e−2(s−2nK)2L2

|An(s− 2nK,D)|2. (5.11)
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An important consideration is the s dependence of the amplitudes An(s− 2nK,D). This can

be addressed by examining the rocking curves which describe the behaviour of the amplitudes as

the angle of incidence is varied (the amplitudes rotate with incidence angle). If there is significant

structure in the amplitudes on a scale |s − 2nK| < 1/L, i.e. before the Gaussian kills off the An,

then this behaviour will appear in the farfield pattern and is not accounted for by the infinite beam

approximation. If on the other hand the amplitudes are roughly constant over this range then one

can take

In(s− 2nK,D) = |An(s− 2nK,D)|2 ≈ |An(0, D)|2 (5.12)

in which case the infinite beam approximation is adequate. Three examples of rocking curves for

the first ten beams are shown in Figures 5.1–5.3. The rocking curves were generated by numerically

solving a new set of Raman-Nath equations for each value of the scaled input angle α (4.35). Had

these curves been generated experimentally with a Gaussian beam, then there would of course

be a Gaussian envelope on each curve as explained above, but it is not included here. Figures

5.1 and 5.2 have the same value of Λ, but different depths, demonstrating that, as might be

expected, the the rocking structure becomes more complicated with increasing depth. To obtain a

good approximation to the infinite beam approximation, one would therefore require an ever wider

input beam for increasing width of interaction zone, so that the Gaussian over each diffracted

amplitude is sufficiently narrow to smooth away any structure.

The same is true when Λ is increased. Figure 5.1 and 5.3 share the same value of the depth,

but Λ has been increased to 200 for the latter.

The width of the beam is therefore a factor which can influence the farfield pattern. If an

experiment were to be conducted exploring the long interaction time region, it would clearly be

advisable to first check the rocking curves so an estimate of the necessary width could be made.

The risk of not doing so is a farfield pattern that is too complicated to interpret.

5.3 A smooth potential envelope

In reality the potential does not switch on suddenly at z = 0, and switch off at z = D, but has

some smooth profile which will be denoted f(z), so that the Hamiltonian (3.4) becomes

H =
P 2
x

2m
+
P 2
z

2m
− V0f(z) cos2Kx = E. (5.13)

The remarks made in Chapter 1 suggested that the ideal profile for long interaction times would be

smooth wings either side of an essentially flat plateau. As far as comparison with the flat potential

is concerned; the shorter the wings the better.
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Figure 5.1: The rocking curves of the zeroth and first nine beams for Λ = 10, ζ = 3.



CHAPTER 5. A REALISTIC MODEL? 86

Figure 5.2: The rocking curves of the zeroth and first nine beams for Λ = 10, ζ = 9.
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Figure 5.3: The rocking curves of the zeroth and first nine beams for Λ = 200, ζ = 3.
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However, the most standard candidate for f(z) is a Gaussian, this being accepted as the typical

intensity profile for a laser beam. The Gaussian is not an ideal envelope, since it contains no central

plateau. Despite the presence of a width parameter, this is of little value since the potential is

always either switching-on or off; there is no constant section for comparison. A function which

comes closer to the ideal is f(z) = tanh(z/w). For computational purposes propagation would be

begun at some finite negative value of z, but which is great enough to approximate to z = −∞,

where the initial condition

Px(z = −∞) = 0 (5.14)

is enforced. The value of the single parameter w determines the width of the wings, and propagation

may then proceed indefinitely along the nearly flat plateau. Of course, to obtain the correct

switching off behaviour, another tanh function must be used back to back with the first. In

their book Mechanical Action of Light on Atoms [45], Kazantsev, Surdutovich, and Yakovlev show

that the two-beam Raman-Nath equation can be solved for a tanh envelope: the Raman-Nath

equations, being paraxial, are first order in z. Substituting the equation for one of the beams

into the other gives a second order differential equation which is similar to a Schrödinger equation

with a tanh potential. This has solutions in terms of hypergeometric functions (see the text on

quantum mechanics by Landau and Lifshitz). The two solutions, one due to each tanh, must then

be matched in the middle and satisfy the boundary condition (5.14). The solution of Kazantsev

et al. is one of only a very few analytic solutions for the smooth profile which exist—and being

restricted to the two beam case, is of limited use for the general problem.

The need to incorporate smooth wings into the laser profile is considered in an experimental

paper by Moskowitz et al. [57]. They establish that even supersonic atom beams have adiabatic

entry into their laser because the internal evolution, governed by the Rabi frequency, Ω (Equation

(2.24)), of the atom is so fast. Their calculation, which was for an intense laser field, went as

Ω× (field “turn-on” time) ∼ 109sec−1 × 10−8sec = 10 (5.15)

which suggests that atoms can undergo ten internal cycles during entry into the field. From the

known longitudinal speed of the atoms, their estimation of the width of the entry wing is only

∼ 10µm. However, for their experiment, the internal evolution was sufficiently rapid that by the

time the atom reached the constant region of the potential, it might, at the very most, be in

the tenth diffracted beam. Clearly, for a fixed width of wing, this number depends on the Rabi

frequency which is in turn a linear function of the field strength. For more intense fields, the wings

can be made shorter and still achieve the same adiabatic entry. In the semiclassical limit, for which

the wings are of greatest importance1 the motion of the atom into the tenth diffracted beam during

1The weak field case has a small Rabi frequency so the entry may well be non-adiabatic, but the field is considered
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entry is of negligible consequence.

Nevertheless, a number of calculations will now be made using the ‘worst case scenario’ Gaussian

envelope (which has nothing but wings) to demonstrate that the basic form of the behaviour familiar

from the preceding chapters is still maintained.

5.3.1 Classical motion

The action for an oscillating system, taken over half a period

Sx =

∫ xmax

xmin

Px dx (5.16)

is known to be accurately conserved despite the change in some parameter of the Hamiltonian,

provided that change is slow in comparison with the period. If the longitudinal profile is slowly

varying in comparison with the transverse oscillation frequency, then this raises the possibility of

using the conservation of action to help find the motion of the atoms. Unfortunately however,

this method is not applicable to the current situation for reasons that were first discussed by J. H.

Hannay in 1986 [41]. Although motion within a well is likely to obey the conservation of action,

there is a blatant exception when considering motion near the separatrix. Then the motion can

become infinitely slow and hence violate the requirement that it greatly exceed the rate of change

of the parameter. Hannay realised (and derived the generic effects on the action) that any change

of a parameter that brought an orbit close to a separatrix (such as the top of a barrier where

it effectively gets trapped) was likely to occasion problems. Considering the situation here, the

separatrix energy is taken from zero to some value and then back again, and thus it seems that

every single trajectory is capable of traversing the separatrix at some point during its evolution

(which implies escaping into the neighbouring well). Thinking in configuration space, it may so

happen that a particular trajectory is not in the correct position at the correct time to experience

the change in period, but there is certainly a risk that it may occur.

Under these circumstances, any hope of attacking the problem analytically was abondoned

in favour of numerical demonstrations. For numerical convenience, rather than taking an actual

Gaussian as the envelope, the Gaussian-like function

f(z) =

 e−z
2/(w2−z2) |z| < w

0 |z| > w
(5.17)

was used. This has the advantage of definitely (and smoothly) switching on/off at z = ∓w (see

Figure 5.4). Figure 5.5 shows the classical trajectories, with envelope (5.17), obtained numerically

weak enough that this should cause little disturbance to the internal equilibrium of the atom which is necessary for

the validity of the potential derived in Chapter 2.
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Figure 5.4: The ‘Gaussian-like’ envelope function f(z) = exp(−z2/(w2 − z2)), plotted for w = 1.

from the Hamiltonian (5.13) by integrating Hamilton’s equations; all the parameters have been put

equal to unity, except the energy, which has been chosen as E = 0.5, and the width, which was set

at w = 15. The motion, whilst different, still produces caustics of a similar nature to before. Note

how the configuration space rays have been slightly ‘crushed’ down into the well. This behaviour

is parameter dependent, so, for instance, choosing a greater value of E would give less crushing.

Notice also how, as the potential decays away, the trajectories are able to slip into the neighbouring

wells. This is the separatrix crossing behaviour. Once again it is emphasised that taking a flat

potential envelope with short wings, the behaviour can be made arbitrarily close to the constant

longitudinal potential case.

5.3.2 Quantum intensities

Following through the derivation of the Raman-Nath equations for normal incidence, as given in

Section 4.2, but now including the z-envelope for the potential as in Equation (5.13), one obtains

the modified Raman-Nath equations

i
∂An
∂ζ

= n2An − f(ζ)
Λ

2
(An+1 + 2An +An−1) . (5.18)

The r.h.s. is no longer ζ-independent, so eigenvectors of the Raman-Nath matrix (see Equation

(4.78)) do not exist. Numerical solutions must therefore be found by the simultaneous integration

of the (truncated) set of Raman-Nath equations. When the envelope (5.17) is used, the initial
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Figure 5.5: The classical motion with the longitudinal envelope (5.17), E = 0.5, w = 15; A)

configuration space, B) (transverse) momentum space.
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condition is

An(ζ = −w) = δn,0 (5.19)

and the integration must be taken from −w to +w. Figure 5.6 gives the intensity patterns resulting

from three different values of the width w, for which the Raman-Nath equations (5.18) were

integrated using the fourth order Runge-Kutta method. All correspond to the classical energy

E = 0.5, and the last, Figure 5.6 C), has the same width, w = 15, as the classical pictures 5.5. Any

specific comparison with the flat potential over the same distance would be poor, but the pictures

indicate that the same Airy function behaviour still survives (as is guaranteed by catastrophe

theory).
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Figure 5.6: Some quantum farfield patterns generated under the longitudinal envelope (5.17), with

Λ = 12500, and corresponding to the classical mechanics given by E = 0.5, and the following

widths: A) w = 0.671 (ζ : −0.006 → +0.006), B) w = 4.472 (ζ : −0.04 → 0.04), C) w = 15

(ζ : −0.134→ 0.134).



Chapter 6

A complex potential

6.1 Motivation

Atom optics has a number of features which make it an attractive setting for novel investigations

into simple quantum mechanical phenomena. The tiny de Broglie wavelength which is attainable

because of the strongly resonant atom-light interaction (allowing a large momentum transfer) gives

rise to very delicate interference phenomena. The nature of such interference in the classical limit

was studied numerically in Chapter 4 and will continue in the following chapters. Here however

a partial return is made to the very quantum end of the wavelength scale. In particular, weak

field Bragg scattering will be re-examined but this time in the presence of spontaneous emission;

such a situation can be modelled using a complex (in the sense of real and imaginary numbers)

potential. The equations of weak field Bragg (dynamical) scattering are so simple that the analysis

can be made without recourse to numerics, and, because of the influence of the complex potential,

lead to an uncomplicated picture of quantum behaviour in a dissipative environment. Unlike the

Hermitian case, the Hamiltonian describing the complex potential is capable of degeneracies which

will be shown to strongly affect the scattering; effects such as ‘anomalous Borrmann transmission’

are observed which are the physical manifestation of degeneracies in 2 × 2 matrices. Unfamiliar

behaviour persists into the semiclassical limit and contrasts strongly with caustic dominated farfield

patterns which have been observed so far.

6.2 The dissipative potential

The key ingredient for achieving degeneracies in this atom optics system is the presence of a complex

potential, the imaginary part of which models dissipation. Such a potential was introduced by D.O.

94
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Figure 6.1: The three level atom: a two level atom with decay to a third state c. It is assumed

that γ � Γ. The incident radiation is tuned to ω0.

Chudesnikov and V. P. Yakovlev in 1991 [24] (see also Oberthaler et al. [62]) and is based on an

effective three level internal atomic energy level scheme: two working levels; a ground or metastable

state coupled to an excited state by the quasi-resonant laser field—exactly as before—but this time

there is a third level to which the excited state rapidly decays (permanently). See Figure 6.1

The absorption-stimulated emission Rabi oscillations between the working levels, which are

responsible for the quantised external motion of the atom, compete with fast decay to the third

level (decay of the excited state to the ground state is assumed to be much slower and is therefore

ignored). A significant difference with the situation considered before now is that the laser is

taken to be tuned on resonance, so the upper state is readily excited by the incident photons.

However, because of the weak field conditions, and if the dissipative decay is sufficiently rapid, at

any moment in time the atom has only a small chance of actually being in the excited state.

Thus the population of the excited level adiabatically clings to that of the ground state and

may be eliminated, allowing the equation of motion for the atomic density matrix to be written as

a Schrödinger equation for the ground state with a complex potential, (see Equation (E.13))

V (x) =
d2
abE2

0

4h̄
(
∆ + iγ2

) cos2Kx (6.1)

where γ is the decay rate from the excited state to the third state, but, as before, ∆ is the

detuning from the working transition (for which dab is the dipole matrix element). Chudesnikov

and Yakovlev derive this expression in their 1991 paper [24]. Appendix E gives a different (but

related) derivation.
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Complex potentials arise when attention is focussed upon just a sub-system of the whole.

Here, because it is just the ground state wavefunction that is being calculated, atoms which have

decayed into the third level are ignored. The decay modelled by the imaginary part of the potential

represents the loss of atoms from the two-level ground↔excited state subsystem. This is a useful

manoeuvre since it allows one to continue to treat the subsystem as evolving coherently in the

sense that the random momentum kicks received during spontaneous emission do not need to be

considered. Thus the subsystem remains restricted to the quantised diffraction pattern, and the

more serious developments requiring a Fokker-Planck approach as mentioned in Chapter 1 are not

necessary.

There are many types of effect which an ‘environment’ can have on a subsystem. That which

is considered here is among the most basic since the environment has no effect on the subsystem

other than to remove probability. An immediate question is whether such a situation can be

accomplished experimentally. Fortunately it can since the detectors used in the farfield are so

sensitive that they can be set so as to only be triggered by atoms which are in the ground state

and do not register atoms in any of the other states.

6.3 Intensity sum rule for the diffracted beams

When the detuning, ∆, is zero (this is a slightly moot point since the upper state has a finite width,

so the detuning can only be zero up to this width) the potential (6.1) becomes purely imaginary

V (x) = −i
d2
abE2

0

2h̄γ
cos2Kx = −iṼ0 cos2Kx (6.2)

and the resulting Raman-Nath equation is (see Equation (4.36))

i
∂An
∂ζ

+ [iΛ− n(n+ α)]An + i
Λ

2
(An+1 +An−1) = 0 (6.3)

where Λ remains the same as in its definition (4.10) except that Ṽ0 is substituted for V0.

For the real potential the total intensity in all the beams is conserved

n=∞∑
n=−∞

|An|2 = 1. (6.4)

One might expect that here, due to the dissipation, the total intensity would decay exponentially

with depth ζ. However, things are not that simple. Multiplying Equation (6.3) by A∗n and then

subtracting its complex conjugate multiplied by An gives

i
∂AnA

∗
n

∂ζ
+ i

Λ

2

(
A∗nAn+1 +A∗nAn−1 + 2A∗nAn +AnA

∗
n+1 +AnA

∗
n−1

)
= 0. (6.5)
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Multiplying by (−1)n and summing, only the diagonal terms survive

n=∞∑
n=−∞

(−1)n
(
∂AnA

∗
n

∂ζ
+ 2ΛAnA

∗
n

)
= 0. (6.6)

This can be re-written as
∂

∂ζ

n=∞∑
n=−∞

(−1)nAnA
∗
ne2Λζ = 0 (6.7)

which implies that the sum is equal to a constant. Using the initial condition

An(ζ = 0) = δn,0 (6.8)

one immediately concludes that the exponentially decaying quantity is an alternating sum of the

intensities
n=∞∑
n=−∞

(−1)n |An(ζ)|2 = e−2Λζ . (6.9)

This condition provides a powerful check on numerical calculations.

6.4 Non-Hermitian degeneracies

Section 4.4 showed that for a very weak potential (small Λ), and incidence close to the first Bragg

angle, only the zeroth and first diffracted beam really need be considered; the coupling to the other

beams being very small. Unfortunately the Born perturbation solution of Section 4.4.3 diverged at

the Bragg angle for large enough ζ. To overcome this defect it will be assumed that in the vicinity

of the Bragg angle, beams other than the zeroth and first can in fact be totally ignored, and the

scattering problem solved exactly in terms of these two. This is known as ‘the two-beam solution’.

To explore angles close to the first Bragg angle (α = −1) it is convenient to define

α = −1 + β (6.10)

so that β measures the deviation from Bragg incidence. Including only the A0 and A1 amplitudes

one has

i
∂

∂ζ

 A0

A1

 =M

 A0

A1

 (6.11)

where

M =

 −iΛ − i
2Λ

− i
2Λ β − iΛ

 . (6.12)

Clearly M is non-Hermitian. Its eigenvalues are

λ± =
β

2
− iΛ± 1

2

√
β2 − Λ2 (6.13)
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corresponding to eigenvectors

|χ±〉 =

 −iΛ

β ±
√
β2 − Λ2

 . (6.14)

The combination of eigenvectors which satisfy the initial condition (6.8) give the diffracted ampli-

tudes  A0

A1

 = B+ |χ+〉 e−iλ+ζ +B− |χ−〉 e−iλ−ζ (6.15)

with

B± = i

√
β2 − Λ2 ∓ β

2Λ
√
β2 − Λ2

. (6.16)

The presence of a degeneracy for angles such that β = ±Λ is emphasised. As the degeneracy is

approached, the two eigenvectors (6.14) become parallel; no longer spanning the two-dimensional

space in which they live. In response, to maintain the distinct identities of A0 and A1, the

coefficients B± diverge (but only in such a way that the amplitudes themselves remain finite). This

behaviour contrasts with the Hermitian situation for which the eigenvectors remain orthogonal even

at the degeneracy and so continue to span the space.

6.4.1 The eigenvalues close to a degeneracy

The coinciding eigenvalues at β = ±Λ represent a physical realisation of a degeneracy in a 2 × 2

matrix. Degeneracies in physics are novel because, generally speaking, Hermitian systems receive

much more attention than non-Hermitian ones. Hermitian systems rarely exhibit degeneracies

because their degeneracies live in a three dimensional space, generically requiring three parameters

to search them out (unless there is some special symmetry of the matrix). This can be seen by

considering a general matrix h, say, which is a function of parameter space R

h(R) =

 h11(R) h12(R)

h21(R) h22(R)

 (6.17)

which has eigenvalues

λ±(R) =
h11 + h22

2
± 1

2

√
(h11 − h22)

2
+ 4h12h21. (6.18)

Degeneracy occurs when

λ+ − λ− = 0 =

√
(h11(R)− h22(R))

2
+ 4h12(R)h21(R). (6.19)

For the Hermitian case, h11 and h22 are real, with h12 = h∗21. The degeneracy condition (6.19)

reduces to the sum of two squares

(h11(R)− h22(R))
2

+ |h21(R)|2 = 0 (6.20)
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which requires three separate conditions to be fulfilled

h11(R) = h22(R) (6.21)

Re [h21(R)] = 0 (6.22)

Im [h21(R)] = 0 (6.23)

and so at least three parameters must be varied to find a degeneracy. For a general non-Hermitian

matrix the degeneracies are easier to locate since the condition (6.19) only states that the real

and imaginary parts of the entire r.h.s. must be separately equal to zero, implying that only two

parameters are needed. And indeed, the degeneracies of the complex Raman-Nath matrix M are

points in the two dimensional (β,Λ) space. In 1937 Edward Teller [79] showed that the eigenvalue

Re[ , ]! !" # Re[ , ]! !" #

Im[ , ]! !" #

Im[ , ]! !" #

$ $

% &

Figure 6.2: The real and imaginary parts of the eigenvalues close to a degeneracy; A) the complex

eigenvalues (6.13) as a function of β for Λ = 1, B) the real eigenvalues due to a Hermitian matrix.

structure local to degeneracies of Hermitian matrices form a double cone (diabolo) centred on the

degeneracy. Slices through this diabolo give rise to the familiar ‘avoided crossing’ behaviour. Figure

6.2 compares the double cone with the quite different response of the non-Hermitian eigenvalue

Equation (6.13), which has an imaginary ‘bubble’ in the region between the degeneracy points.

6.4.2 The eigenvectors close to a degeneracy

The expression (6.15) for the intensities can be simplified by replacing the three variables ζ, β and

Λ with two defined as

η ≡ 1

2
ζΛ (6.24)

δ ≡ β

Λ
(6.25)
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so that the degeneracy is at δ = ±1. Then

I1 ≡ |A1|2 = e−4η sin2
(
η
√
δ2 − 1

)
δ2 − 1

(6.26)

I0 ≡ |A0|2 = e−4η + I1. (6.27)

These formulas satisfy the alternating sum rule (6.9) and they are valid for all η and δ if Λ is small

enough.

!

"

I
1

Figure 6.3: Intensity I1 (Equation (6.26)) of the first Bragg reflected beam for an imaginary

potential, as a function of the depth and angular deviation variables η and δ respectively.

