
WWW.MOTOROLA.COM/SEMICONDUCTORS

HCS08
Microcontrollers

HCS08RMv1/D
Rev. 1, 6/2003

Family

HCS08

Reference Manual
Volume 1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HCS08RMv1/D

N
O

N
-

D
I

S
C

L
O

S
U

R
E

A

G
R

E
E

M
E

N
T

R

E
Q

U
I

R
E

D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

HCS08

Family Reference Manual

Volume I

For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Important Notice to Users

While every effort has been made to ensure the accuracy of all information in this
document, Motorola assumes no liability to any party for any loss or damage caused
by errors or omissions or by statements of any kind in this document, its updates,
supplements, or special editions, whether such errors are omissions or statements
resulting from negligence, accident, or any other cause. Motorola further assumes no
liability arising out of the application or use of any information, product, or system
described herein: nor any liability for incidental or consequential damages arising from
the use of this document. Motorola disclaims all warranties regarding the information
contained herein, whether expressed, implied, or statutory, including implied
warranties of merchantability or fitness for a particular purpose. Motorola makes no
representation that the interconnection of products in the manner described herein will
not infringe on existing or future patent rights, nor do the descriptions contained herein
imply the granting or license to make, use or sell equipment constructed in accordance
with this description.

Trademarks

This document includes these trademarks:

Motorola and the Motorola logo are registered trademarks
of Motorola, Inc.

Motorola, Inc., is an Equal Opportunity / Affirmative Action Employer.

This product incorporates SuperFlash technology licensed from SST.

© Motorola, Inc., 2003; All Rights Reserved
Reference Manual — Volume I HCS08 — Revision 1

4 MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

HCS08 Family Reference Manual

List of Sections

Section 1. General Information and Block Diagram . . .19

Section 2. Pins and Connections 25

Section 3. Modes of Operation .33

Section 4. On-Chip Memory .51

Section 5. Resets and Interrupts91

Section 6. Central Processor Unit (CPU) 113

Section 7. Development Support209

Appendix A. Instruction Set Details 293

Appendix B. Equate File Conventions 393
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA List of Sections 5
For More Information On This Product,

 Go to: www.freescale.com

List of Sections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Reference Manual — Volume I HCS08 — Revision 1

6 List of Sections MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

HCS08 Family Reference Manual

Table of Contents

Section 1. General Information and Block Diagram

1.1 Introduction to the HCS08 Family of Microcontrollers 19

1.2 Programmer’s Model for the HCS08 CPU20

1.3 Peripheral Modules. .21

1.4 Features of the MC9S08GB60 .22
1.4.1 Standard Features of the HCS08 Family22
1.4.2 Features of MC9S08GB60 MCU .23

1.5 Block Diagram of the MC9S08GB60 .23

Section 2. Pins and Connections

2.1 Introduction .25

2.2 Recommended System Connections .25
2.2.1 Power .27
2.2.2 MC9S08GB60 Oscillator .27
2.2.3 Reset .29
2.2.4 Background/Mode Select (BKGD/MS)29
2.2.5 General-Purpose I/O and Peripheral Ports 30

Section 3. Modes of Operation

3.1 Introduction .33

3.2 Features .33

3.3 Run Mode .34

3.4 Active Background Mode .34

3.5 Wait Mode. .36

3.6 Stop Modes. .37
3.6.1 Stop1 Mode .38
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Table of Contents 7
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6.2 Stop2 Mode .39
3.6.3 Stop3 Mode .40
3.6.4 Active BDM Enabled