Figure 6.3 shows I1 as a function of depth η and deviation δ from the Bragg angle. The most
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notable feature is that the degeneracies at δ = ±1 mark the transition from oscillatory (trigono-

metric) to non-oscillatory (hyperbolic) behaviour of both the thickness dependence (variation with

η for fixed δ) and the ‘rocking-curves’ (variation with δ for fixed η), as demonstrated by the dark

fringes (zeros) of the pattern, at

δn = ±

√
1 +

(
nπ

η

)2

(n = 1, 2, . . .) (6.28)

whose asymptote as η → ∞ is δn = 1. Near the Bragg angle, and for large depths, the decay of

the rocking curve is Gaussian, namely

I1 ≈
1

4
e−2ηe−δ

2η (η � 1, δ � 1) (6.29)

with angular width of the Bragg peak shrinking with thickness as ∆δ ∼ 1/
√
η. From (6.26–6.27)

the same decay applies to the total intensity, I0 + I1, of the transmitted atoms. Alternatively

stated, the total transmitted intensity increases anomalously at the Bragg angle, a ‘remarkable

phenomenon’ predicted and observed by Oberthaler et al. in 1996 [62], and related to the effect

discovered in 1941 by Borrmann [20] for X-rays diffracted by an absorbing crystal. It is interesting

to note that the anomalously transmitted beams both have sub-single photon recoil widths for

large enough η.

By contrast, the intensities for the ‘transparent’ (no dissipation—real potential) light grating,

with variables still defined by (6.24–6.25), are

I1 =
sin2

(
η
√
δ2 + 1

)
δ2 + 1

(6.30)

I0 = 1− I1. (6.31)

Now the fringes in the η, δ plane cross the Bragg axis (δ = 0) at η = nπ, and the total transmitted

intensity is unity irrespective of direction δ.

It is, however, possible to get degeneracies between Bloch waves for transparent gratings. In

the many-beam transmission electron microscopy of thin crystals, where the crystal is not a single

sinusoid but has many Fourier components, degeneracies can be produced at Bragg angles by

varying the voltage (the ‘critical voltage effect’) [13].

6.4.3 Three beams

Degeneracy can also occur for normal incidence for the imaginary case. If Λ is small enough then

all amplitudes are negligible save A0 and A+1 = A−1. The Raman-Nath equations for this three

beam case are

i
∂

∂ζ

 A0

A1

 = N

 A0

A1

 (6.32)
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where

N =

 −iΛ −iΛ

− i
2Λ 1− iΛ

 . (6.33)

N has eigenvalues

λ± =
1

2
− iΛ± 1

2

√
1− 2Λ2. (6.34)

Now the degeneracy is at Λ = ±1/
√

2. Solving for the intensities gives

I±1 ≡ |A±1|2 =
Λ2

1− 2Λ2
e−2Λζ sin2

(
ζ

2

√
1− 2Λ2

)
(6.35)

I0 ≡ |A0|2 = e−2Λζ + 2I1 (6.36)

which satisfy the alternating sum rule (6.9). At the degeneracies themselves

I±1 =
ζ2

8
e−
√

2ζ (6.37)

I0 =

(
1 +

ζ2

4

)
e−
√

2ζ (6.38)

and as before this marks the transition from oscillatory to hyperbolic behaviour. Figure 6.4 shows

that Λ = 1/
√

2 is within the three-beam approximation, at least in the region where the intensities

are appreciable. For larger ζ, the exact solutions of the Raman-Nath equations (6.3) diverge from

the approximations (6.37 and 6.38), because of contributions from the beams with |n| ≥ 2 (even

when these are small, they can vary rapidly as a result of the factor n2 in (6.3) with α = 0, and so

can spoil the three beam approximation through their derivatives).

6.5 Nonclassical semiclassical behaviour: many beams

When Λ is large, the laser field acts strongly upon the atom waves. Restricting the discussion to

normal incidence (α = 0), the aim is to determine the asymptotic distribution of the intensities

In as the interaction distance ζ increases. It is recalled that for the ‘transparent’ case the pattern

of intensities is dominated by caustics; the envelopes of classical rays, which proliferate with ζ.

For an absorbing potential the behaviour is very different; only those rays which avoid the intense

parts of the ‘washboard’ potential survive; namely those that wind around in the very bottom

(harmonic) parts of the wells.

6.5.1 Berry’s solution

Rather than using rays to calculate the intensities, an approach will be taken which relies on a

remarkable insight, due to Michael Berry, who was able to write down the solution by inspection.
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Figure 6.4: The dashed curves are the intensities I0 (upper curve) and I1 (lower curve) at normal

incidence, in the three beam approximation (6.38 and 6.37) for the potential strength Λ = 1/
√

2,

for which the governing matrix (6.33) is degenerate. The full curves are the intensities calculated

numerically from (6.3) incorporating ±11 beams for α = 0. The next most intense beam, I2, never

exceeds 0.0006.
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Firstly, it is convenient to rewrite the Raman-Nath equations (6.3) in different variables Bn defined

by

An(ζ) ≡ (−1)nBn(ζ). (6.39)

Thus, for normal incidence

∂Bn(ζ)

∂ζ
=
[
−in2 − Λ

]
Bn(ζ) +

Λ

2
[Bn+1(ζ) +Bn−1(ζ)] . (6.40)

Now the central difference approximation is made

Bn+1(ζ) +Bn−1(ζ)− 2Bn(ζ) ≈ ∂2

∂n2
Bn(ζ). (6.41)

Such ‘continuisation’ procedures will be discussed at length in Chapter 7. In particular, it is known

(see the second Appendix of [16]), that such a simple replacement is inadequate for the case of

the real potential because of the highly oscillatory nature of the wavefunction. Here, however, the

higher orders are very heavily damped and so, as will be seen, it works.

One must solve
∂Bn(ζ)

∂ζ
= −in2Bn(ζ) +

Λ

2

∂2Bn(ζ)

∂n2
. (6.42)

Berry’s solution is

Bn(ζ) ≈ D√
sinh

(
ζ
√

2iΛ
) exp

(
−n2

√
i

2Λ
coth

(
ζ
√

2iΛ
))

(6.43)

where D is a constant stipulated by the initial conditions. It can be confirmed by direct sub-

stitution that (6.43) is in fact an exact solution of the continuised R-N equation (6.42), and is

hopefully therefore a reasonable approximate solution to the discrete problem. However, whilst

(6.43) condenses onto the n = 0 beam for ζ →∞, which seems reasonable, it can never satisfy the

initial condition (6.8). Assuming however that (6.43) is correct for large ζ, one must somehow still

calculate D. This is accomplished by matching (6.43) onto the phase-grating solution (4.18), due

to Raman and Nath, for small ζ where, one trusts, both solutions are valid.

6.5.2 Matching to the phase grating solution

When the term containing n2 in (6.40) is ignored, one arrives at the ‘phase-grating solution’

Bn(ζ) ≈ e−ΛζIn(Λζ) (6.44)

where In is the modified Bessel function. This approximation satisfies the alternating sum rule

(6.9) exactly since, from [1], In = I−n, and

e−z = I0(z)− 2I1(z) + 2I2(z)− 2I3(z) + · · · . (6.45)
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Employing the Debye asymptotic approximations [1] giving In for Λζ and n large, and further

approximating these for Λζ � n, one finds

e−ΛζIn(Λζ) ≈
exp

(
− n2

2Λζ

)
√

2πΛζ
. (6.46)

This matches precisely onto (6.43) for small ζ (taking sinh z ∼ z and coth z ∼ 1/z), and identifies

D as

D =
1√
π

(
i

2Λ

)1/4

. (6.47)

Put together, the diffracted intensities are predicted to be given by the Gaussian distribution

In ≈ a(ζ,Λ) exp

(
− n2

w2(ζ,Λ)

)
(6.48)

where the amplitude a, and width w, of the set of diffracted beams are

a(ζ,Λ) =
1

π

√
Λ
[
cosh

(
2ζ
√

Λ
)
− cos

(
2ζ
√

Λ
)] (6.49)

w(ζ,Λ) = Λ1/4

√√√√√cosh
(

2ζ
√

Λ
)
− cos

(
2ζ
√

Λ
)

sinh
(

2ζ
√

Λ
)

+ sin
(

2ζ
√

Λ
) (6.50)

and this result is expected to be valid for large Λ with ζ not too close to zero.

If ζ
√

Λ� 1, then the amplitude decays exponentially and the width saturates

a(ζ,Λ) −→ 1

π

√
2

Λ
e−ζ
√

Λ (6.51)

w(ζ,Λ) −→ Λ1/4. (6.52)

Thus the semiclassical width of the momentum distribution is of order ∼ Λ1/4 which is considerably

narrower than for the purely real potential, which by Equation (4.29) goes only as ∼ Λ1/2, in other

words; many fewer beams are transmitted.

6.5.3 Comparison with numerical calculations

The arguments leading to (6.48), (6.49) and (6.50) are not rigorous, and so it is desirable to test

them against numerical solutions of the R-N equations (6.3). Figure 6.5 shows the comparisons;

the dots pertain to the numerical calculation, whilst the full curves are based on the various ap-

proximations (6.49–6.52) given above. For most of the pictures the chosen value of Λ is quite small,

rather than being very semiclassical (large). This is to illustrate the accuracy of the approximations

even for parameter regions that are quite ‘quantum’.

A The intensities for Λ = 5, ζ = 8. The dominant decay; e−ζ
√

Λ, has been removed.
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B ln[a(ζ,Λ)] for Λ = 5; the numerical values were obtained by taking the logarithm of the

intensity of the zeroth beam at various depths.

C The width, w(ζ,Λ), as a function of ζ for Λ = 5. The value of the width for the numerical

calculations was obtained in the following way: assuming that In = a exp
(
−n2/w2

)
, then

taking the logarithm one finds ln In = ln a− n2/w2. Thus w2(ζ,Λ) behaves as the inverse of

the gradient for a parabolic curve. Differentiating both sides twice w.r.t. n, and evaluating

the result at n = 0, say, will then yield twice the gradient. To differentiate the l.h.s. one

must use the central difference approximation (6.41). Noting that I+1 = I−1, one obtains an

estimate of the width from w ≈ 1/
√

ln(I0/I1).

D The width, w(ζ,Λ), as a function of Λ for ζ = 8 (not a particularly large value of ζ, again

demonstrating unexpected validity, especially considering that this time the saturated width

(6.52) was used for the full curve). The width of the numerical solution was calculated in

the same way as for C.

E The logarithm of amplitude a(ζ,Λ), as a function of Λ for ζ = 8. Again, the asymptotic

amplitude (6.51) was used for the full curve. As in B, the amplitude was extracted from the

numerical expression by using the zeroth beam.

It is clear that the various approximate solutions described above give an accurate description

of diffraction by an imaginary ‘grating’ (periodic potential), especially in the regime of large ζ that

is so complicated for transparent gratings. The majority of the contents of this chapter has been

published [15].
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Figure 6.5: The dots are the exact solutions of the R-N equations, the full curves are the calculations

based on Berry’s solution and its approximations. A), B) and C) were obtained using (6.49–6.50),

whilst C) and D) use the further approximations (6.51–6.52).



Chapter 7

Continuising the Raman-Nath

equation

7.1 Motivation

As has now been demonstrated, solving the Raman-Nath equation analytically is straight for-

ward enough when there are only two beams to consider. With a deeper potential however, one

can induce arbitrarily more beams and the task of finding analytic solutions would seem rather

formidable. This is compounded by the Raman-Nath equation being a difference equation. It

is true to say that difference equations have been much less studied than their continuous coun-

terparts. Examining the numerically generated farfield intensities of Section 4.5 it is clear that

when Λ is large the interference between the Bloch waves becomes very complicated except for

the ‘clean’ outer caustic. However, inspection of any single Bloch wave, such as that shown in

Figure 7.1, reveals a smooth envelope—with many individual orders acting in concert to produce

each fringe. The rate of change of the amplitudes with order n seems to be relatively slow, and so

the question then arises, could perhaps the discrete difference equation (4.77), be approximated

by some differential equation which is in some way the continuised version of it? This chapter

presents two existing ideas on how to go about this, mainly due originally to Dingle and Morgan

[28, 29] and Berry [16], but also discovered independently by Yakovlev [83].

108
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n

Figure 7.1: Bloch wave (eigenvector) No. 110 (out of 200 bound states) of the R-N matrix (4.78)

for Λ = 12500. The dots are the numerically calculated amplitudes and the continuous line joins

them.
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7.2 The central difference approximation

If each Bloch wave is assumed to be a continuous function of the continuous variable,

y = nε (7.1)

then the discrete amplitudes are given by the evaluation of this continuous function at the values

of y corresponding to integer values of n

Bjn → B̃j(y)
∣∣∣
y=nε

. (7.2)

The new variable y is defined in this way since when n→ n+ 1, then y → y+ ε, with ε being some

small quantity. That is, the distance between the diffracted orders becomes small, so that

Bjn−1 → B̃j(y − ε) (7.3)

Bjn+1 → B̃j(y + ε) (7.4)

and the r.h.s. can be Taylor expanded, transforming the stationary R-N equation (4.77) into

EB̃(y)− y2

ε2
B̃(y) +

Λ

2

(
B̃(y) +

dB̃(y)

dy
ε+

1

2

d2B̃(y)

dy2
ε2 + · · ·

+ B̃(y)− dB̃(y)

dy
ε+

1

2

d2B̃(y)

dy2
ε2 + · · ·

)
= 0.

(7.5)

Truncating the expansion at the second order terms leaves

EB̃(y)− y2

ε2
B̃(y) +

Λ

2

(
2B̃(y) +

d2B̃(y)

dy2
ε2

)
= 0. (7.6)

This is really equivalent to making the central difference approximation

Bn+1 +Bn−1 − 2Bn ≈
∂2

∂n2
Bn. (7.7)

Letting

ε =

(
8

Λ

)1/4

(7.8)

ψ = B̃
√

Λ (7.9)

one arrives at the equation for the parabolic cylinder function [1] ψ,

d2ψ

dy2
−
(
y2

4
− E + Λ√

2

)
ψ = 0. (7.10)

At this point one may well question the value of re-writing the Mathieu equation (via the R-N

equation) in terms of other special functions. Afterall, the Mathieu functions solve the original

problem. Firstly, until very recently, no commercially available computer packages contained



CHAPTER 7. CONTINUISING THE RAMAN-NATH EQUATION 111

intrinsic Mathieu functions, and so their calculation would have to be by, say, the truncated

continued fraction method [1, 16, 55] or diagonalisation1. When working in momentum space,

as here, either one leaves the problem as a purely numerical exercise, in which case little more

can be learnt, or one tries to extract analytic information. The parabolic cylinder equation (7.10)

is well studied with many known properties, and here, as asserted above, allegedly describes the

behaviour of the momentum space amplitudes, where previously only pure numerics existed. This

therefore, if correct, constitutes some sort of an advance2.

The parabolic cylinder function approach was pursued by Berry [16] in 1965. Unfortunately it

was discovered that it gives a very poor match to the true eigenvectors. The reason presumably

being that the Taylor series is truncated too early. Only the higher order terms describe the

large values of the curvature and its derivatives that are responsible for the rapid oscillations of

the eigenvectors as exemplified by Figure 7.1. The approximation worked well for the imaginary

potential of Chapter 6 because the wavefunction was a Gaussian; a structure simple enough to be

captured successfully by the central difference approximation. Fortunately, in the same work [16],

Berry also suggested another approach to continuisation, and it is to this that the next section

turns.

7.3 The W.K.B. approach

It has long been appreciated that a slowly varying function, when exponentiated, is capable of

describing rapidly oscillating behaviour. This feature lies at the heart of the semiclassical technique

known as the W.K.B. method [14]. The first application of such techniques to the R-N equation

was by Dingle and Morgan [28, 29], but it has also been developed independently by Yakovlev

[83]. The stationary R-N equation (4.77) will first be written in terms of more convenient re-scaled

variables. This time, let

y =
n√
Λ

(7.11)

β =
E

Λ
(7.12)

so that when

n→ n+ 1 (7.13)

1One computer package, Mathematica version 3.0, does now have intrinsic Mathieu functions, but only in con-

figuration space. To find the farfield intensity one must numerically Fourier analyse each Mathieu function.
2If this section seems defensive, well it is. It seeks to justify the necessity for this work following a question put by

a senior Professor following a talk by the author. The question, quite rightly, ran along the lines “Why bother with

all this when the Mathieu functions solve the problem?”. The Mathieu functions are indeed well studied functions.

They are not however, well enough studied functions.
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then

y → y +
1√
Λ

(7.14)

and (4.77) becomes

(β − y2)Bn +
1

2
(Bn+1 +Bn−1) = 0. (7.15)

Note that, due to the range of magnitudes of the eigenvalues as given by Equation (4.83), the

definition of β above implies that for bound states

−1 < βbound < 1. (7.16)

Once again the assumption will be that the amplitudes are really just integer separated points

of a continuous function3. Keeping things simple, one assumes

Bn → B(y) (7.17)

and that

B(y) = eiS(y) (7.18)

where the suggestively named S(y) is analogous to an action. The functions S(y + (
√

Λ)−1) and

S(y − (
√

Λ)−1) are then Taylor expanded as above, and common terms divided out leaving a

differential equation of infinite order

1

2

(
ei(Si + Sii/2 + Siii/6 + Siv/24 + ··· ) + ei(−Si + Sii/2− Siii/6 + Siv/24 + ··· )

)
= y2 − β (7.19)

or

cos

(
Si +

Siii

6
+ · · ·

)
= (y2 − β)e−i(Sii/2 +Siv/24 +··· ) (7.20)

where Sm = (
√

Λ)−m ∂mS/∂ym are small quantities. Solving for the first derivative one has

1√
Λ

∂S

∂y
= arccos

[
(y2 − β)e−i(Sii/2 +Siv/24 +··· )

]
− Siii

6
− · · · . (7.21)

Now

e−i(Sii/2 +Siv/24 +··· ) = 1− i

(
Sii

2
+
Siv

24
+ · · ·

)
− 1

2

(
Sii

2
+
Siv

24
+ · · ·

)2

+ · · ·

≡ 1 + δ

(7.22)

Temporarily writing

κ = y2 − β (7.23)

then Equation (7.21) becomes

1√
Λ

∂S

∂y
= arccos [κ(1 + δ)]− Siii

6
− · · · . (7.24)

3Dingle and Morgan have also found a discrete form of the W.K.B. formulation for the R-N equation, see [16].
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and so the arccos term can itself be Taylor expanded in κ about the point κ

arccos [κ(1 + δ)] = arccos [κ]− 1√
1− κ2

κδ +
1

2

κ

(1− κ2)3/2
κ2δ2 + · · · (7.25)

giving

1√
Λ

∂S

∂y
= arccos [y2 − β] + i

y2 − β√
1− (y2 − β)2

Sii

2
− Siii

6
+ i

y2 − β√
1− (y2 − β)2

Siv

24

+
y2 − β

(1− (y2 − β)2)
3/2

(Sii)2

8
+ · · · .

(7.26)

Solving for Si by iterating to second order in a similar fashion to Section 4.4.3, gives

∂S

∂y
=
√

Λ arccos [y2 − β]− i
(y2 − β)y

1− (y2 − β)2
. (7.27)

Integrating up this equation to find S, it is the second term on the r.h.s. which is the easier of the

two integrals to perform since it can be recognised as

(y2 − β)y

1− (y2 − β)2
=

1

4

∂

∂y
ln
(
1− (y2 − β)2

)
(7.28)

allowing S to be written as

S =
√

Λ

∫
arccos [y2 − β] dy − i

4
ln
(
1− (y2 − β)2

)
≡
√

Λ S0(y, β)− i

4
ln
(
1− (y2 − β)2

)
.

(7.29)

And so the amplitude envelope becomes

B(y) = eiS =
ei
√

Λ
∫

arccos [y2−β] dy

(1− (y2 − β)2)
1/4

=
ei
√

Λ S0(y,β)

(1− (y2 − β)2)
1/4

(7.30)

which indeed has the form of a W.K.B. expression. In particular the expression has divergences at

the turning-points

y = ±
√
β ± 1. (7.31)

Bearing in mind that bound states have values of β ≤ 1 (see Equation (7.16)), then, except for the

very rare cases when the eigenvalue happens to be such that β = 1, real turning-points for bound

states are located at

y± = ±
√
β + 1. (7.32)

The remaining integral is more difficult and is therefore reserved for Appendix D. The lower

limit of the integration is taken as the positive turning point y =
√
β + 1 and the result is

S0(y+, y, β) =

∫ y

√
β+1

arccos [y′
2 − β] dy′

= y arccos [y2 − β]− 2
√

1 + β E

(
1

2
arccos [y2 − β]

∣∣∣∣ 2

1 + β

)
.

(7.33)

This expression for the phase is valid for 0 ≤ y ≤
√
β + 1. For perpendicular incidence the phase

is symmetrical about y = 0, and so only this half-range is required. For values of y greater than
√

1 + β the phase is purely imaginary, but with care (7.33) still gives the correct answer.
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7.3.1 A well in momentum space

Although the remaining calculations in this Chapter and the next will be in momentum space,

to keep the analogy with W.K.B. expressions as simple and as familiar as possible, y will be

treated as though it were really the independent configuration space co-ordinate, ‘q’, say. It will be

as though momentum space has been temporarily relabelled as a configuration space. Whenever

confusion might occur, the actual momentum and configuration spaces will be referred to as (actual)

momentum and (actual) configuration space.

Whilst it is useful to think of Equation (7.30) as a W.K.B. type expression, it does have some

unusual features, due to its unorthodox derivation from a difference equation, which are unfamiliar

from standard W.K.B. solutions. Usually, for the Schrödinger equation

d2ψ(q)

dq2
+
p2(q)

h̄2 ψ(q) = 0 (7.34)

where p(q) is the momentum, one has the approximate solution [14], valid for small h̄ as long as

one is not too close to the turning-points (p(q) = 0), of

ψ±WKB ≡
1√
p(q)

exp

(
± i

h̄

∫ q

0

p(q′)dq′
)

(7.35)

where +/− refers to right/left travelling waves.

Here however, referring to Equation (7.30), the momentum function appearing in the amplitude

and phase are different. The two momenta,

p1(y, β) =

√
1− (y2 − β)

2
(7.36)

and

p2(y, β) = arccos [y2 − β] (7.37)

coincide for β → −1, but are quite different when β → 1. Examining Figure 7.2 one notes that

the momentum appearing in the phase, p2, is the momentum exhibited by a particle in a simple

well. The amplitude momentum, p1, however, corresponds to a particle in a double well—although

except for values of β greater than one, the particle has enough energy to move between the two

wells. As far as the W.K.B. method is concerned, it is the turning-point structure that is of

paramount importance (see Berry and Mount [14] for a review of the W.K.B. procedure), and so

the different local values of the two momenta should present no problems when β < 1. However,

as soon as the turning-point structure of p1 changes from two to four, at β = 1, one should expect

problems. So, whereas a W.K.B. solution of the (actual) configuration space Mathieu equation

problem requires the treatment of an infinite number of wells (due to the cos2Kx potential), the

(actual) momentum space W.K.B. solution is considerably easier, especially for the bound states
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y

p , p1 2

Figure 7.2: A series of plots showing the two momentum functions, p1 and p2, as functions of y for

different values of β. The top left has β = −0.999, each successive picture has β increasing by 0.2

until the bottom right which has β = 1.201. It is the p1 curve that dips down to zero when β = 1.
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that all reside below β = 1. The problem of diffraction from a general periodic system (i.e. a

crystal) at high energies from the (actual) configuration space point of view was studied by Berry

[10] in 1971. Whilst insightful, the work demonstrates that the (actual) configuration space analysis

is necessarily quite complicated, and hence this approach has never been whole heartedly adopted

by the diffraction physics community.

Comparison with a more general W.K.B. expression

The two differing momenta occuring in (7.30) can be reconciled to some degree by reverting to

another W.K.B. solution, whose existence was brought to the attention of the author by J. H.

Hannay [40], which is a more general form

ψ±WKB ∝
1√
∂H
∂p

exp

(
± i

h̄

∫ x

0

p(x′)dx′
)

(7.38)

of which (7.35) is a special case through the Hamilton equation

p(y)

m
= ẏ =

∂H

∂p
. (7.39)

Referring to the phase space shown in Figure 3.2, each curve corresponds to a particular energy

(Hamiltonian). In the W.K.B. approximation, the amplitude of the configuration space wavefunc-

tion is given by the Jacobian of the mapping from phase space down onto the configuration axis.

The ‘density’ of the energy curves gives a measure of how likely it is for a particle to be in that

region of phase space. For each value of the configuration co-ordinate, the rate of change of the

p-co-ordinate as one changes the parameter H, i.e. dp/dH, gives this density. And so, in an anal-

ogous fashion to the amplitudes used in Chapter 3 and Appendix B, the amplitude is written as

in Equation (7.38).

So if the ‘true’ momentum is taken as the phase momentum p2, and one is guided by the general

W.K.B. expression (7.38) to equate

∂H

∂p2
=

√
1− (y2 − β)

2
=
√

1− cos2 p2 = sin p2 (7.40)

then in general

H = − cos p2 + f(y) = −
(
y2 − β

)
+ f(y) (7.41)

where f(y) is an unknown function. Since the Hamiltonian is a constant in phase space, the

unknown function must be

f(y) = y2 (7.42)

so that the Hamiltonian contours are given by

H = β (7.43)

which is consistent with the rest of the structure built up in this chapter.
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7.3.2 The Bohr-Sommerfeld condition

For states in a well, single-valuedness of the wavefunction dictates that only certain discrete energies

are allowed. These energies are the eigenvalues/characteristic numbers introduced in Section 4.5.

In the formalism of this chapter they translate, through definition (7.12), into certain permitted

values of β. Semiclassically, these values of β are those that ensure the integral of the W.K.B. phase,

Equation (7.33), from one turning-point to the other (that is, the integral across the classically

accessible part of the potential well), allow the oscillating part of the W.K.B. wavefunction to match

correctly onto (asymptotically) exponentially decaying parts of the wavefunction (that tunnel into

the classically forbidden sides of the well).

The action right across the well, given by setting the upper integration limit of Equation (7.33)

equal to −
√
β + 1, is also equal to, for perpendicular incidence, twice the value found by integrating

only halfway, to the midpoint of the well at y = 0,

2S0(y+, 0, β) = −4
√

1 + β E

(
1

2
arccos [−β]

∣∣∣∣ 2

1 + β

)
. (7.44)

The Bohr-Sommerfeld4 condition then states

2
√

Λ
∣∣S0(y+, 0, β

j)
∣∣ =

(
j +

1

2

)
π , j = 0, 1, 2, 3 . . . . (7.45)

Finding the root of this equation (which must be done numerically) for each value of j gives the βj

eigenvalues. One can also use this expression to find the number of bound states that exist once a

value for Λ has been chosen. It is important to note that ‘bound’ refers to the (actual) configuration

space picture for which states can have energies either above or below the ‘washboard’ potential

maximum of V0. In (actual) momentum space all the states are trapped in a well. The most

energetic bound state then, labelled by jmax, has the value of β which is closest to one. When Λ

is large the eigenvalues lie very close to each other, and in particular,

lim
Λ→∞

βjmax = 1 (7.46)

and since

E
(π

2

∣∣∣ 1) = 1 (7.47)

then

lim
Λ→∞

jmax =
4
√

Λ
√

2

π
− 1

2
. (7.48)

4Although identical to the Bohr-Sommerfeld rule, this condition on the action across the well is really to be

derived by matching the W.K.B. solutions from either turning-point in the middle of the well. One should take care

when interpreting this as ‘fitting waves in a box’, because the W.K.B. solutions are not valid at the turning-point,

and so one cannot say, for instance, that the wavefunction at the turning-point is a cosine wave registering a π/4

phase. Indeed, the Airy function is the correct wavefunction for a first order turning-point.
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Although this gives the total number of possible bound states, not all of them are necessarily used

in the superposition which gives the complete wavefunction. For perpendicular incidence only the

even eigenvectors are excited. Examining the coefficients (4.80) appearing in the superposition,

they are given by the value of the corresponding Bloch wave at y = 0. This implies that the odd

Bloch waves are excluded from the sum as asserted.

7.3.3 Real eigenvectors and normalisation

Since the stationary R-N equation (7.15) is real, it is always possible to find real solutions. This

is achieved by constructing a superposition of the two independent solutions: the right and left

travelling waves of Equation (7.35). The specific combination of the two solutions which make up

the superposition is determined by multiplicative coefficients for each independent solution, and

in general these can be functions of y. Semiclassically however, the coefficients may be taken as

constants within each classically allowed region, only changing across a turning-point because of

Stokes’ phenomena. See Berry and Mount [14] for a review. The potential well is a particularly

simple case; the boundary conditions are assumed to require exponential decay into both of the

classically forbidden sides of the well. This allows the complete determination of the multiplicative

superposition coefficients (and hence all the ‘Stokes constants’) giving the W.K.B. eigenvectors

ψWKB =
N (β)(

1− (y2 − β)
2
)1/4

cos
(√

Λ S0(y+, y, β) +
π

4

)
(7.49)

where S0 is given by Equation (7.33), and N (β) is a normalisation factor.

The normalisation of the discrete amplitudes Bn follows from the requirement that

∞∑
n=−∞

|Bn|2 = 1. (7.50)

When moving from a summation to the integration in the continuous variable y, care must be

taken to include a factor of
√

Λ which comes from the definition (7.11) of y, so that

∞∑
n=−∞

−→
∫ ∞
n=−∞

dn −→
√

Λ

∫ ∞
y=−∞

dy. (7.51)

And so normalising the eigenvectors requires the evaluation of∫ ∞
−∞

∣∣∣ψjWKB(y)
∣∣∣2 dy = 1. (7.52)

When Λ becomes large, the exponential decay of the wavefunction into the sides of the well becomes

very rapid and one can ignore these contributions, so the integral is taken to be just that between

the two turning-points of the classical motion. Further, the oscillation of the wavefunction between
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the two turning-points is assumed to be very rapid5 in comparison to the slow variation of the

square of the amplitude. The cos2 term oscillates between zero and (
√

1− (y2 − β)2)−1 and so

without much loss of accuracy, can be replaced by its average value of half the square of the

amplitude. Although the amplitude diverges at the turning-points, as pointed out in Chapter 3,

this divergence is still integrable. Local to the turning-point, if one sets

y →
√

1 + β − (y+ − y) (7.53)

then √
1− (y2 − β)

2 −→
√

4
√

1 + β (y+ − y). (7.54)

So locally the normalisation integral gives∫
d(y+ − y)√

(y+ − y)
= 2
√
y+ − y (7.55)

and these square-root divergences, it turns out, are narrow enough to have negligible effect. Thus,

one takes √
Λ

2

∫ y+

y−

dy√
1− (y2 − β)2

=
1

N 2
. (7.56)

The integration is carried out in Appendix F and gives

N 2 =

√
2

√
Λ K

(
1+β

2

) . (7.57)

Finally then, all the necessary pieces of the W.K.B. approximation to each Bloch wave can be

assembled together and an example is shown in Figure 7.3. The resemblance is remarkable. The

W.K.B. wavefunction was only calculated at the discrete points corresponding to the diffracted

beams, but in the picture these points were joined together by a continuous line to faciliate com-

parison with the numerical data. The particular Bloch wave shown has β = 0.262 so it is a little

over halfway up the well. As emphasised right from its introduction, the W.K.B. approximation

breaks down at the turning-points and this shows up in Figure 7.3. As the actual position of the

classical caustic happens here to fall between two discrete points, the divergence doesn’t appear

as dramatic as it would if a larger value of Λ had been chosen. Finding a solution free from these

divergences is the subject of the next chapter.

5Amazingly, the normalisation factor derived in this way works well even for the ground state Bloch wave which

has the shape of a Gaussian, i.e. is non-oscillatory.
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Figure 7.3: A comparison of the numerical (dots) 110th Bloch wave, out of 200 bound states, of

the R-N matrix (4.78) for Λ = 12500, with its W.K.B. approximation (solid line). Since the Bloch

wave is symmetrical about y = 0, only the positive half is shown.



Chapter 8

The uniform approximation

8.1 Motivation

The W.K.B. approximation, named after G. Wentzel, H. A. Kramers, and L. Brillouin who in-

dependently introduced it into quantum mechanics in 1926, actually has its origins in the 19th

century, as early as 1817 with Carlini1 and is thereafter associated with many of the great names

of mathematical physics including; J. Liouville (1837), G. Green (1837), G. Stokes (1857,. . . ,1889),

Lord Rayleigh (1912) and later, H. Jeffreys (1923,. . . ,1956). Despite its capacity for providing

asymptotic solutions to a great variety of differential equations, it has the well known deficiency

of diverging at the transition (turning) points. It was not until the middle of this century that

a very elegant method, known as the uniform approximation, was developed by Miller and Good

(1953) and then Dingle (1956). Although limited in applicability to relatively few situations, when

suitable it provides a complete solution—uniformly valid throughout the entire domain without

any spurious divergences.

8.2 Comparison with known equations

A very brief introduction will now be given to the uniform approximation. Further details are con-

tained in the review by Berry and Mount [14]. The aim of the method is to obtain an approximate

solution of the Helmholtz equation

d2ψ(q)

dq2
+ χ(q)ψ(q) = 0 (8.1)

1The history of the ‘W.K.B.J.’ technique is surveyed in Heading’s Introduction to Phase Integral Methods [42].

121
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in terms of solutions to one of the ‘studied’ equations, which will be written

d2φ(σ)

dσ2
+ Γ(σ)φ(σ) = 0. (8.2)

The choice of studied equation is determined by Γ(σ) (not the Gamma function) being in some

way similar to χ(q). This similarity implies that φ(σ) also resembles the wavefunction ψ(q), and

“can be changed into it by stretching or contracting it a little and changing the amplitude a little”.

And so ψ(q) will be expressed in terms of φ(σ)

ψ(q) = f(q)φ(σ(q)). (8.3)

Substitution of this definition into (8.1) and making use of (8.2) leaves

d2f

dq2
+ χfφ− f

(
dσ

dq

)2

Γφ+
dφ

dσ

(
2
df

dq

dσ

dq
+ f

d2σ

dq2

)
= 0. (8.4)

The amplitude f(q) is as yet unspecified, so it is chosen to simplify (8.4) as much as possible.

Putting

f =

(
dσ

dq

)− 1
2

(8.5)

renders (8.4) into an equation purely for the ‘mapping function’ σ(q)

χ =

(
dσ

dq

)2

Γ−
(
dσ

dq

) 1
2 d2

dq2

(
dσ

dq

)− 1
2

(8.6)

which, when solved, gives σ as a function of q. If a good choice of comparison function Γ(σ) has

been made, then σ(q) will be a slowly varying function and the second term on the r.h.s. of (8.4)

will be much smaller than the first. Clearly the criterion for this to be the case is

ε(q) ≡

∣∣∣∣∣ 1

χ(q)

(
dσ

dq

) 1
2 d2

dq2

(
dσ

dq

)− 1
2

∣∣∣∣∣� 1. (8.7)

When this is satisfied, the mapping relation reduces to

dσ

dq
'
(
χ(q)

Γ(σ)

) 1
2

(8.8)

which through definition (8.5) also gives the amplitude f . Thus, by picking two points σ0 and q0

which are ‘equivalent’, one finds σ(q) from∫ σ

σ0

√
±Γ(σ) dσ =

∫ q

q0

√
±χ(q) dq (8.9)

where the + or the − version can be chosen depending on the situation. The approximate solution

to (8.1) is then

ψ(q) '
(

Γ (σ(q))

χ(q)

) 1
4

φ (σ(q)) . (8.10)
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In order for the comparison method to be viable, the mapping from q to σ must be one to one,

which requires that dσ/dq is never zero or infinite. Examining (8.8) this means that χ and Γ must

not diverge—which is assumed to be the case—and more relevantly, their zeros must be made to

correspond. The zeros are of course the turning-points, and so, as Berry and Mount emphasise,

“in the semiclassical limit all problems are equivalent which have the same classical turning-point

structure”.

The problem of the lone, first order (that is, the potential is locally linear) turning-point leads

to the comparison equation
d2σ

dσ2
− σφ = 0 (8.11)

whose solution is the well behaved Airy function, Ai(σ), and so, close to all first order turning-

points, one expects the now ubiquitous Airy profile. If the potential remained as this constant

‘ramp’ for all q, the Airy function would be a uniform solution, but then, of course, the apparatus

described above would not be needed. Typically though, for any smooth potential ‘step’ featuring

a classically allowed region to one side of the turning-point, and by definition a classically forbidden

side on the other, the solution is locally an Airy function, which may then be connected to W.K.B.

solutions describing the rest of the domain which is free from turning-points. Such a solution is no

longer a uniform one, though the Airy function piece is referred to as a ‘transitional’ approximation,

it being only locally uniform. Provided the two turning-points are sufficiently separated, then, when

dealing with a potential well, two transitional approximations could be employed to a give a non-

diverging approximation to the wavefunction everywhere. Fortunately the well belongs to another

solvable class—two first order turning-points2—which has a uniform solution.

8.3 The uniform approximation for a well

The unmanipulated stationary Raman-Nath equation (7.15) gives no indication of what function

to take for χ(y). Drawing inspiration from the W.K.B. approximation (7.30) one has a choice

of either p2
1 (7.36), or p2

2 (7.37). The dual nature of the momentum will become an issue when

eigenvectors whose eigenvalues are close to β = 1 are given special attention. However, it seems

natural, in the light of the discussion of Section 7.3.1, to choose the momentum appearing in the

phase, p2.

The simplest comparison equation for a well is

d2φ

dσ2
+
(
t− σ2

)
φ = 0. (8.12)

2Which may also coalesce into a single second order turning-point
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The parameter t depends on the energy. The ‘equivalent points’ needed for Equation (8.9) are

chosen to be the turning-points. This of course immediately satisfies the requirement that the

zeros of Γ and χ correspond. Using (8.9), the integral across the well gives t, for then∫ y+

y−

√
Λp2(y, β) dy ≡ −2

√
ΛS0(y+, 0, β) =

∫ +
√
t

−
√
t

√
t− σ2 dσ =

tπ

2
(8.13)

where S0 is given by Equation (7.33). Once t, which is a function of β, is known, the mapping

function σ(y) can be found from

√
ΛS0(y+, y, β) =

∫ σ(y)

+
√
t

√
t− σ2 dσ =

t

2

(
arcsin

[
σ√
t

]
+

σ√
t

√
1− σ2

t
− π

2

)
. (8.14)

Clearly this step must be executed by numerical root finding for each value of y which is required,

i.e. those spaced at 1/
√

Λ intervals which are the angular positions of the diffracted beams.

The two standard forms of the parabolic cylinder equation are [1]

d2Θ

dg2
∓
(
g2

4
± a
)

Θ = 0 (8.15)

and the well Equation (8.12) corresponds to taking the upper signs. The most basic independent

solutions to the parabolic cylinder equations are an even and an odd power series. However, certain

combinations of these two power series lead to another two independent solutions, known as the

Whittaker functions, which for large g decay or grow exponentially. Thus it is these Whittaker func-

tions which have the correct properties to match the exponential tunnelling of the physical solution

into the sides of the well. The Whittaker solutions to the well equation (8.12) are D(t−1)/2(σ
√

2)

and D(t−1)/2(−σ
√

2). The accepted theory for the potential well uniform approximation would

then predict the form of the Bloch wavefunction, correct for all y, to be

B(y) = ψuniform =
1

2
N 21/4

(
2e

t(β)

)t(β)/4(
dσ(y)

dy

)−1/2

D(t(β)−1)/2

(
−σ(y)

√
2
)

(8.16)

and it is noted that for perpendicular incidence the choice of +σ or −σ makes no difference (only

even eigenvectors are excited). The various terms in this expression will be examined in more

detail in subsequent sections.

Inserting the Bohr-Sommerfeld condition (7.45) into the equation for t, (8.13) above, gives the

value of t which corresponds to the jth eigenvalue

t = 2j + 1. (8.17)

When the index of a Whittaker function is an integer, as here, it takes on the more familiar form

Dj(σ
√

2) = 2−j/2Hj(σ)e−σ
2/2 (8.18)
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where Hj is a Hermite polynomial. However, for the higher3 Bloch waves, it is best to use, for

reasons of speed of computation, the Airy function approximation to the Whittaker functions (see

[1]).

8.3.1 Modifying the amplitude

The application of the uniform method to the W.K.B. approximation of the R-N equation requires

some adjustment. The existence of two momentum functions means the amplitude term of Equation

(8.16), (
dσ(y)

dy

)−1/2

=

(
t− σ2

arccos2 [y2 − β]

)1/4

(8.19)

does not match the W.K.B. behaviour (see Figure 7.2), since in that expression it is p1 that appears

in the amplitude. It is therefore conjectured that the standard uniform amplitude term be modified

to become (
t− σ2

arccos2 [y2 − β]

)1/4

−→

(
t− σ2

1− (y2 − β)
2

)1/4

. (8.20)

The uniform approximation is formulated so that Γ(σ) and χ(y) approach zero together so that

the divergence inherent in the W.K.B. solution is tamed. For the conjecture to hold this swapping

of the momentum expressions in the amplitude must still lead to the correct behaviour at the

turning-points. For β < 1, both p1 and p2 have the same zeros, and crucially for the uniform

approximation they go to zero in the same way, namely as the square root of the distance from

the zero. Putting y −→
√

1 + β − (y+ − y) into p2 gives

arccos
[
y2 − β

]
−→ arccos

[
1− 2

√
1 + β (y+ − y)

]
(8.21)

but

arccos [1− δ] =
√

2δ

(
1 +

δ

12
+ · · ·

)
(8.22)

and so

arccos
[
1− 2

√
1 + β (y+ − y)

]
∼
√

4
√

1 + β (y+ − y). (8.23)

This is identical to the result for p1—see Equation (7.53).

L’Hôpital’s rule can be used to find the limiting value of the amplitude (8.20) at the turning-

point, since

lim
y→
√

1+β

[
t− σ2

1− (y2 − β)
2

]
=

limy→
√

1+β

[
d
dy

(
t− σ2

)]
limy→

√
1+β

[
d
dy

(
1− (y2 − β)

2
)]

=
limy→

√
1+β

[
dσ
dy

d
dσ

(
t− σ2

)]
limy→

√
1+β

[
d
dy

(
1− (y2 − β)

2
)] .

(8.24)

3For j greater than 20, say.
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By Equation (8.8),

dσ

dy
=
(χ

Γ

)1/2

=

(
p2

2

Γ

)1/2
limy→

√
1+β

=

(
p2

1

Γ

)1/2

(8.25)

where, as indicated, the last equality holds only when y is close to
√

1 + β. And thus

lim
y→
√

1+β

[
t− σ2

1− (y2 − β)
2

]
= lim
y→
√

1+β

[
Γ

p2
1

]
= lim
y→
√

1+β

[
Γ

p2
2

]

=

limy→
√

1+β

[√
p2

2

Γ (−2σ)

]
limy→

√
1+β

[(
−4y (y2 − β)

2
)]

=

limy→
√

1+β

[√
p2

2

Γ

] (
−2
√
t
)

(
−4
√

1 + β
)

(8.26)

the last line of which makes use of the fact that by construction, when y →
√

1 + β, then σ →
√
t.

And so

lim
y→
√

1+β

[
Γ

p2
1

]
= lim
y→
√

1+β

[
Γ

p2
2

]
=

( √
t

2
√

1 + β

)2/3

. (8.27)

8.3.2 Matching to the W.K.B. solution

The multiplicative factors of Equation (8.16) in front of the amplitude arise from matching the

known asymptotic behaviour of the Whittaker function for large y with that of the W.K.B. solution.

When σ � t

D(t(β)−1)/2

(
σ(y)
√

2
)
∼ e−σ

2/2
(
σ
√

2
)(t−1)/2

. (8.28)

The functional form of σ(y) for large y is obtained by assuming that when y → ∞, then so also

σ(y)→∞, for then

t

2

(
arcsin

[
σ√
t

]
+
σ√
t

√
1− σ2

t
− π

2

)
=
t

2

(
π

2
− i arccosh

[
σ√
t

]
+ i

σ2

t

√
1− t

σ2
− π

2

)
σ→∞−→ it

2

(
− ln

[
2σ√
t

]
+

t

4σ2
+ · · · +

σ2

t
− 1

2
− t

8σ2
+ · · ·

)
.

(8.29)

Which, using (8.14), means

−σ
2

2
∼ i
√

ΛS0 + ln

[
2σ√
t

]−t/2
− t

4
(8.30)

and so, with (8.28) implies

D(t(β)−1)/2

(
σ(y)
√

2
)
∼ ei

√
ΛS0−t/4

(
2σ√
t

)−t/2
2(t−1)/4 σ(t−1)/2. (8.31)

Now the modified amplitude goes as(
t− σ2

1− (y2 − β)
2

)1/4

σ→∞−→
√
σ(

(y2 − β)
2 − 1

)1/4
(8.32)
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and so(
t− σ2

1− (y2 − β)
2

)1/4

D(t(β)−1)/2

(
σ(y)
√

2
)
y→∞−→ ei

√
ΛS0

((y2 − β)
2 − 1)1/4

2−1/4

(
t

2e

)t/4
. (8.33)

The W.K.B. expression (7.30) (see also (7.49)) on the other hand goes as

ψWKB =
1

2
N ei

√
Λ S0

((y2 − β)2 − 1)
1/4

(8.34)

which means that the factor
1

2
N 21/4

(
2e

t

)t/4
(8.35)

multiplying the uniform wavefunction ensures the correct asymptotic behaviour.

8.3.3 Comparison with the purely numerical calculation

Some pictures will now be used to compare the uniform method with the results of numerical

diagonalisation (which can be taken as the ‘exact’ result). Figures 8.1–8.5 show a selection of

Bloch waves with the uniform calculation shown as a solid line, though as before, only the discrete

values of y corresponding to the diffracted beams were used. The dots are the numerical data.

Figures 8.6–8.8 give the total wavefunction, found by summing the Bloch waves, at various

depths. Only the bound states were used in both the numerical and uniform calculations.

8.4 The problem of the separatrix

Careful examination of the picture of the 200th eigenstate for Λ = 12500, reveals the first hint that

the uniform approximation used so far has a defect when β begins to approach 1. As apparent from

Figure 7.2, two new (real) turning-points appear in the p1 momentum function when β ≥ 1, as the

central dip breaks through the zero line. For relatively small values of Λ the actual divergences

due to these turning-points can fall between the diffracted orders and go unnoticed. As Λ increases

in magnitude this is no longer the case and the divergences become clearly defined as the classical

distribution emerges. As pointed out in the previous chapter, though not discussed, these new

turning-points occur at

y = ±
√
β − 1. (8.36)

8.4.1 Lessons from phase space

Referring back to the phase space picture, Figure 3.2, and as mentioned at the time, the rotation

contours have 4 values of Px where their gradient w.r.t. Px becomes infinite. Physically, the new

probability divergences are due to the atoms sitting on the barrier tops in (actual) configuration
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y

Figure 8.1: A comparison of the numerical (dots) 0th Bloch wave, out of 200 bound states, of the

R-N matrix (4.78) for Λ = 12500, with its uniform approximation (solid line). β = −0.9937. Since

the Bloch wave is symmetrical about y = 0, only the positive half is shown.
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Figure 8.2: A comparison of the numerical (dots) 8th Bloch wave, out of 200 bound states, of the

R-N matrix (4.78) for Λ = 12500, with its uniform approximation (solid line). β = −0.8932.
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Figure 8.3: A comparison of the numerical (dots) 110th Bloch wave, out of 200 bound states, of

the R-N matrix (4.78) for Λ = 12500, with its uniform approximation (solid line). β = 0.2616.
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Figure 8.4: A comparison of the numerical (dots) 152nd Bloch wave, out of 200 bound states, of

the R-N matrix (4.78) for Λ = 12500, with its uniform approximation (solid line). β = 0.6532.
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Figure 8.5: A comparison of the numerical (dots) 200th Bloch wave, out of 200 bound states, of

the R-N matrix (4.78) for Λ = 12500, with its uniform approximation (solid line). β = 0.9961.
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Figure 8.6: A comparison of the farfield wavefunction obtained by numerical diagonalisation

(dashed), with the uniform calculation (solid), for Λ = 12500: A) ζ = π/2, B) ζ = π.
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Figure 8.7: A comparison of the farfield wavefunction obtained by numerical diagonalisation

(dashed), with the uniform calculation (solid), for Λ = 12500: A) ζ = 3π/2, B) ζ = 7π/2.
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I

Figure 8.8: A comparison of the farfield wavefunction obtained by numerical diagonalisation

(dashed), with the uniform calculation (solid), for Λ = 12500: ζ = 81π/2.
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space. These observations can be put on a firmer footing by the following argument, due to Berry.

Consider just the transverse Hamiltonian (as pointed out previously, the longitudinal behaviour is

constant)

H =
P 2
x

2m
− V0 cos2 xc = Ex. (8.37)

Bound states have Ex < 0. The classical phase space distribution for a system with energy Ex is

W (x, Px) = N δ(Ex −H) (8.38)

where N = 1/(
∫
δ(Ex−H) dxc dp) is a normalising factor, and the Dirac delta function δ(Ex−H)

specifies a contour in phase space such as those shown in Figure 3.2. The momentum intensity is

given by ‘projecting’ down onto the xc axis

I(Px) =

∫
W (xc, Px) dxc = N

∫ π/2

−π/2
δ

(
Ex −

P 2
x

2m
+ V0 cos2 xc

)
dxc. (8.39)

A property of the delta function is that

δ[g(u)] =
∑
i

1

|g′(ui)|
δ(u− ui) (8.40)

where the ui are the zeros of g(u), and so

I(Px) = N
(
|2V0 sinxc cosxc|{cos2 xc=P 2

x/(2mV0)−Ex/V0}

)−1

= N
(
|V0 sin 2xc|{cos2 xc=P 2

x/(2mV0)−Ex/V0}

)−1

= N

√1−
(
P 2
x

mv0
− 2Ex

V0
− 1

)2
−1

= N

(√(
P 2
x

mV0
− 2Ex

V0

)(
P 2
x

mV0
− 2Ex

V0
− 2

) )−1

.

(8.41)

As before, this predicts turning-points at

Px new = ±
√

2mEx (8.42)

Px old = ±
√

2m
√
Ex + V0. (8.43)

The classical intensity expression (8.41) diverges as the square root of the distance from the new

turning-points when the energy approaches that of the separatrix. This phase space argument is

quite independent of the W.K.B./uniform methods but confirms their validity.

8.4.2 A transformation of the Raman-Nath equation

Of course the current uniform approximation is not set up to handle these new turning-points.

Even if there were a uniform approximation for a double well (which there isn’t), this would not
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be a suitable approach since the phase momentum, p2, has no idea anything untoward is going

on, and still corresponds to a single well. So the usual strategy of a transitional approximation to

patch up the wavefunction over the central region of the eigenvectors would be doomed to failure

since the phase of the W.K.B. expression registers no such ‘barrier-top’ behaviour. For a uniform

approximation to correctly handle the divergences, the momentum functions in the (modified)

‘amplitude’ and ‘phase’ need to be acting in concert. Fortunately there is a transformation which

translates the stationary Raman-Nath equation into a form having this property whereby both the

momentum functions have turning-points at y =
√
β − 1. Defining

Bn = (−1)nCn (8.44)

the stationary R-N equation (7.15) becomes

(y2 − β)Cn +
1

2
(Cn+1 + Cn−1) = 0. (8.45)

the difference being a sign change between the parts determining the interaction with neighbouring

beams and the part determining the self evolution. Following the arguments of Section 7.3 one

obtains an altered equation for the action

∂S

∂y
=
√

Λ arccos [β − y2] + i
(β − y2)y

1− (β − y2)2
(8.46)

which leads to the W.K.B. formula

C(y) =
e±i
√

Λ
∫

arccos [β−y2] dy

(1− (y2 − β)2)
1/4

=
e±i
√

Λ S̄0(y,β)

(1− (y2 − β)2)
1/4

. (8.47)

The amplitude is the same as before, giving the two sets of turning-points, but the phase momen-

y y

A B

Figure 8.9: A: The original p2, and B: transformed p̄2, phase momenta for β = 0.95.

tum

p̄2(y, β) = arccos [β − y2] (8.48)
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now has its turning-points at y = ±
√
β − 1 as promised. The cost is the loss of the turning-points

at y = ±
√
β + 1. The effect of the transformation seems to be in swapping the rôles of inner and

outer turning-points. Figure 8.9 shows that whereas p2 has the momentum profile for a well, p̄2

has that of barrier which the particle has enough energy to surmount.

8.4.3 The parabolic barrier equation

A transitional approximation can now be legitimately applied to the inner turning-point. The

comparison equation for a (smooth) potential barrier is

d2φ

dσ2
+
(
t+ σ2

)
φ = 0. (8.49)

Making the change of variables

t

2
= −a (8.50)

σ =
g√
2

(8.51)

distinguishes the barrier equation as the second (lower signs) of the two forms of the parabolic

cylinder equation (8.15). For t > 0, the Bloch states are more energetic than the central potential

barrier, and classically one has transmission above the barrier. This is referred to as the underdense

case. The second parabolic cylinder equation has two standard solutions, denoted by W (a,±g)

which do not have definite parity. A potential barrier, symmetric about g = 0, set in the centre of

a symmetric well, has bound eigenstates which are either even or odd. The atomic wavefunction is

the superposition of all the eigenfunctions, and the coefficents determining this superposition are

the values of the eigenfunctions at y = 0, see Equation (4.80). Thus only the even eigenfunctions

contribute to the total wavefunction. An even solution can be constructed from the standard

solutions by writing

ψeven = W (a,+g) +W (a,−g). (8.52)

Of the more familiar functions in terms of which the standard solutions can be expressed, the

confluent hypergeometric functions, which are rapidly converging power series when a is small (as

here) are the most convenient. The same conclusion can also be achieved through the following

transformations upon the barrier equation (8.49),

t = it̄ (8.53)

σ =
σ̄√
2

eiπ/4 (8.54)

and these lead back to the equation

d2φ

dσ̄2
−
(
t̄

2
+
σ̄2

4

)
φ = 0 (8.55)
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which is the same as the first (upper sign) parabolic cylinder equation (8.15) when the following

identifications are made

g = σ̄ (8.56)

a =
t̄

2
. (8.57)

The solutions for the barrier top are not the Whittaker functions since a parabolic barrier

does not give an exponentially decaying wavefunction for large g. Instead, for a barrier, the

basic even and odd power series solutions, which will be referred to as Θ1(a, g) and Θ2(a, g)

respectively, are the correct choice. The power series solutions are expressed in terms of the

confluent hypergeometric functions (in agreement with the comments made above concerning the

W (a, g) solutions)

Θ1(a, g) = e−g
2/4

1F1

(
a

2
+

1

4
;

1

2
;
g2

2

)
(8.58)

Θ2(a, g) = ge−g
2/4

1F1

(
a

2
+

3

4
;

3

2
;
g2

2

)
. (8.59)

And so an even eigenfunction requires the even power series

Θ1

(
t̄

2
, σ̄

)
= Θ1

(
−i
t

2
,
√

2σe−iπ/4

)
. (8.60)

8.4.4 The action for an underdense barrier

The underdense barrier does not induce any real turning-points (though of course the proximity

of the turning-points to the real axis gives the deviation of the amplitude from the true value) so

the natural choice of reference point from which to integrate the phase is y = σ = 0. And so, from

an almost identical integration to that presented in Appendix D, one finds

S̄0(0, y, β) =

∫ y

0

arccos
[
β − y′2

]
dy′

= y arccos
[
β − y2

]
+ 2i

√
1− β E

(
1

2
arccos

[
β − y2

]∣∣∣∣ 2

1− β

)
− E

(
1

2
arccos [β]

∣∣∣∣ 2

1− β

)
.

(8.61)

Although it appears that this action contains an imaginary piece this is actually not the case.

Properly, the elliptic functions should be transformed so that their parameters lie between zero

and one (the parameter used above tends to infinity as β tends to one). When this is done the

action S̄0 is explicitly real. However, the transformations produce more complicated expressions

so will not be applied here.
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To find the value of t, which was previously given by the integral across the well, one must now

integrate up the imaginary axis between the points

y± = ±
√
β − 1 = ±i

√
1− β. (8.62)

The equivalent points for the underdense barrier comparison equation (8.49) are

σ = ±i
√
t. (8.63)

Letting y = iv and σ = iς, t is implicitly given by

2i
√

Λ

∫ √1−β

0

arccos
[
β + v2

]
dv = 2i

∫ √t
0

√
t2 − ς2 dς (8.64)

which, in a similar to fashion to before, results in the condition

4
√

Λ
√

1− βE

(
1

2
arccos [β]

∣∣∣∣ 2

1− β

)
=
tπ

2
. (8.65)

The mapping function between σ and y implicitly giving σ(y) is

√
ΛS̄0(0, y, β) =

∫ σ

0

√
t+ σ2 dσ =

t

2

(
arccosh

[√
1 +

σ2

t

]
+

σ√
t

√
1 +

σ2

t

)
(8.66)

which, together with the value of t, gives the transitional approximation to the wavefunction

B(y) = (−1)nC(y) = (−1)nψtransitional

∝ (−1)n

(
t+ σ2

1− (y2 − β)
2

)1/4

eiσ2/2
1F1

(
−i
t

4
+

1

4
;

1

2
;−iσ2

)
.

(8.67)

This turns out to be a real function for real t and σ (as it should be), which is valid from y = 0

and almost all the way to the outer turning-point, breaking down close to it because it is only

set up to deal with the inner turning-point. The constant of proportionality can be obtained by

matching the asymptotic behaviour of this function to the W.K.B. solution somewhere between

the two transition points.

8.4.5 The asymptotics of the barrier transitional approximation

The confluent hypergeometric function has well known asymptotics. When |σ| is large

1F1

(
−i
t

4
+

1

4
;

1

2
;−iσ2

)
=

Γ
(

1
2

)
Γ
(

1
4 + i t4

)e−iπ(−it+1)/4
(
−iσ2

)(it−1)/4
(

1 +
(it2 − 4t− 3i)

16σ2
+O

(
1

σ4

))
+

Γ
(

1
2

)
Γ
(

1
4 − i t4

)e−iσ2 (
−iσ2

)−(it+1)/4
(

1 +
(−it2 − 4t+ 3i)

16σ2
+O

(
1

σ4

)) (8.68)
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where this time Γ refers to the Gamma function. So

Θ1

(
−i
t

2
,
√

2σe−iπ/4

)
= eiσ2/2

1F1

(
−i
t

4
+

1

4
;

1

2
;−iσ2

)
∼ Γ

(
1

2

)(
−iσ2

)−1/4
(

e−π(t+i)/4eiσ2/2

(
−iσ2

)it/4
Γ
(

1
4 + i t4

)eln[1+(it2−4t−3i)/(16σ2)]

+ e−iσ2/2

(
−iσ2

)−it/4

Γ
(

1
4 − i t4

) eln[1−(it2+4t−3i)/(16σ2)]
) (8.69)

which conveniently reduces to

Θ1

(
−i
t

2
,
√

2σe−iπ/4

)
∼ 2

Γ
(

1
2

)∣∣Γ ( 1
4 + i t4

)∣∣σ−1/2e−πt/8−t/(4σ
2) cos

(
t

2
lnσ +

σ2

2
−Arg

[
Γ

(
1

4
+ i

t

4

)]
− π

8
+O

(
1

σ4

))
.

(8.70)

When Λ is large enough σ quickly takes on large values for even modest sizes of y, and so the

confluent hypergeometric function attains its asymptotic form in the region between the inner and

outer turning-points. It may then be compared to the W.K.B. solution (8.47) for the transformed

R-N equation. The left and right travelling W.K.B. waves (8.47) are combined to give a real

solution

Bbarrier(y) =
N(

1− (y2 − β)
2
)1/4

cos
(√

ΛS̄0(0, y, β) + µ(β) +
√

Λπy
)

(8.71)

where the (−1)n factor has been incorporated into the phase of the cosine as
√

Λπy. To enable a

direct comparison, the phase of the cosine of Equation (8.70) should also be augmented by the same

quantity. The real phase angle µ(β) for this parabolic barrier approximation, which for the simple

first order turning-point was equal to π/4, will this time be determined by consistency with the

asymptotic solution (8.70). In order for a comparison to be made, the action S̄0(0, y, β) appearing

in the W.K.B. solution must be written in terms of (σ, t), which is accomplished through Equation

(8.66). Expanding the r.h.s. of (8.66) for σ � t, one has

t

2

(
arccosh

[√
1 +

σ2

t

]
+

σ√
t

√
1 +

σ2

t

)
∼ t

2
lnσ − t

4
ln t+

t

2
ln 2 +

σ2

2
+
t

4
+O

(
t2

σ2

)
(8.72)

implying that

µ =
t

4
ln t− t

2
ln 2− t

4
−Arg

[
Γ

(
1

4
+ i

t

4

)]
− π

8
. (8.73)

Figure 8.10 demonstrates that this expression for µ is correct by comparing the W.K.B. solution

(8.71) containing it, with the fully numerical calculation. The value of Λ is reasonably small so

the W.K.B. solution diverges only very slightly from the correct value.

The exact solution to the parabolic cylinder equation has thus contributed to the evaluation of

the phase of the W.K.B. solution. On the other hand, the W.K.B. solution indicates the necessary
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y

Figure 8.10: The W.K.B. approximation using the underdense parabolic barrier action, see Equa-

tion (8.71), and the fully numerical solution. In particular, this tests the derived phase angle µ as

given by (8.73). The dots are the numerically calculated points, and the continuous line joins the

W.K.B. amplitudes. The value of Λ is 12500 and β = 0.9961.
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modifications needed for the amplitude of the parabolic cylinder equation so that it becomes the

correct transitional solution to the particular problem being dealt with. Equating the ampliutdes

of Equations (8.70) and (8.71), one finds Equation (8.67) can now be updated to read

Bbarrier(y) = (−1)nN
∣∣Γ ( 1

4 + i t4
)∣∣ eπt/8

2Γ
(

1
2

) (
t+ σ2

1− (y2 − β)
2

)1/4

eiσ2/2
1F1

(
−i
t

4
+

1

4
;

1

2
;−iσ2

)
.

(8.74)

The parabolic transitional approximation is compared to the fully numerical result in Figure

8.11 A). At first sight the match does not seem too good. The reason is that the normalisation

procedure of Section 7.3.3 uses the W.K.B. amplitude factor, which diverges at the turning-points.

When there are only the outer-turning-points this method seems to work (see Figures 8.1-8.4) since

the divergences are narrow enough to not produce too significant a contribution. However, the

appearance of the inner-turning-point divergences close to the separatrix energy now means the

normalisation factor is significantly over estimating the magnitude of the wavefunction, and thus

reduces the magnitude too much4 as shown. With relatively little effort one can always resort to

numerically normalising the uniformly calculated eigenvectors however, by summing the discrete

amplitudes, and when this is carried out the match, shown in Figure 8.11 B), is exceedingly good.

This indeed illustrates that it is only the normalising factor which is at fault. Figure 8.11 B)

further illustrates that the barrier transitional approximation, Equation (8.74), is correct nearly

throughout the entire momentum range—only breaking down close to the outer turning-point.

8.4.6 Calculation of the eigenvalues close to the separatrix

There is a slight complication to the calculation of the allowed values of β close to the separatrix

which needs to be highlighted. When comparing the values of β obtained by the numerical diag-

onalisation technique with those obtained via Equation (7.45), it was noticed that as β grew very

close to one, the two differed. Apparently the transformation of the phase momentum is more than

a device. Somehow the derivation of the basic W.K.B. solution of Chapter 7 has failed to capture

the full behaviour of the p2 function—perhaps it should now afterall contain two turning-points,

not one, and so match the structure of the amplitude p1 term? From the point of view of the

eigenvectors this can be overcome by replacing the previous single uniform approximation with

two transitional approximations when β approaches one; the parabolic transitional approximation

4It is interesting to note that the direct asymptotics for standand solutions W (a,±g), as given in Abramowitz and

Stegun, when combined to give ψeven give a phase which does not match the confluent hypergeometric asymptotic

result (and hence the numerical result), but does give an amplitude which matches the numerical value to within 1

% for Λ = 12500. This improved amplitude is achieved by leaving out the Gamma functions and exp(πt/8) terms

altogether.
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y

y

Figure 8.11: The parabolic barrier transitional approximation: A) as given by Equation (8.74); B)

the renormalised version. The dots are the fully numerical solution. The value of Λ is 12500 and

β = 0.9961.
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to cover the inner turning-point, and an Airy function approximation for the outer turning-point

(since this remains a simple first order turning-point). However, to calculate the allowed values

of the action which corresponds to the bound states, one needs some expression which is valid

throughout the entire region which joins the two turning-points.

The action between two turning-points of different order

The general procedure for finding the action across a classically allowed region which separates

two arbitrary types of turning-point does indeed employ two transitional approximations which

are each valid at one end of the region, but these must be correctly joined. The quantised values

of S, and hence β, are those which correctly match the two somewhere in the region of mutual

validity.

The matching is most easily accomplished using the asymptotic forms for the two transitional

approximations—which are of course their W.K.B. approximations. In the region between the two

turning-points one thus has

1(
1− (y2 − β)

2
)1/4

cos
(√

ΛS̄0(0, y, β) + µ(β) +
√

Λπy
)

=
1(

1− (y2 − β)
2
)1/4

cos
(√

ΛS0(
√

1 + β, y, β) +
π

4

) (8.75)

which implies that

√
ΛS̄0(0, y, β) + µ(β) +

√
Λπy =

√
ΛS0(

√
1 + β, y, β) +

π

4
(8.76)

modulo 2π.

A modified Bohr-Sommerfeld rule

The method described above works in conventional situations with W.K.B. expressions developed

from (continuous) differential equations. Once again however, the approach has to be modified

for the R-N equation—whilst successful for the single well, as soon as the inner turning-points

begin to approach the real axis even the matching of the two transitional approximations runs into

trouble. The reason is that the continuous descriptions embodied above by Equation (8.75) do

not match at all. Only when they are evaluated at the discrete points corresponding to diffracted

beams do they match. The transformation (8.44) has produced two different equations whose

continuised W.K.B. expressions only respect their common origin at the discrete level. It is then a

surprise to find that at the correct (characteristic) values of β the discretely evaluated expressions

on either side of Equation (8.75) are in perfect agreement for all y. Both are identical in each
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other’s supposedly exclusive region of validity. This is rather curious, but the characteristic values

of β, which one is able to predict by correctly matching the discrete points of the two W.K.B.

expressions, demonstrate that it is correct.

Due to the simultaneous validity for all y, the most sensible point to choose to match the two

solutions is y = 0. The correct matching condition for even eigenstates becomes one of

cos (µ(β))− cos
(√

ΛS0(y+, 0, β) + π/4
)

= 0 (8.77)

cos (µ(β))− cos
(√

ΛS0(y+, 0, β) + 5π/4
)

= 0 (8.78)

the choice depending on whether the terminating Airy function has its peak above or below the

y axis. In fact, successive even eigenstates alternate between the two conditions. When using

Λ j fully numerical single well calc. modified calc.

12500 200 0.996129 0.996824 0.996131

198 0.987197 0.987337 0.987199

196 0.976711 0.976759 0.976713

194 0.965430 0.965461 0.965432

192 0.953575 0.953599 0.953578

190 0.941244 0.941264 0.941247

188 0.928498 0.928515 0.928499

186 0.915379 0.915394 0.915381

250000 900 0.999954 – 0.999954

Table 8.1: The bound eigenvalues near the separatrix: comparison of numerical result with the

standard Bohr-Sommerfeld condition for a well (7.45), and the modified conditions (8.77)–(8.78).

(8.77) and (8.78), it is necessary to express µ, which is in the first instance a function of t, see

Equation (8.73), as a function of β through the definition of t (Equation (8.65)). A further subtlety

concerning the use of (8.77) and (8.78) is that close to each of the characteristic values there is

another zero which does not correspond to an eigenvalue. The correct zeros are those through

which the l.h.s. of Equations (8.77) and (8.78) have negative gradients. Table 8.1 compares the

values of the top eight bound eigenvalues for Λ = 12500 as calculated by the different methods

which have been outlined so far. Clearly the modified method is superior to the regular Bohr-

Sommerfeld scheme when close to the separatrix. This is further emphasised by the last entry

on the table which is the last bound eigenvalue for Λ = 250000. The Bohr-Sommerfeld method

predicts only 898 even bound states whereas the modified method accurately finds the value of the

900th.
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8.4.7 The Airy transitional approximation

As has already been pointed out, to obtain the complete wavefunction correct for all y one must

join the parabolic barrier approximation (8.74) to another transitional approximation which covers

the outer, first order, turning-point. It was Airy [3] who in 1838 famously first considered the

form of a wavefield near a simple turning-point, but in the context of comparison equations the

following formulation stems from Langer in 1937. The comparison equation has already been given

in Equation (8.11), and choosing the reference point as y = y+ =
√

1 + β, the mapping function

σ(y) is given by

√
ΛS0(y+, y, β) =


− 2

3 |σ|
3/2

if y ≤
√

1 + β ; (σ < 0)

2
3 iσ3/2 if y >

√
1 + β ; (σ > 0)

(8.79)

since the expression given for S0, Equation (7.33), is positive imaginary when y > y+, and negative

real when y < y+.

The well known asymptotics of Ai(σ) when σ � 0 are

Ai(σ) ∼ 1

2π
σ−1/4 e−

2
3σ

3/2

(8.80)

and so the Langer transitional approximation becomes

ψtransitional = BLanger(y) = 2πN

(
σ(y)

1− (y2 − β)
2

)1/4

Ai (σ(y)) . (8.81)

8.5 The free eigenstates

As emphasised previously, ‘free’ is a description which refers to the (actual) configuration space

situation of states having transverse energies greater than V0. In (actual) momentum space there

are no free states, the classical bounding of the maximum being set by the initial transverse mo-

mentum plus whatever the atoms can extract from the potential—which depends on the (actual)

configuration space point, but has a maximum of
√

2mV0. This is a long-winded way of saying

that even for β > 1, one expects caustics in (actual) momentum space and this is consistent with

the structure built up so far. It also demonstrates why the free eigenstates are quantised and

not continuous in energy. Somewhat perversely, the states which are free in (actual) configura-

tion space, sit in a double well in (actual) momentum space, and so the central barrier is now

overdense—meaning that classical transmission is forbidden. For perpendicular incidence, the free

‘states’ are classically inaccessible, so their contribution to the eigensum of states forming the total

wavefunction is exponentially small.



CHAPTER 8. THE UNIFORM APPROXIMATION 148

For states with β � 1, the problem is best solved using the W.K.B. technique in (actual)

configuration space, since there are no turning-points to contend with. Constraining the discussion

to perpendicular incidence means however that only those states with β a little greater than one

need be calculated, so the ‘close to the separatrix’ treatment of the preceeding sections must be

generalised to encompass β > 1. Since the essentials of the uniform method have already been

conveyed in the preceeding sections, the following treatment is intended to be more of a ‘recipe’

than a detailed account.

The overdense barrier equation will be taken as

d2φ

dσ2
+
(
σ2 − t

)
φ = 0 (8.82)

with t a positive quantity. The connection with the parabolic cylinder equation (8.15) is made

with the aid of the transformations

a = −i
t

2
(8.83)

g =
√

2σeiπ/4. (8.84)

To remove any ambiguity regarding the phase momentum function p2 for the barrier, it will be

written as

p̄2 = arccos
[
β − y2

]
=


i arccosh

[
β − y2

]
if 0 ≤ y ≤

√
β − 1

π − arccos
[
y2 − β

]
if
√
β − 1 ≤ y <

√
1 + β

(8.85)

where the central barrier lies between ±
√
β − 1. The actions generated from these momenta, using

y =
√
β − 1 as the reference point, are

S̄y<
√
β−1

0 (
√
β − 1, y, β) = i

(
y arccosh

[
β − y2

]
+2i

√
β − 1E

(
1

2
arccos

[
β − y2

]∣∣∣∣ 2

1− β

))
(8.86)

and

S̄y>
√
β−1

0 (
√
β − 1, y, β) = πy + 2

√
β + 1E

(
1

2
arccos

[
y2 − β

]∣∣∣∣ 2

1 + β

)
− 2
√
β + 1E

(
π

2

∣∣∣ 2

1 + β

)
− y arccos

[
y2 − β

]
.

(8.87)

As before, the comparison equation (8.82) gives rise to the mapping function by setting

S̄y<
√
β−1

0 =

∫ σ

√
t

√
σ2 − t dσ = i

t

2

(
arcsin

[
σ√
t

]
+

σ√
t

√
1− σ2

t
− π

2

)
(8.88)

and

S̄y>
√
β−1

0 =

∫ σ

√
t

√
σ2 − t dσ =

t

2

(
σ2

t

√
1− t

σ2
− arccosh

[
σ√
t

])
. (8.89)
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In particular, the ‘barrier integral’ which fixes the value of t once β is known, can this time be

conducted along the real axis, and gives, using (8.86) and (8.88),

2i
√

Λ
√
β − 1E

(
1

2
arccos [β]

∣∣∣∣ 2

1− β

)
= − tπ

4
. (8.90)

The correct solution to the barrier equation is still the even power series

Θ1(a, g) = Θ1

(
−i
t

2
,
√

2σeiπ/4

)
(8.91)

and so the transitional approximation for the overdense barrier becomes

B(y) = (−1)nC(y) = (−1)nψtransitional

∝ (−1)n

(
σ2 − t

1− (y2 − β)
2

)1/4

e−iσ2/2
1F1

(
−i
t

4
+

1

4
;

1

2
; iσ2

)
.

(8.92)

8.5.1 Asymptotic matching to the overdense W.K.B. expression

The transitional wavefunction differs by a few sign changes from the underdense case, and for large

σ these produce the modified oscillatory behaviour:

Θ1

(
−i
t

2
,
√

2σeiπ/4

)
∼ 2

Γ
(

1
2

)∣∣Γ ( 1
4 + i t4

)∣∣σ−1/2eπt/8−t/(4σ
2) cos

(
t

2
lnσ − σ2

2
−Arg

[
Γ

(
1

4
+ i

t

4

)]
+
π

8
+O

(
1

σ4

))
.

(8.93)

Expanding the r.h.s. of Equation (8.89) for σ � t gives

t

2

(
σ2

t

√
1− t

σ2
− arccosh

[
σ√
t

])
∼ − t

2
lnσ +

t

4
ln t− t

2
ln 2 +

σ2

2
− t

4
(8.94)

from which one deduces the unknown phase angle µ, appearing in the W.K.B. approximation for

the overdense barrier (see Equation (8.71)), to be

µ = − t
4

ln t+
t

2
ln 2 +

t

4
+ Arg

[
Γ

(
1

4
+ i

t

4

)]
− π

8
. (8.95)

8.5.2 The overdense eigenvalues

Once again µ can be successfully employed in the accurate determination of the eigenvalues β.

Following the empirical observations from the underdense case, the W.K.B. expression emanating

from the outer turning-point and that from the inner turning-point are matched at a point y

corresponding to one of the beams. This time the choice of y = 0 is not available since only

the phase for the W.K.B. approximation outside the barrier is known. The next most obvious

choice is either the inner or outer turning-point since there the phase of the W.K.B. expressions
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are simplest, but in general these classically determined points will not fall on a diffracted beam.

Selecting a random beam, y = m/
√

Λ, with m an integer, giving of value y lying between the two

turning-points, will suffice. The condition giving the permitted values of β for even eigenstates

then alternates between

cos

(√
ΛS̄y>

√
β−1

0

(√
β − 1,

m√
Λ
, β

)
+ µ(β) +

√
Λπ

m√
Λ

)
− cos

(√
ΛS0

(√
1 + β,

m√
Λ
, β

)
+
π

4

)
= 0

(8.96)

and

cos

(√
ΛS̄y>

√
β−1

0

(√
β − 1,

m√
Λ
, β

)
+ µ(β) +

√
Λπ

m√
Λ

)
− cos

(√
ΛS0

(√
1 + β,

m√
Λ
, β

)
+

5π

4

)
= 0.

(8.97)

Both of these equations have zeros which do not correspond to the eigenvalues, the correct ones

being those for which gradient of the l.h.s.’s is positive (this is the opposite of the underdense

case). As before, the accuracy which is achieved proves the method: for Λ = 12500 the first two

free eigenvalues given by numerical diagonalisation are β = 1.003356 and β = 1.012155, for which

this W.K.B. matching technique gives β = 1.003358 and β = 1.012156 respectively.

8.5.3 The overdense eigenvectors

Knowing the value of β, one is then in a position to calculate the transitional approximation to

the overdense eigenvector

Bbarrier(y) = (−1)nN
∣∣Γ ( 1

4 + i t4
)∣∣ e−πt/8

2Γ
(

1
2

) (
σ2 − t

1− (y2 − β)
2

)1/4

e−iσ2/2
1F1

(
−i
t

4
+

1

4
;

1

2
; iσ2

)
.

(8.98)

The Airy function approximation for the outer turning-point remains the same as before. Figure

8.12 shows the first free eigenvector made up of the overdense barrier and Airy function approxi-

mations.
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y

Figure 8.12: The 201st Bloch wave, which is the first ‘free’ eigenvector. This requires both the

overdense parabolic barrier solution, and an Airy function as transitional approximations. The two

are joined at the 83rd diffracted beam, which is at y = 0.742. The dots are the purely numerical

calculation.



Chapter 9

Semiclassical scattering: Poisson

resummation

9.1 Motivation

Uniformly approximating the eigenvectors and then summing them provides a reasonable method

for calculating the total wavefunction at arbitrary depths through the laser grating, and would more

than suffice to describe presently conceivable atom optics experiments. However, as the value of

h̄ is reduced yet further it is clear that one must sum ever greater numbers of eigenvectors—this

number going as h̄−1. In this limit it would seem sensible to return somehow to the ‘sum over the

classical paths’ since this representation gives much more rapid convergence providing the depth

is not too great. The mathematical relationship between the two approaches was set forth in a

remarkable stroke of insight by Pekeris in his 1950 symposium “Ray theory vs. normal mode theory

in wave propagation problems” [64] which introduced the Poisson sum formula into this branch of

physics. Poisson resummation manipulates the energy eigenvector sum, such that the new sum has

terms of classical significance; each term is associated with classical paths which fall into different

topological classes. Time and time again Poisson resummation has earned its reputation whether

it be in describing electromagnetic waves in a 2-dimensional cavity with perfectly reflecting walls

(Pekeris’ demonstration problem), the classical feature distinguishing each term being the number

of bounces a ray has made off the walls, or the effects on electrons due to an Aharonov-Bohm

electromagnetic (gauge) potential, for which the terms index the number of orbits an electron

has made around the singular ‘source’ (Berry 1980 [12]). The advantage of applying the Poisson

sum formula rather than the formulae of Chapter 3 is that one doesn’t need to know the classical

152
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paths (just the quantum solution!), the Maslov indices are included automatically, and finally it

facilitates a method (the uniform approximation for integrals) which eliminates the divergences due

to caustics. This chapter concerns the application of these methods to the semiclassical scattering

of atoms from a light grating, and once again it is anticipated that Poisson resummation will

reinterpret the quantum sum in terms of classical paths.

9.2 The eigensum and the Poisson summation formula

The total wave function is formed from a superposition of the eigenvectors. For a perfectly colli-

mated incident beam the superposition coefficients are the values of the eigenvectors themselves

at y = 0, and so, using the W.K.B. approximation, Equation (4.79) becomes

Ψ =
∞∑
j=0

N 2 cos
(
S0(y+, y, βj) + π

4

)
(1− (y2 − βj)2)

1/4

cos
(
S0(y+, 0, βj) + π

4

)(
1− β2

j

)1/4 e−i
√

Λ/2 βjzc (9.1)

where the ‘quantum distance’, ζ, has be re-written in favour of its classical counterpart. The

normalisation, N , is still given by (7.57). It is not clear from the outset how the use of the W.K.B.

approximations, with their divergences, will affect the final wavefunction. Certainly the relative

complexity of the uniform approximations would make their use in the following treatment very

much harder if not impossible. For simplicity only the bound states will be included in the sum.

This approximation becomes exact in the classical limit as the free states are not excited by the

initial beam. As h̄→ 0, the number of bound states will itself tend to infinity.

Intuitively one can imagine that as h̄ becomes smaller, the sum over the discrete index j might

be replaced by an integration. As discussed by Berry and Mount [14], it is insufficient to simply

replace the sum over j by a single integration over j

∞∑
j=0

f(j) 6−→
∫ ∞

0

f(j)dj. (9.2)

The reason is that the eigenfunction summand is a sensitive function of β, changing considerably

as j changes by unity—the eigenvectors alternate between being even and odd in this interval for

instance. The correction terms to this simple replacement, as supplied by the Euler-Maclaurin

formula which is an asymptotic series of successively higher derivatives of f(j) w.r.t. j, fare little

better since the eigenvectors represented by f(j) are oscillatory functions of j—an infinite series

of derivatives is required as j →∞. The correct transformation is the Poisson summation formula

∞∑
j=0

f(j) =

∞∑
m=−∞

∫ ∞
0

f(j)e2πimj dj (9.3)

which is exact. The Maslov index, which must be introduced with great care into the classical

paths representation, here appears in a simple and automatic fashion as m.
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9.2.1 Replacing the discrete quantum number by a classical variable

Rather than use the quantum ‘variable’ (number) j, it is convenient to use some classical variable

which is more appropriate in the semiclassical limit—whilst j changes furiously, its classical coun-

terpart includes h̄ in such a way that it varies only slightly in comparison. The natural choice is β,

which from definition (7.12) is the quantum eigenvalue scaled by h̄. Whilst 0 ≤ j ≤ ∞ for bound

states in the semiclassical limit, the equivalent range for β is always, −1 ≤ β ≤ 1. The relationship

between j and β is captured by the original Bohr-Sommerfeld condition of Equation (7.45) which

states

j = 4
√

Λ

√
1 + β

π
E

(
1

2
arccos[−β]

∣∣∣∣ 2

1 + β

)
− 1

2
. (9.4)

The subtleties associated with the separatrix which were highlighted in the last chapter will be

ignored here: Equation (9.4) is assumed to hold for all β. Moving from an integration over j to

an integration over β requires the differentiation of (9.4); referring to Equations (A.17) and (A.18)

of Appendix A, a straight forward differentiation of the upper limit and integrand of the elliptic

integral leaves
dj

dβ
=

√
2
√

Λ

π
K

(
1 + β

2

)
. (9.5)

When inserted into the Poisson summation formula, the complete elliptic integral contained in

this Jacobian cancels with that in the normalisation factor. Thus the Poisson resummed eigensum

(9.1), when restricted to the bound states, is written

Ψ =
1

2π

∞∑
m=−∞

∫ 1

−1

ei
√

ΛA + ei
√

ΛB + ei
√

ΛC + ei
√

ΛD

(1− (y2 − β)2)
1/4

(1− β2)
1/4

dβ (9.6)
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where

A = y arccos
[
y2 − β

]
− 2
√

1 + βE

(
1

2
arccos

[
y2 − β

]∣∣∣∣ 2

1 + β

)
+ 2(4m− 1)

√
1 + βE

(
1

2
arccos [−β]

∣∣∣∣ 2

1 + β

)
+

π

2
√

Λ
− βzc√

2
− mπ√

Λ
(9.7)

B = y arccos
[
y2 − β

]
− 2
√

1 + βE

(
1

2
arccos

[
y2 − β

]∣∣∣∣ 2

1 + β

)
+ 2(4m+ 1)

√
1 + βE

(
1

2
arccos [−β]

∣∣∣∣ 2

1 + β

)
− βzc√

2
− mπ√

Λ
(9.8)

C = −y arccos
[
y2 − β

]
+ 2
√

1 + βE

(
1

2
arccos

[
y2 − β

]∣∣∣∣ 2

1 + β

)
+ 2(4m− 1)

√
1 + βE

(
1

2
arccos [−β]

∣∣∣∣ 2

1 + β

)
− βzc√

2
− mπ√

Λ
(9.9)

D = −y arccos
[
y2 − β

]
+ 2
√

1 + βE

(
1

2
arccos

[
y2 − β

]∣∣∣∣ 2

1 + β

)
+ 2(4m+ 1)

√
1 + βE

(
1

2
arccos [−β]

∣∣∣∣ 2

1 + β

)
− π

2
√

Λ
− βzc√

2
− mπ√

Λ
. (9.10)

9.3 The stationary points

9.3.1 Derivatives of the phase

Clearly one can only contemplate performing the integrals involved in Equation (9.6) using the

method of stationary phase—which is of course a suitable technique under semiclassical conditions.

To find the points where A, B, C, and D are stationary, the differentiations of these phases w.r.t.

β are required. Appendix G contains a step by step differentiation of A; the other three follow

immediately and so

dA
dβ

= − 1√
2

F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)
+

(4m− 1)√
2

K

(
1 + β

2

)
− zc√

2
(9.11)

dB
dβ

= − 1√
2

F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)
+

(4m+ 1)√
2

K

(
1 + β

2

)
− zc√

2
(9.12)

dC
dβ

=
1√
2

F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)
+

(4m− 1)√
2

K

(
1 + β

2

)
− zc√

2
(9.13)

dD
dβ

=
1√
2

F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)
+

(4m+ 1)√
2

K

(
1 + β

2

)
− zc√

2
. (9.14)

Setting each of these derivatives equal to zero gives the values of β for which the phases are

stationary. Clearly, these roots of the derivatives can only be calculated numerically. Figure 9.1

shows plots of these derivatives for the particular momentum space point (y = 0.65, zc = 3π/2).
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Figure 9.1: The derivatives of the four phases for m = 0 and 1, at the momentum space point

(y = 0.65, zc = 3π/2).
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Only the m = 0 and the m = 1 terms in the Poisson sum have phases which contain any

stationary points at all for this value of (y, zc), so, semiclassically at least, the other terms can be

ignored. Notice that the contributing phases each have two zeros in their derivatives, indicating

that they describe the wavefunction in the vicinity of a caustic (see the discussion in Chapter

3 and Appendix B). If one were to reduce the value of zc slightly, then the zeros would slide

down the curve until they coalesced at the point where the minimum actually sat on the zero line.

Such a (y, zc) point would then actually lie on a classical caustic. In general one observes that

the evolution of the stationary points with increasing depth (zc), is given by linearly sliding the

graphs of Figure 9.1 downwards. When the stationary point slips off one phase curve it moves onto

another. As may be predicted from Figure 9.1, as soon as the left-hand stationary point of A(B)

no longer registers (the right-hand stationary point remains for all zc) it appears as a lone zero on

C(D) respectively, in such a way that one always has a real wavefunction.

!

K

F

Figure 9.2: The complete, K, and incomplete, F, elliptic integrals plotted as functions of β. The

value of y in the incomplete term is 0.4.

To gain more insight into the phase derivatives, the two principle terms are plotted as functions

of β in Figure 9.2. Note that both the complete elliptic integral term

K

(
1 + β

2

)
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and the incomplete elliptic integral term,

F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)
are positive for all the required ranges of β and y. Further, the incomplete term has its largest

magnitude, for all β, when y = 0, for which it is equal to the complete term. As y is increased,

the incomplete function is monotonically reduced in size for each value of β. From these facts, and

referring to the Equations (9.11)–(9.14), it is deduced that only the A and B terms are responsible

for the double zeros whilst the remaining two are only capable of single zeros.

9.3.2 Physical interpretation of the Poisson sum

Since the incomplete term achieves its largest value at y = 0, as zc is increased (the graphs are

moved downwards) it is the double zero terms which first cross the zero line for each positive value

of m, and they do so initially for y = 0. As the curve first kisses the zero line, a single stationary

point is born and immediately de-coalesces into a double zero. What this process describes is the

birth of each cusp point along the zc axis (see Figure 3.4). It is possible to explicitly calculate the

values of zc at which each new m term develops stationary points. At y = 0 the derivatives of the

two double point terms are

dA
dβ

= − 1√
2

K

(
1 + β

2

)
+

(4m− 1)√
2

K

(
1 + β

2

)
− zc√

2
(9.15)

dB
dβ

= − 1√
2

K

(
1 + β

2

)
+

(4m+ 1)√
2

K

(
1 + β

2

)
− zc√

2
(9.16)

and so the zeros first occur when

(4m− 2)K

(
1 + β

2

)
= zAc (9.17)

4mK

(
1 + β

2

)
= zBc . (9.18)

As is evident from Figure 9.2, the complete elliptic function takes on its least value (the point

which will cross the zero line first) when β = −1, for which

K(0) =
π

2
. (9.19)

Thus the cusp points occur at

zAc = (2m− 1)π (9.20)

zBc = 2mπ. (9.21)

That is, the A and B terms take it in turns to produce successive cusps, the combined effect is

to produce cusps at mπ, where the Poisson (Maslov) index m = 0, 1, 2, . . ., in agreement with
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the classical mechanics. The physical interpretation of the terms of the Poisson sum formula,

is therefore that the mth term is required to describe the contribution to the wavefunction from

‘classical paths’ which have taken part in (m + 1) momentum space caustics (the index is offset

by 1 because the first caustic begins at the cusp which is at zc = 0). This implies that Poisson

resummation of the eigensum, whilst being the only viable method in the extreme semiclassical

limit, requires more and more effort for larger and larger values of zc as one has to include more

terms.

9.4 Uniformly evaluating the integrals

The evaluation of the necessary integrals by the method of stationary phase actually constitutes

the third stage of what is now recognised as a ‘method’ (see Berry and Mount [14]) for finding valid

semiclassical approximations to the exact quantum eigenseries. The first stage being the change

of variables from the quantum number j to the classical quantity β, and the second being the

replacement of terms in the summand of the original eigensum by their asymptotic representations

for large quantum numbers. Although not explicitly carried out here, one might consider the use

of the W.K.B. approximations to the eigenfunctions as being associated with the second stage.

It may come as a surprise to some to learn that the eminent astrophysicist, John A. Wheeler,

was responsible, together with Kenneth W. Ford, for two seminal papers which first established

this semiclassical ‘method’ (though it should be mentioned that many authors applied certain

individual pieces of the method prior to Ford and Wheeler—see [14]). In these two papers [32, 31]

published in 1959, they set out and applied these three stages, though stage three was incomplete

as they did not use the Poisson summation formula, relying instead on the intuitive replacement

(9.2), which is the zeroth term of the Poisson formula. Apart from unifying the three stages,

their crucial contribution was stage three, namely the evalution of their integral by the method of

stationary phase.

In 1966 Berry [7] introduced the Poisson summation formula into semiclassical scattering; a

couple of authors had already followed up Pekeris’s observation of its usefulness in the general

short wavelength context, applying it to discontinuous potentials (i.e. an isolated lens or water

droplet), but Berry’s initial application to ‘rainbow scattering’ (of which the Airy fringes predicted

in this thesis are an example) and then in 1969 [9] to ‘glory’ scattering (due to the presence of an

axial caustic: this requires an extra dimension in the control space) were the first works to use

continuous potentials. A further important contribution contained in Berry’s two papers [7, 9] (see

also [8]) was the use of the uniform approximation for integrals, which had been a timely invention

of Chester, Friedman and Ursell [23] in 1957. This is the analogous procedure for integrals as
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the uniform approximation of Chapter 8 was for differential equations. It extends the method

of steepest descents so that it remains valid when two saddle points coincide, or are sufficiently

close together that the conventional single saddle method fails. Whilst Ford and Wheeler [32, 31]

evaluated their stationary phase integrals in terms of transitional approximations, such as the

Airy approximation, valid only for restricted angular scattering ranges, the uniform approximation

for integrals is valid uniformly throughout the entire domain. The following sections contain

descriptions of the method of uniform evaluation of integrals with real stationary points—these

are based on unpublished notes by Berry [11].

9.4.1 The isolated stationary point

The integrals of Equation (9.6) fall into two classes: those terms with one stationary point in the

phase and those with two. The phases with a single zero can be any of A,B, C or D, depending on

the value of the parameters y and zc. A general term in Equation (9.6) can be written

Ψsingle =
1

2π

∫ β=1

β=−1

ei
√

ΛV

(1− (y2 − β)2)
1/4

(1− β2)
1/4

dβ (9.22)

where V is one of the four phases. An isolated, real, stationary point can be handled by the method

of stationary phase. The generalisation of this technique to two real stationary points uses a similar

formalism, so it will be instructive to do more than quote the well known result of the single point

case. One proceeds by mapping onto a new integration variable w; let

V(β) = V(βr) + aw2 (9.23)

where βr is the stationary point, so that the phase is now manifestly quadratic. One chooses

a =

 +1 if V ′′(βr) > 0

−1 if V ′′(βr) < 0.
(9.24)

In terms of the new variable w, Equation (9.22) becomes

Ψsingle =
ei
√

ΛV(βr)

2π

∫ w=∞

w=−∞

ei
√

Λ aw2

(1− (y2 − β(w))2)
1/4

(1− β2(w))
1/4

dβ

dw
dw (9.25)

where the extension of the limits to infinity recognises that there is only one stationary point,

or, if there are others, then they are well separated. An asymptotic expansion to the integral is

generated by expanding the amplitude factors in powers of w about w = 0 (which is the stationary

point, for which β = βr). Only the first term,

1

(1− (y2 − β)2)
1/4

(1− β2)
1/4

dβ

dw
∼ 1

(1− (y2 − βr)2)
1/4

(1− β2
r )

1/4

dβ

dw

∣∣∣∣
w=0

(9.26)
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will be used here; so it remains to find dβ(w = 0)/dw. Differentiating the mapping relation (9.23)

gives

V ′(β)
dβ

dw
= 2aw. (9.27)

Both V ′ and w vanish at the stationary point, so this equation cannot be solved for dβ/dw.

However, differentiating a second time produces

V ′′(β)

(
dβ

dw

)2

+ V ′(β)
d2β

dw2
= 2a. (9.28)

Noting that the second term vanishes at βr gives

dβ

dw

∣∣∣∣
w=0

=

√
2a

V ′′(βr)
. (9.29)

And so Equation (9.25) becomes

Ψr
single =

1

2π

ei
√

ΛV(βr)

(1− (y2 − βr)2)
1/4

(1− β2
r )

1/4

√
2a

V ′′(βr)

∫ w=∞

w=−∞
ei
√

Λ aw2

dw. (9.30)

The remaining complex Gaussian integral has the solution∫ w=∞

w=−∞
ei
√

Λ aw2

dw =

√
π√
Λ

eiaπ/4 (9.31)

giving the well known stationary phase approximation due an isolated stationary point

Ψr
single =

1√
2π
√

Λ
∣∣V ′′(βr)∣∣

ei(
√

ΛV(βr)±π/4)

(1− (y2 − βr)2)
1/4

(1− β2
r )

1/4
(9.32)

where ± is still given by condition (9.24)—that is replace the ± with +a.

9.4.2 The second derivative of the phases

The expression for the wavefunction as given by the method of stationary phase requires the 2nd

differentiation of the phase w.r.t. β; V ′′. This is explicitly calculated for A in Appendix G, from

which one can immediately infer the others

d2A
dβ2

=
1

2
√

2(1 + β)
F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)

− 1√
2(1− β2)

E

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)
+

y
(
2β − y2

)
2 (1− β2)

√
1− (y2 − β)

2

+
1− 4m

2
√

2(1 + β)

{
K

(
1 + β

2

)
− 2

1− β
E

(
π

2

∣∣∣ 1 + β

2

)}
(9.33)
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d2B
dβ2

=
1
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(
1 + β

2

)
− 2

1− β
E

(
π

2

∣∣∣ 1 + β

2

)}
(9.34)

d2C
dβ2

= − 1

2
√

2(1 + β)
F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)

+
1√

2(1− β2)
E

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)
−

y
(
2β − y2

)
2 (1− β2)

√
1− (y2 − β)

2

+
1− 4m

2
√

2(1 + β)

{
K

(
1 + β

2

)
− 2

1− β
E

(
π

2

∣∣∣ 1 + β

2

)}
(9.35)

d2D
dβ2

= − 1

2
√

2(1 + β)
F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)

+
1√

2(1− β2)
E

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)
−

y
(
2β − y2

)
2 (1− β2)

√
1− (y2 − β)

2

− 1 + 4m

2
√

2(1 + β)

{
K

(
1 + β

2

)
− 2

1− β
E

(
π

2

∣∣∣ 1 + β

2

)}
. (9.36)

9.4.3 Determining the number of stationary points

When automating the calculation of the uniform approximation it is useful to know, for given values

of (y, zc), when the phases A and B register two stationary points and when they only register one.

It is important to distinguish the coalescence of two stationary points (at the caustic), from the

situation when these phases genuinely have only one simple zero. This latter case, as illustrated by

Figure 9.1, arises because of the abrupt disappearance of the left hand piece of the ‘parabola’—the

phase becomes complex at this point. It is thus desirable to locate the (y, zc) co-ordinates at which

these special events take place.

For an arbitrarily chosen angle y, the bottom of the ‘parabola’ belonging to the differentiated

phases dA/dβ and dB/dβ is determined by the vanishing of the second derivative of these phases

d2A
dβ2

∣∣∣∣
βcaustic

= 0 (9.37)

d2B
dβ2

∣∣∣∣
βcaustic

= 0. (9.38)

As for the first derivatives, the zeros of the second derivatives can only be found numerically. Once

βcaustic(y) has been found, it is then substituted into the first derivative expression to discover the



CHAPTER 9. SEMICLASSICAL SCATTERING: POISSON RESUMMATION 163

value of zc (the second derivatives do not contain zc) at which the bottom of the parabola exactly

touches the zero line. In fact, such a procedure amounts to finding the co-ordinates of the caustics.

For zc less than this value the phases register no stationary points (for this particular value of

m). For zc greater than this value, then it is the A(B) phase (depending on whose turn it is to

produce the current cusp-fold assembly) which solely gives the two stationary points; a situation

which persists until the left hand stationary point ceases to be real. This moment is defined by

the vanishing of the incomplete elliptic integral contained in the first derivative. By examining the

amplitude (that is, the upper limit of the elliptic integral), this occurs when

β = y2 − 1. (9.39)

The corresponding value of zc then follows from the first derivative equations. For example, for

the phase A, one immediately finds

zc = (4m− 1)K

(
1 + β

2

)
= (4m− 1)K

(
y2

2

)
. (9.40)

9.4.4 Rainbow scattering

The use of the term ‘rainbow’ refers to scattering into angles close to, or at, a direction for which

the classical deflection function has a fold caustic. The usage was abstracted away from its natural

setting1 by Ford and Wheeler [32, 31]. Mathematically, rainbow scattering derives from the close

approach and then coalescence of two stationary points of the phase. This is symptomatic of the

phase locally being a cubic function of β, and so this time the phase is mapped onto the strict

cubic

V(β, y, zc) = −η(y, zc)w +
w3

3
+A(y, zc). (9.41)

Finally the connection with catastrophe theory has become explicit, since this is none other than

(up to a constant which is taken outside the integration) the cubic normal form of Equation (3.45).

From the purely utilitarian point of view, catastrophe theory can be regarded as a technique for

stationary phase integrals with phases of a polynomial structure; the cubic being the first of the

hierarchy.

The stationary points of the r.h.s. of (9.41) occur for

−η + w2 = 0 (9.42)

that is, when

w = ±√η. (9.43)

1One of the first scientifically credible studies of the rainbow was made by René Descartes.
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So there are two real stationary points when η > 0 (the oscillatory side of the Airy function),

and two imaginary stationary points when η < 0 (the decaying side). For the mapping to be

well defined, β(w) must be monotonic so that the correspondence is one-to-one. Monotonicity is

assured if the Jacobian
dβ

dw
=
−η + w2

V ′(β)
(9.44)

is never equal to zero or infinity. Since V ′(β) is zero at the stationary points β1,2, the equivalent

points are fixed by associating

w = +
√
η ←→ β = β1 (9.45)

w = −√η ←→ β = β2. (9.46)

This enables the functions η(y, zc) and A(y, zc) to be ascertained from the mapping definition

(9.41)

V(β1) ≡ V1 = −η3/2 + η3/2

3 +A = −2

3
η3/2 +A(y, zc) (9.47)

V(β2) ≡ V2 = +η3/2 − η3/2

3 +A = +
2

3
η3/2 +A(y, zc). (9.48)

Thus, defining

V̄(y, zc) ≡ V1 + V2

2
(9.49)

∆V(y) ≡ V2 − V1 (9.50)

one has

A(y, zc) = V̄(y, zc) (9.51)

η(y, zc) =

(
3∆V(y, zc)

4

)2/3

. (9.52)

So the double stationary point terms of Equation (9.6) become

Ψrainbow =
ei
√

ΛV̄(y,zc)

2π

∫ w=∞

w=−∞

ei
√

Λ (w3/3−ηw)

(1− (y2 − β(w))2)
1/4

(1− β2(w))
1/4

dβ

dw
dw. (9.53)

Again an asymptotic series can be obtained by expanding the amplitude factor. For the single

turning point case only the first term of the asymptotic expansion was retained since in the limit

of vanishing Λ only the value at the stationary point was important. Here however, the expansion

must provide a reasonable approximation to the amplitude factor throughout the region between

the two stationary points since it is exactly this ‘interaction’ between the two points which must

be accounted for. Chester et al. [23] suggested (and proved the validity of) an expansion of the

form

1

(1− (y2 − β(w))2)
1/4

(1− β2(w))
1/4

dβ

dw
=
∑
m

pm
(
w2 − η

)m
+
∑
m

qmw
(
w2 − η

)m
(9.54)
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which is a sum of even and odd terms that vanishes except for the constant p0 at the two stationary

points w = ±√η. This expansion is therefore the closest possible analogy to the single point

expansion but is valid at both stationary points. Keeping just the lowest two terms one hopes to

capture the principal variation of the amplitude with just a linear function

1

(1− (y2 − β(w))2)
1/4

(1− β2(w))
1/4

dβ

dw
∼ p+ qw (9.55)

the indices on p and q no longer being required to this approximation. One evaluates p and q by

calculating (9.55) at β1 and β2

1

(1− (y2 − β1)2)
1/4

(1− β2
1)

1/4

dβ1

dw
= p+ q

√
η (9.56)

1

(1− (y2 − β2)2)
1/4

(1− β2
2)

1/4

dβ2

dw
= p− q√η (9.57)

from which one obtains

p =
1

2

(
1

(1− (y2 − β1)2)
1/4

(1− β2
1)

1/4

dβ1

dw
+

1

(1− (y2 − β2)2)
1/4

(1− β2
2)

1/4

dβ2

dw

)
(9.58)

q =
1

2
√
η

(
1

(1− (y2 − β1)2)
1/4

(1− β2
1)

1/4

dβ1

dw
− 1

(1− (y2 − β2)2)
1/4

(1− β2
2)

1/4

dβ2

dw

)
. (9.59)

It remains to find dβ1,2/dw, but this comes from differentiating the mapping relation

V ′(β)
dβ

dw
= −η + w2. (9.60)

As before one must differentiate a second time

V ′′(β)

(
dβ

dw

)2

+ V ′(β)
d2β

dw2
= 2w (9.61)

to give

dβ1

dw
=

dβ

dw

∣∣∣∣
β1

=

√
2
√
η

V ′′(β1)
(9.62)

dβ2

dw
=

dβ

dw

∣∣∣∣
β2

=

√
−2
√
η

V ′′(β2)
. (9.63)

Now p and q are known, Equation (9.53) becomes

Ψrainbow =
ei
√

ΛV̄(y,zc)

2π

[
p

∫ w=∞

w=−∞
ei
√

Λ (w3/3−ηw) dw + q

∫ w=∞

w=−∞
w ei

√
Λ (w3/3−ηw) dw

]
. (9.64)

It should be noted that the expansion (9.54) was set up so that at the point where V ′′ goes to

zero, which is at the coalescence of the two stationary points, that is β1 = β2, q and η vanish so

any potential divergences are tamed. Hence, both the phase and the amplitude are truly ‘uniform’.
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The success of the cubic uniform method lies in the recognition of the two integrals involved

as being variants of the well known Airy function and its derivative

Ai(C) =
1

2π

∫ ∞
−∞

ei(t3/3+Ct) dt (9.65)

Ai′(C) =
dAi(C)

dC
=

i

2π

∫ ∞
−∞

t ei(t3/3+Ct) dt (9.66)

in terms of which the uniform rainbow contribution to the wavefunction finally becomes

Ψrainbow =
ei
√

ΛV̄(y,zc)

√
2

[ (
1

(1− (y2 − β1)2)
1/4

(1− β2
1)

1/4√V ′′(β1)

+
1

(1− (y2 − β2)2)
1/4

(1− β2
2)

1/4√−V ′′(β2)

)(
3∆V
4Λ

)1/6

Ai

−(3
√

Λ∆V
4

)2/3


− i

(
1

(1− (y2 − β1)2)
1/4

(1− β2
1)

1/4√V ′′(β1)

− 1

(1− (y2 − β2)2)
1/4

(1− β2
2)

1/4√−V ′′(β2)

)(
4

3Λ2∆V

)1/6

Ai′

−(3
√

Λ∆V
4

)2/3
].

(9.67)

The traditional transitional approximation on the other hand does not include the Airy function

derivative, and this is an important difference. Very close to the caustic (∆V = 0), the undifferen-

tiated term dominates, and so the uniform approximation reduces to the transitional form.

The use of the smoothly matched Airy function and trigonometric W.K.B. expressions in this

and the previous chapter penetrate to the very heart of semiclassical analysis. In particular,

they explain that the reason the semiclassical limit is not elementary (as, say, the relativistic

to Newtonian limit is) is because of the different h̄ dependence of the solutions at the different

scattering angles y. Denoting the rainbow angle (fold caustic) as yr, Table 9.1 categorises this

changing analytic form. Note that Λ ∝ 1/h̄2 and Ai(δ) → (32/3Γ(2/3))−1, i.e. a constant, as

δ → 0.

y � yr y ≈ yr y � yr

Ψ O(h̄1/2)× cos (O(1/h̄)) O(h̄1/3) O(h̄1/2) exp (−O(1/h̄))

Table 9.1: The analytic dependence of the wavefunction on h̄ as y is varied.

9.4.5 Uniform beyond the call of duty

The expansion of the amplitude term as suggested by Chester et al. [23] was designed to si-

multaneously cope with two overlapping saddles. The use of the W.K.B. approximations to the
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eigenfunctions introduces the possibility of divergences that the uniform approximation was not

specifically set up to handle. Although it was mentioned earlier that the use of W.K.B. functions

can be regarded as being ‘step 2’ in Ford and Wheeler’s method, namely the replacement of quan-

tum expressions with their asymptotic approximations valid for h̄→ 0, the asymptotic expressions

were envisioned to be well behaved. It therefore comes as a surprise that the amplitude expansion

also ‘uniformises’ the W.K.B. divergences.

The problematic W.K.B. amplitude is

|ΨWKB| =
1(

1− (y2 − β)
2
)1/4

(9.68)

which diverges when

y = ±
√

1± β. (9.69)

So for instance, when β → y2 ± 1, one could put

β = y2 ± 1 + δ (9.70)

so that the amplitude locally goes as

|ΨWKB| ∝
1

δ1/4
. (9.71)

Fortunately, wherever the uniform wavefunction (9.67) has a W.K.B. amplitude factor, it is mul-

tiplied by 1/
√
V ′′. Inserting (9.70) into any of the second derivative expressions (9.33–9.36) the

term which dominates is the one that itself contains the W.K.B. amplitude, so one has

1√
V ′′
∝ δ1/4. (9.72)

Thus the W.K.B. divergences are smoothed away.

9.4.6 Comparison with numerical result

The Poisson-resummed wavefunction was calculated at zc = 3π/2 and is shown in Figure 9.3. Only

three terms were required: B and D both with m = 0, and A with m = 1. The m = 0 terms

correspond to the folds born as the cusp point zc = 0, so they form the outer Airy fringes, although

their influence extends all the way to y = 0. The inner Airy fringes are generated by the single

m = 1 term. Potentially, the C term, with m = 1, could also contribute, but for this value of zc, A

contains both the stationary points. The chosen value of Λ is relatively small: the comparison with

the numerical result improves as the system becomes more classical. In particular, the interference

immediately to the outside of the inner Airy function is not captured. The coalescing stationary

point has just left the real axis, so to reproduce this ‘tunneling’ interference one would need to
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I

y

Figure 9.3: A comparison of the Poisson resummed (solid) wave function with the numerical

diagonalisation calculation (dashed). zc = 3π/2 and Λ = 12500.
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evaluate the Poisson integrals in the complex plane. Similarly, with the very outer fringe of the

outer Airy function: the stationary points become complex.



Conclusion

By studying the classical mechanics (geometrical optics), it becomes apparent that the farfield

diffraction pattern of a beam of atoms passing through a sinusoidal light grating is dominated

by caustics. These arise from the partial focussing of ray trajectories as they wind about in

the anharmonic wells and proliferate with increasing thickness of the grating. From the classical

solutions one can find the positions of these caustics. Using only the most general information

about the system (such as the number of available parameters), catastrophe theory identifies the

caustics as cusps which develop into simple folds, and even gives the form of the wavefunction local

to these elementary catastrophes as being the Pearcey and Airy functions respectively.

The wave behaviour was introduced through the differential difference equations due to Raman

and Nath. When the transverse kinetic energy term is retained in these equations, they describe

dynamical diffraction in the long interaction time regime. For low intensity of the light grating the

system is very quantum (few beams), and various perturbative solutions can be found. If the atoms

traverse the grating at an oblique angle corresponding to the first Bragg angle, then the problem

can be reduced to the well known ‘two-beam’ case. With atoms however, it is particularly easy

to tailor the potential they see into a more exotic form, and, in particular, generate an imaginary

potential to model dissipation due to spontaneous emission. The extra parameters associated

with complex potentials mean that degeneracies, which are rare in Hermitian systems, can be

located by varying the angle of incidence. The degeneracy in the non-Hermitian scattering matrix

(Raman-Nath matrix) is reflected physically by anomalously high transmission at the Bragg angle.

The width of the transmitted beams are also determined by the degeneracy and can become very

narrow. The semiclassical limit of dissipative scattering can also be studied. It contrasts with the

Hermitian case since there are no caustics: only a rather slender Gaussian survives the absorption.

The Raman-Nath equations for real potentials can be continuised in the semiclassical limit

providing one employs a W.K.B. approach to find the eigenvectors. The system is quantised by a

Bohr-Sommerfeld type condition. The W.K.B. eigenvectors fail at the turning-points, but accurate,

uniformly valid, solutions can be found by mapping onto parabolic cylinder functions. The situation
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becomes more complicated close to the separatrix where two transitional approximations must be

employed. The quantisation condition is then modified (the eigenvalues are split by tunnelling)

to become that which correctly matches the W.K.B. expressions issuing from the inner and outer

turning points. The subtle phases contained in these W.K.B. expressions can be determined from

the transitional approximations. Since the stationary Raman-Nath equations give the Fourier

coefficients of the Mathieu equation, these uniform solutions represent the correct solutions to the

Mathieu equation when it contains a large parameter. They are analytic save for the solution of a

transcendental mapping relation.

Finally, the farfield wavefunction given by an eigensum of the W.K.B. eigenvectors can be

transformed, by the Poisson summation formula, into a sum of terms with topological significance.

Successive terms describe classical ray families which have oscillated a certain number of times

within the potential well. This expression for the semiclassical dynamical diffraction from a thick

grating has the closest connections with the classical description. The birth of each new cusp is

heralded by each new term in the Poisson resummed series. By uniformly evaluating the integrals

of the Poisson formula one obtains a wavefunction valid for all scattering angles (despite the use of

W.K.B. eigenvectors), and, in particular, the Airy function intensity pattern is explicitly present

at the caustics as predicted by catastrophe theory.

Future work

Three main areas stand out as being of merit. The first is the ‘ergodic limit’ of the Raman-Nath

equations. This is the regime of infinitely long interaction times. The farfield pattern becomes

thick with caustics, and the intensity, on average, settles down to an envelope, the analytic form

of which has already been found by Michael Berry (to be published).

The second concerns moments of the farfield wavefunction: the absolute wavefunction is raised

to some even power and then integrated (summed) over all space (scattering angles). If the system

is classical enough, then the primary Airy peaks should survive interference and give the major

contribution to the moment, leading to a universal behaviour with h̄. Initial investigations show

that one has to go beyond what is numerically possible and so either the uniform or Poisson

methods must be used.

Thirdly, there seems to be no reason why the Raman-Nath equation for oblique incidence (4.37)

should not be continue-and-uniformised. As the angle of incidence is changed eigenvalues can pass

right through the separatrix energy leading to interesting phase effects due to tunnelling.
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Appendix A

Elliptic integrals and functions

A.1 Elliptic integrals of the first kind

A.1.1 Incomplete elliptic integrals of the first kind

Elliptic integrals of the 1st kind are straight forward [1],

F(φ|m) =

∫ φ

0

dθ√
1−m sin2 θ

(A.1)

with φ being known as the ‘amplitude’ and m the ‘parameter’. Some authors, such as Gradshteyn

and Ryzhik [38] use k2 in preference to m

k2 = sin2 α = m. (A.2)

The elliptic integrals are, in a sense, generalised inverse trigonometric functions. Compare Equa-

tion (A.1)1, with the integral definition of arcsin for instance

arcsin y =

∫ y

0

dt√
1− t2

. (A.3)

And so, in an analogous way, the elliptic integrals can be inverted using Jacobian elliptic functions

[1], which are defined so that if

u = F(φ|m) (A.4)

then the two elliptic functions sn(u|m) and cn(u|m) are simply

sn(u|m) = sinφ (A.5)

cn(u|m) = cosφ (A.6)

1A more suitable comparison is formed by the substitution t = sin θ into Eqn (A.1) giving
∫ sinφ
0 [(1 − t2)(1 −

mt2)]−1/2 dt.
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where u is known as the ‘argument’. Whilst one could write

φ = arcsin[sn(u|m)] (A.7)

it is important to remember that φ is a multi-valued function of u, so it is usual to write the

relationship between the amplitude and the argument as

φ = am(u|m) (A.8)

where am(u|m) is called the ‘Jacobi amplitude’ function. Refer to Figure A.1 for plots of these

two elliptic functions.

sn(u|m)

cn(u|m)

u

Figure A.1: Plots of a single period of sn(u|m) and cn(u|m) as functions of u for m = 0.65. Note

that the period of both functions is 4 times the complete elliptic integral of the first kind, K(m).

In this respect K(m) plays the rôle that π/2 plays for sine and cosine functions.

A.1.2 Complete elliptic integrals of the first kind

‘Complete’ refers to the fixed integration range 0→ π/2

K(m) = F(π/2|m) =

∫ π/2

0

dθ√
1−m sin2 θ

. (A.9)
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A.2 Elliptic integrals of the second kind

A.2.1 Incomplete elliptic integrals of the second kind

More care must be taken with the notation for elliptic integrals of the 2nd kind. The notation used

in this thesis will be

E(φ|m) =

∫ φ

0

√
1−m sin2 θ dθ (A.10)

in line with Gradshteyn and Ryzhik [38] and the computer package Mathematica.

However Abramowitz and Stegun [1] take

E(φ\α) =

∫ φ

0

√
1− sin2 α sin2 θ dθ =

∫ φ

0

√
1−m sin2 θ dθ (A.11)

and reserve E(u|m) for

E(u|m) =

∫ u

0

dn2(w|m)dw = E(φ\α) (A.12)

where dn(u|m) is defined by

dn(u|m) ≡
√

1−m sin2 φ. (A.13)

The relationship between these two notations is defined through that between φ and u. Using the

Jacobi amplitude (A.8)gives

E(φ|m) = E(am(u|m)|m) = E(φ\α) = E(u|m). (A.14)

A.2.2 Complete elliptic integrals of the second kind

Following the definition specified above the complete elliptic integral of the 2nd kind will be taken

as

E(m) = E(π/2|m) =

∫ π/2

0

√
1−m sin2 θ dθ. (A.15)

A.3 Differentiation

When dealing with the elliptic integrals, one follows the normal procedure for differentiating an

integral. With incomplete elliptic integrals one must remember that the upper limit can contain

a variable. The results required for Chapters 3 and 9 concern the complete elliptic integral of the

1st kind
dK(m)

dm
=

1

2m(1−m)
(E(m)− (1−m)K(m)) (A.16)

and the incomplete elliptic integral of the 2nd kind

∂E(φ|m)

∂φ
=

√
1−m sin2 φ = dn(F(φ|m)|m) = dn(u|m) (A.17)

∂E(φ|m)

∂m
=

1

2m
(E(φ|m)− F(φ|m)) . (A.18)
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Elliptic functions may also be differentiated w.r.t. either the argument or the parameter. The

former are well known to be [1]:

∂

∂u
sn(u|m) = cn(u|m)dn(u|m) (A.19)

∂

∂u
cn(u|m) = −sn(u|m)dn(u|m) (A.20)

∂

∂u
dn(u|m) = −m sn(u|m)cn(u|m) (A.21)

whilst the latter are more rarely quoted, but may be found in Lawden, P.82, [47]:

∂

∂m
sn(u|m) =

(
u− E(am(u|m) |m)

(1−m)

)
cn(u|m)dn(u|m)

2m
+

sn(u|m)cn2(u|m)

2(1−m)
(A.22)

∂

∂m
cn(u|m) =

(
E(am(u|m) |m)

(1−m)
− u
)

sn(u|m)dn(u|m)

2m
− sn2(u|m)cn(u|m)

2(1−m)
(A.23)

∂

∂m
dn(u|m) =

(
E(am(u|m) |m)

(1−m)
− u
)

sn(u|m)cn(u|m)

2
− sn2(u|m)dn(u|m)

2(1−m)
. (A.24)



Appendix B

The wavefunction from rays

This appendix aims to give a justification for the form of the semiclassical wavefunction. A more

complete derivation can be found for instance in Tabor’s book Chaos and Integrability in Nonlinear

Dynamics [76], whilst the geometrical optics which will be used can be found in The Diffraction

of Light by Ultrasound [16] by Berry, and Born and Wolf’s Principles of Optics [19].

B.1 The short wavelength Helmholtz equation

The time-independent Schrödinger wave equation is an example of a scalar Helmoltz equation

∂2ψ

∂x2
+
∂2ψ

∂z2
+

2m

h̄2

(
E + V0 cos2Kx

)
ψ = 0 (B.1)

where the total energy E is determined by the (constant) value of Pz and the initial entry point

into the potential

E =
P 2
z

2m
− V0 cos2Kx0. (B.2)

The following ansatz is made for the wavefunction,

ψ(x, z) = a(x, z)eiS(x,z)/h̄ (B.3)

which, upon substitution into the Helmholtz equation, gives

∂2a

∂x2
+
∂2a

∂x2
+ 2

i

h̄

(
∂a

∂x

∂S

∂x
+
∂a

∂z

∂S

∂z

)
+

i

h̄
a

(
∂2S

∂x2
+
∂2S

∂z2

)
− a

h̄2

((
∂S

∂x

)2

+

(
∂S

∂z

)2
)

+
2ma

h̄2 (E + V0 cos2Kx) = 0.

(B.4)
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For small h̄, one can try and approximately solve Equation (B.4) by considering each order of h̄

in turn. Equating the coefficients of successive powers of h̄ gives the hierarchy of equations

O(h̄0) : −
(
∂S

∂x

)2

−
(
∂S

∂z

)2

+ 2m(E + V0 cos2Kx) = 0 (B.5)

O(h̄1) : 2

(
∂a

∂x

∂S

∂x
+
∂a

∂z

∂S

∂z

)
+ a

(
∂2S

∂x2
+
∂2S

∂z2

)
= 0 (B.6)

O(h̄2) :
∂2a

∂x2
+
∂2a

∂z2
= 0 (B.7)

Only the zeroth and first order equations will be considered here.

B.2 The Hamilton-Jacobi equation

Equation (B.5) is called the Eikonal equation which can be shown to be a time-independent

Hamilton-Jacobi equation: a first order partial differential equation for S. In the language of

Goldstein [35], S can be identified with the F2 type generating function which effects a canonical

transformation from the original phase space variables (x, z, Px, Pz) to the new ones (β1, β2, α1, α2).

The new momenta, α1, α2, are constants of the motion and the new co-ordinates do not appear ex-

plictly in the transformed Hamiltonian H ′—they are called ‘cyclic co-ordinates’. The general form

of a canonical tranformation from phase space co-ordinates (q,p) to new ones (Q(q,p),P(q,p))

is established by noting that variation of the time integral of the Lagrangian

δI = δ

∫ t1

t0

L(q, q̇)dt = δ

∫ t1

t0

(
mẋ2

2
+
mż2

2
+ V0 cos2Kx

)
dt

= δ

∫ t1

t0

∑
j

pj q̇j −H(q,p)

 dt

(B.8)

is unchanged by the addition of a total time dervative of some function,

dF

dt
=
dF1(q,Q)

dt
(B.9)

say, to the integrand. Hamilton’s principle of course states that the vanishing of the variation of

I, subject to fixed endpoints, gives the classical trajectories, and in practice leads to the Euler-

Lagrange equations—an alternative but entirely equivalent route to that pursued in Section 3.4.1.

As far as the resulting equations of motion are concerned then, the transformed version of

Equation (B.8) is only defined up to the inclusion of the time-derivative of F1 giving∑
j

pj q̇j −H(q,p) =
∑
j

PjQ̇j −H ′(Q,P) +
dF1(q,Q)

dt
(B.10)
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and the transformation is deemed canonical if the Hamiltonian structure is retained in the new

phase space co-ordinates so that

Q̇j =
∂H ′

∂Pj
, Ṗj = −∂H

′

∂Qj
. (B.11)

These equations, together with Hamilton’s equations in the original co-ordinates, can be substituted

into the equality (B.10) to yield

pj =
∂F1

∂qj
, Pj = − ∂F1

∂Qj
. (B.12)

F2 generators are functions of the old co-ordinates qj and the new momenta Pj and can be obtained

from F1 by a Legendre transform

F1(q,Q) = F2(q,P)−
∑
j

QjPj . (B.13)

The equivalent equations to (B.12) for the F2 generator are

pj =
∂

∂qj
F2(x, z, α1, α2) (B.14)

βj =
∂

∂αj
F2(x, z, α1, α2). (B.15)

If, as stated above, an F2 type generator can be found which produces new momenta which are

constants, αj , then the Eikonal equation (B.5) is a Hamilton-Jacobi equation and may be written

H(x, z, Px, Pz) = H

(
x, z,

∂S

∂x
,
∂S

∂z

)
= H ′(α1, α2). (B.16)

The Hamiltonian (3.4) is separable and so the total action S(≡ F2) can be written as the sum of

two terms—one depending only upon x and the other only upon z. For a fixed set of αj one has,

from Equation (B.14),

dS =
∂

∂x
S(x, z, α1, α2)dx+

∂

∂z
S(x, z, α1, α2)dz (B.17)

or, due to the separability

dS =
d

dx
Sx(x, α1, α2)dx+

d

dz
Sz(z, α1, α2)dz. (B.18)

Thus, using Equation (B.5),

Sx =

∫ x

x0

Px(x′, α1, α2) dx′ (B.19)

Sz =

∫ z

z0

Pz dz
′ (B.20)

and

S = Sx + Sz (B.21)
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as asserted in Equation (3.35). The integrations have already been carried out in Section 3.4.3

giving

Sx =

√
2mV0

K

[
E

(
arcsin

[
sinxc
sinx0c

] ∣∣∣∣ sin2 x0c

)
+ cos2 x0cF

(
arcsin

[
sinxc
sinx0c

] ∣∣∣∣ sin2 x0c

)
− E(sin2 x0c)− cos2 x0cK(sin2 x0c)

] (B.22)

and

Sz =
P 2
z (x0)

K
√

2mV0

zc(x0). (B.23)

B.3 The amplitude equation

From Equation (B.14)
∂S

∂x
= Px,

∂S

∂z
= Pz. (B.24)

Inserting these relations into Equation B.6, one has, to first order in h̄, an equation for the ampli-

tude of the wavefunction

Px
∂a

∂x
+ Pz

∂a

∂z
+
a

2

(
∂Px
∂x

+
∂Pz
∂z

)
= 0. (B.25)

This equation can be re-written in terms of distance along the ray, s, where an infinitesimal of

arc-length is given by

ds =
√

(dx)2 + (dz)2 =

√
1 +

(
dx(x0, z)

dz

)2

dz (B.26)

and the unit vector along the ray is

ŝ =
Pxx̂ + Pz ẑ√
P 2
x + P 2

z

=
P

|P|
. (B.27)

If wave fronts are determined by lines of constant phase, S, then ŝ is the normal to these wave

fronts. The rate of change along a ray is therefore given by

d

ds
= ŝ · ∇ (B.28)

so, in particular,
dS

ds
= ŝ · ∇S =

√
P 2
x + P 2

z . (B.29)

In this terminology, Equation (B.25) becomes

|P|da
ds

+
a

2
∇ ·P = 0 (B.30)
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or
d ln a2

ds
+

1

|P|
∇ ·P = 0. (B.31)

A crucial step in the determination of the amplitude of the semiclassical wavefunction is the

realisation that this is a feature associated with a bundle of rays—a ray tube—not a single ray.

The ray tube might be focussed down into a small area and the resulting amplitude would be

large, or conversely, the ray tube might diverge giving a smaller amplitude. If one considers just

a single ray then the solution to Equation (B.25) is a = 1/
√
Px. This coincides with the W.K.B.

solution—one proceeds by separating the solution into the product of a z dependent term and an x

dependent term. The z dependent term is exp (iSz/h̄) as before and the remaining one dimensional

problem for x is solved with the usual W.K.B. techniques. The W.K.B. solution is, however, for a

specific eigen-energy, not just a random ray. The total wavefunction is the sum over the W.K.B.

eigenfunctions. The total wavefunction given by the method expounded in this appendix is given

by the sum over the trajectories, which is quite different. The two solutions are related through

the Poisson summation formula and this is the substance of Chapter 9. Returning now to the ray

method, one can see that in evaluating the divergence of the momentum, ∇ · P, it is necessary

to consider the divergence from a ray tube. The divergence of the momentum from a segment of

Area dA
 l(s)

ds
s

s+ds

 l(s+ds)

Figure B.1: A segment of a ray tube

ray tube is equal to the line integral around the perimeter of the momentum perpendicular to the

perimeter

∇ ·P = lim
dA→0

1

dA

∫
P · n̂ dl (B.32)

where dl is a line element of, and n̂ is the normal to, the perimeter. See Figure B.1. The area of

the segment is roughly given by

dA ≈ δlds. (B.33)
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In what follows it is important to realise just how small the angle is that the ray tube makes to

the z-axis. Taking values from reference [37], one has Ω = 144MHz, Γ = 60MHz, ∆ = 1000MHz,

giving V0 ≈ h̄Ω2/4∆ = 5.2 × 10−28J (See Equation (2.70)). So using Equation (3.53) one finds

that the value of the deflection angle, which is the momentum ratio, can take a maximum value

Px
Pz

=
dx

dz
≤
√

2mV0

Pz
≈ 1.6× 10−4. (B.34)

The system is definitely within the paraxial regime. The line integrals along the top and bottom of

the tube therefore cancel, and the contributions from the two ends, which are very nearly vertical,

are dominated by the Pzdl term. However, Pz is a constant and may be taken outside of the

integral so that Equation (B.32) becomes

lim
dA→0

1

dA

∫
P · n̂ dl =

Pz
δlds

(δl(s+ ds)− δl(s))

=
Pz
δl

d

ds
δl

= Pz
d

ds
ln δl.

(B.35)

Invoking paraxiality once more so that,

|P| ≈ Pz (B.36)

giving
∇ ·P
|P|

=
d

ds
ln δl (B.37)

it is now possible to write Equation (B.25) entirely in terms of quantities taken along the ray tube

d

ds
ln a2 +

d

ds
ln δl =

d

ds
ln(a2δl) = 0. (B.38)

Therefore, as one follows a particular ray tube, a2δl is conserved. Again, because the angles of

deflection are so small, one may take δl = dx, so that the amplitude becomes

a =

∣∣∣∣ dxdx0

∣∣∣∣−1/2

. (B.39)

Now, |∂x/∂x0| is the Jacobian for the mapping produced under the action of the solved trajec-

tory equation (3.28), x(x0, z), which takes initial points (x0, z = 0) to final positions (x, z), so this

seems a reasonable quantity to use to describe a classical density of trajectories (intensity) and

hence, via the square root, an amplitude.

B.4 The total wavefunction

The wavefunction at a point in configuration space is constructed from the sum of the contribu-

tions from each ray tube which passes through that point. On a caustic however, the individual
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rays touch—the ray tube is focussed right down—and the amplitude becomes infinite. So the

wavefunction cannot be evaluated too close to a caustic. Furthermore, the caustic has a dramatic

effect upon the ray tubes which form it: the caustic introduces a phase retardation of π/2, see [19].

The wavefunction away from a caustic becomes

Ψ(x, z) = N
∑
g

1

|{ dxdx0
}g|

eiSg/h̄−imgπ/2 (B.40)

where g labels the trajectories which pass through the point (x, z), see Chapter 3, and N is

the normalisation. The Maslov index, mg, records the number of caustics the ray g has been

involved in during the journey from (x = x0, z = 0). A consequence of the paraxiality is that

the configuration space wavefunction is very hard to determine experimentally, so one considers

instead the momentum space wave function which is accessible from measurements in the farfield.

Assuming that a periodic potential leads to a periodic solution, the wavefunction at the plane of

emergence z = D may be expanded as a Fourier series

Ψ(x, z = D) =

∞∑
n=−∞

ψnei(kz+2nKx) (B.41)

with the amplitudes of the diffracted beams appearing as the Fourier coefficients. Then

ψn =
N
π

∫ π/2

−π/2

∑
g

e−imgπ/2
1√

|{ dxdx0
}g|

ei(Sg(x,D)/h̄−2nKx) d(Kx) (B.42)

where, during the integration over the range Kx → Kx + d(Kx), only those ray tubes along

allowed classical trajectories arriving in that range, are integrated over. The allowed ray tubes are

labelled by g, but the set [g] is a function of x. The assumed small size of h̄ relative to the classical

quantities allows the integral to be evaluated by the method of stationary phase. Physically this

means the phase must vary rapidly over the width of a ray tube. The phase in Equation (B.42) is

stationary w.r.t. x when
∂S

∂x
= Px = 2nh̄K (B.43)

and so, as might be expected, the contributions to the nth diffracted beam come from classical

paths travelling at the correct angle, namely

tan θ ≈ θ =
2nh̄K

Pz
. (B.44)

The method of stationary phase is suitable for evaluating integrals with rapidly varying integrands

of the form ∫ y2

y1

A(y)eih(y)/h̄ dy ∼
∑
r

√
2πh̄

|h′′(yr)|
A(yr)e

ih(yr)/h̄±iπ/4 (B.45)
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where yr are the stationary points of the exponent h(y), and ± is chosen depending on whether

h′′(yr) is positive or negative. To calculate h′′ one must differentiate Equation (B.43) once more.

For comparison with the results of Chapter 3, it is useful to write

h′′ =
1

K

dPx
dKx

=
Pz
K2

dθ

dx
(B.46)

where once again the relation θ ≈ Px/Pz has been used. The stationary phase evaluation of

Equation (B.42), which gives the diffracted beam amplitudes, is thus

ψn = N
√

2h̄K

πPz

∑
r,g

1√
|{ dθ
dx0c
}rg|

ei(Sg(xr, D)/h̄−2nKxr −mgπ/2±π/4) . (B.47)

The nth amplitude is therefore the sum over the trajectories which at the exit face z = D, are

travelling at the angle given by Equation (B.44). These trajectories emanate from the different

transverse points of the exit face labelled by xr. Each of the allowed values of the label rg

correspond to particular values of x0. This initial transverse starting position, x0, uniquely specifies

a ray, whether it be in momentum or configuration space. This result is in correspondence with

Equation (3.52) which was obtained directly in momentum space. When the phases from each

contributing ray are taken to be mutually incoherent, as would be the case when h̄→ 0, then the

ray tube sum reduces back to the purely classical result (3.49).



Appendix C

Classical oblique incidence

The purpose of this appendix is to give an overview of the derivation of the classical equations of

motion describing atoms having a non- zero initial transverse momentum.

C.1 Confined trajectories

As with perpendicular incidence, Pz is conserved. However, the initial condition, at z = 0, on the

gradient of the trajectory is now altered to become

dx

dz
=
Px
Pz

= θ0. (C.1)

When substituted into the energy equation (3.6), the equivalent to the trajectory equation (3.9)

becomes
P 2
z

2m

(
dx

dz

)2

= V0

(
cos2Kx− cos2Kx0 +

θ2
0P

2
z

2mV0

)
(C.2)

and the solution may once again be expressed in terms of quadrature

√
2mV0

Pz
z =

∫ x′=x

x′=x0

dx′√
cos2Kx′ − cos2Kx0 +

θ2
0P

2
z

2mV0

=
1√

sin2Kx0 +
θ2
0P

2
z

2mV0

∫ x′=x

x′=x0

dx′√
1− sin2 Kx′(

sin2 Kx0+
θ20P

2
z

2mV0

) .
(C.3)

For atoms in libration, that is, those that are confined to the well in which they started,

sin2Kx0 +
θ2

0P
2
z

2mV0
< 1. (C.4)

Let

sinφ =
sinKx√

sin2Kx0 +
θ2
0P

2
z

2mV0

(C.5)
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in terms of which
dx√

sin2Kx0 +
θ2
0P

2
z

2mv0

=
cosφdφ

K cosKx
(C.6)

but

cosKx =

√
1−

(
sin2Kx0 +

θ2
0P

2
z

2mV0

)
sin2 φ (C.7)

so Equation (C.3) becomes

√
2mV0

Pz
z =

∫ φ

φ0

dφ√
1−

(
sin2Kx0 +

θ2
0P

2
z

2mV0

)
sin2 φ

. (C.8)

The lower limit of the integration is determined from

sinφ0 =
sinKx0√

sin2Kx0 +
θ2
0P

2
z

2mV0

. (C.9)

As before the solution to the quadrature integral is written in terms of elliptic integrals
√

2mV0

Pz
z = F

(
arcsin

[
sinKx
√
µ

]∣∣∣∣µ)− F

(
arcsin

[
sinKx0√

µ

]∣∣∣∣µ) (C.10)

where this time

µ = sin2Kx0 +
θ2

0P
2
z

2mV0
. (C.11)

Performing the inversion into elliptic functions gives

sinKx
√
µ

= sn

(√
2mV0

Pz
z + F

(
arcsin

[
sinKx0√

µ

]∣∣∣∣µ)∣∣∣∣µ) . (C.12)

By substituting this configuration space solution back into Equation (C.2), and making use of the

identity cn2(u|m) + sn2(u|m) = 1, one quickly obtains the momentum space solution

tan θ =
dx

dz
=

√
2mV0

Pz

√
µcn

(√
2mV0

Pz
z + F

(
arcsin

[
sinKx0√

µ

]∣∣∣∣µ)∣∣∣∣µ) . (C.13)

C.2 Escaping trajectories

If the initial transverse energy of an atom exceeds the barrier potential of the wells then, given a

long enough interaction time, it is able to travel over the barrier tops into successive wells. The

condition which must be fulfilled to allow such ‘rotational’ motion is

sin2Kx0 +
θ2

0P
2
z

2mV0
> 1. (C.14)

There is clearly a critical value of the initial transverse kinetic energy, θ2
0P

2
z /2m, above which all

atoms, whatever their initial transverse position, are capable of rotation. This is

θ2
0P

2
z

2m
= V0. (C.15)



APPENDIX C. CLASSICAL OBLIQUE INCIDENCE 186

The equations of motion are the same as before except that the parameter µ is now greater than

one. It is always preferrable to have the parameter of elliptic integrals and functions lie between

zero and one, and this is made possible with the two transformations [1],

F(α|m) =
1√
m

F(β|m−1) (C.16)

where

sinβ =
√
m sinα (C.17)

and

sn(u|m) =
1√
m

sn(
√
mu |m−1). (C.18)

Together these transformations convert the configuartion space solution into

sinKx = sn

(
√
µ

√
2mV0

Pz
z + F

(
Kx0|µ−1

)∣∣∣∣µ−1

)
. (C.19)

The momentum space solution requires a further identity [1]

cn(u|m) = dn(
√
mu|m−1) (C.20)

and taken with transformation (C.16) gives

dx

dz
=

√
2mV0

Pz

√
µdn

(
√
µ

√
2mV0

Pz
z + F

(
Kx0|µ−1

)∣∣∣∣µ−1

)
. (C.21)



Appendix D

The action integral

The W.K.B. solution to the Raman-Nath equation requires the evalution of the integral

I =

∫
arccos [y2 − β] dy. (D.1)

Let

y2 − β = cos t (D.2)

then

I =

∫
−t sin t

2
√
β + cos t

dt. (D.3)

Setting

t = 2τ (D.4)

gives

I =

∫
−4τ sin τ cos τ√
β + 1− 2 sin2 τ

dτ = − 4κ√
2

∫
τ sin τ cos τ√
1− κ2 sin2 τ

dτ (D.5)

where

κ2 =
2

1 + β
. (D.6)

Now let

κ sin τ = sinφ (D.7)

187



APPENDIX D. THE ACTION INTEGRAL 188

so that

I =− 4√
2

∫
τ sinφ cosφ

κ cosφ
dφ = − 4√

2κ

∫
arcsin

[
sinφ

κ

]
sinφ dφ

= − 4√
2κ

− cosφ arcsin

[
sinφ

κ

]
+

∫
cos2 φ

κ
√

1− (sin2 φ)/κ2

dφ


= − 4√

2κ

(
− cosφ arcsin

[
sinφ

κ

]
+

∫
κ
√

1− κ2 sin2 τ cos τ

κ
√

1− sin2 τ
dτ

)

= − 4√
2κ

(
−τ
√

1− κ2 sin2 τ +

∫ √
1− κ2 sin2 τdτ

)
.

(D.8)

Now the required range of the integration is from y =
√

1 + β to y. Since

τ =
1

2
arccos [y2 − β] (D.9)

the integral reduces to

I = y arccos [y2 − β]− 2
√

1 + β E

(
1

2
arccos [y2 − β]

∣∣∣∣ 2

1 + β

)
. (D.10)



Appendix E

A complex potential for the

ground state

E.1 A non-Hermitian Hamiltonian

The spontaneous decay of the excited state can always be described phenomenologically by replac-

ing the eigenstate

|b〉 e−iω0t (E.1)

with

|b〉 e−i(ω0−iγ/2)t (E.2)

for then the probability of being in the excited state decays exponentially with the time decay

constant γ. This replacement leads to an imaginary factor in internal atomic Hamiltonian (2.3) h̄ω0 0

0 0

 −→
 h̄

(
ω0 − iγ2

)
0

0 0

 . (E.3)

E.2 Evolution of the density matrix

The time evolution of the atomic density matrix is generally given by

ih̄σ̇ = [H,σ] . (E.4)

If one was dealing with a simple two-level atom with spontaneous decay from the upper to the lower

state, then one can preserve the Hermiticity of the evolution equation by replacing the commutator

with

ih̄σ̇ = Hσ − σH†. (E.5)

189



APPENDIX E. A COMPLEX POTENTIAL FOR THE GROUND STATE 190

Cohen-Tannoudji et al [25] point out, however, that this procedure gives the correct optical Bloch

equations (2.23) only up to the decay term down into the ground state population σaa, this decay

term being completely absent.

Here, however, the three-level atom is considered as having non-unitary evolution, so the original

commutator will be used. It should be stressed that the inclusion of an imaginary term in the

Hamiltonian does not in itself necessarily have to lead to dissipation of atomic probability; with

the transformation (E.5) one could ensure the evolution is in fact unitary. The dissipation originates

from solely concentrating upon the ensemble of atoms which have not decayed to the third state.

Using Equation (E.4) with the modified H, one finds the equations of motion for the individual

atomic density matrix elements for just the coherent part of the ensemble (that is, atoms in the

|a〉 and |b〉 states) to be (c.f. Equations (2.20–2.23))

σ̇bb = iΩ cosωLt (σba − σab) (E.6)

σ̇aa = −iΩ cosωLt (σba − σab) (E.7)

σ̇ab = iω0σab − iΩ cosωLt (σbb − σaa) +
γ

2
σab (E.8)

σ̇ba = −iω0σba + iΩ cosωLt (σbb − σaa)− γ

2
σba. (E.9)

In the limit that the decay from |b〉 to |a〉 at rate Γ (see Figure 6.1) can be neglected in

comparison to the coherent evolution at rate Ω, and the rapid decay at rate γ of |b〉 to |c〉

Ω , γ � Γ (E.10)

then the Equations (E.6–E.9) turn out to correctly describe the evolution of the two working levels

of the three level atom under non-unitary evolution. This time there is no need to insert any decay

constants by hand.

It remains to be shown that the population of the excited state adiabatically follows that of the

ground state, but under the conditions (E.10), and with a weak field, Chudesnikov and Yakovlev

[24] show this to be the case. This means that the derivation of the potential in Chapter 2 is valid

and can be followed through with Γ = 0 and the replacement

ω0 −→ ω0 − i
γ

2
(E.11)

which by definition (2.36) leads to

∆ −→ ∆ + i
γ

2
. (E.12)

When γ � Ω (weak field), then Equation (2.69) can be expanded as before, this time giving

the complex potential

V (x) =
d2
abE2

0

4h̄
(
∆ + iγ2

) cos2Kx (E.13)

which is the same as the expression obtained by Chudesnikov and Yakovlev [24].



Appendix F

The normalisation integral

The normalisation of the W.K.B. Bloch waves necessitates the evaluation of

I =

∫ √β+1

−
√
β+1

dy√
1− (y2 − β)2

= 2

∫ √β+1

0

dy√
1− (y2 − β)2

. (F.1)

Within the specified range, y2 − β takes on values between −1 and 1, so putting

y2 − β = cos t (F.2)

means

dy =
− sin t dt

2
√
β + cos t

(F.3)

and so

I = 2

∫ 0

arccos[−β]

−dt
2
√
β + cos t

=
2√

1 + β

∫ arccos[−β]

0

d(t/2)√
1− 2

1+β sin2(t/2)
(F.4)

which gives an elliptic integral of the first kind

I =
2√

1 + β
F

(
1

2
arccos [−β]

∣∣∣∣ 2

1 + β

)
. (F.5)

This can be further simplified by the transformation [1]

F(φ|m) =
1√
m

F(θ|m), sin θ =
√
m sinφ (F.6)

producing

I =
2√
2

F
(π

2

∣∣∣ 1 + β

2

)
=
√

2K

(
1 + β

2

)
. (F.7)
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Appendix G

Differentiating the phase

G.1 First differentiation

The phase term A as given by Equation (9.7) is

A = y arccos
[
y2 − β

]
− 2
√

1 + βE

(
1

2
arccos

[
y2 − β

]∣∣∣∣ 2

1 + β

)
+ 2(4m− 1)

√
1 + βE

(
1

2
arccos [−β]

∣∣∣∣ 2

1 + β

)
+

π

2
√

Λ
− βzc√

2
− mπ√

Λ
. (G.1)

When differentiating this expression, it is simplest to return to the original integrals which gave

this phase in the first place, so that

A =

∫ y

t=
√

1+β

arccos
[
t2 − β

]
dt+ (1−4m)

∫ 0

t=
√

1+β

arccos
[
t2 − β

]
dt+

π

2
√

Λ
− βzc√

2
− mπ√

Λ
. (G.2)

And so one finds

dA
dβ

=

∫ y

t=
√

1+β

dt√
1− (t2 − β)2

− arccos [β + 1− β]
d
√

1 + β

dβ

+ (1− 4m)

(∫ 0

t=
√

1+β

dt√
1− (t2 − β)2

− arccos [β + 1− β]
d
√

1 + β

dβ

)
− zc√

2
.

(G.3)

Since arccos [1] = 0, two of the terms vanish immediately. The remaining integrals are converted

into elliptic integrals of the 1st kind by the change of variable

cosφ = t2 − β (G.4)

giving

dA
dβ

=
−1√
1 + β

F

(
1

2
arccos

[
y2 − β

]∣∣∣∣ 2

1 + β

)
− (1− 4m)√

1 + β
F

(
1

2
arccos [−β]

∣∣∣∣ 2

1 + β

)
− zc√

2
. (G.5)

Using the transformation (3.16) simplifies the two elliptic integrals so that one has

dA
dβ

= − 1√
2

F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)
− (1− 4m)√

2
K

(
1 + β

2

)
− zc√

2
. (G.6)
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G.2 Second differentiation

Expressing the terms of Equation (G.6) by their integral definitions and differentiating once more

leads to

d2A
dβ2

= − 1√
2

(
1

4

∫ arcsin
√

1+β−y2

1+β

0

sin2 t dt(
1− 1+β

2 sin2 t
)3/2

+
y

√
2(1 + β)

√
1− (y2 − β)

2

+
1

4
(1− 4m)

∫ π/2

0

sin2 t dt(
1− 1+β

2 sin2 t
)3/2

)
.

(G.7)

The first of these integrals can be re-written to read

1

4

∫ arcsin
√

1+β−y2

1+β

0

sin2 t dt(
1− 1+β

2 sin2 t
)3/2

= − 1

2(1 + β)

∫ arcsin
√

1+β−y2

1+β

0

(
− 1+β

2 sin2 t+ 1− 1
)
dt(

1− 1+β
2 sin2 t

)3/2

(G.8)

which in turn is recognised as

∫ arcsin
√

1+β−y2

1+β

0

(
− 1+β

2 sin2 t+ 1− 1
)
dt(

1− 1+β
2 sin2 t

)3/2

=

(
F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)
−Π

(
1 + β

2
; arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

))
(G.9)

where

Π(n;φ|m) =

∫ φ

0

dt(
1− n sin2 t

)√
1−m sin2 t

(G.10)

is the elliptic integral of the 3rd kind. A similar identification may then be made with the second

integral in Equation (G.7) giving

d2A
dβ2

=− 1√
2

[
− 1

2(1 + β)

{
F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)

−Π

(
1 + β

2
; arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)}
+

y
√

2(1 + β)

√
1− (y2 − β)

2

− 1− 4m

2(1 + β)

{
K

(
1 + β

2

)
−Π

(
1 + β

2
;
π

2

∣∣∣∣ 1 + β

2

)}]
.

(G.11)

However, when n = m, as here, the elliptic integral of the 3rd kind may itself be re-written in terms

of more familiar functions (see page 600 of [1])

Π(m;φ|m) =
1

1−m
E(φ|m)− m

1−m
sin 2φ

2
√

1−m sin2 φ
. (G.12)
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And so Equation (G.11) becomes

d2A
dβ2

=
1

2
√

2(1 + β)
F

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)

− 1√
2(1− β2)

E

(
arcsin

[√
1 + β − y2

1 + β

]∣∣∣∣∣ 1 + β

2

)
+

y
(
2β − y2

)
2 (1− β2)

√
1− (y2 − β)

2

+
1− 4m

2
√

2(1 + β)

{
K

(
1 + β

2

)
− 2

1− β
E

(
π

2

∣∣∣ 1 + β

2

)}
.

(G.13)
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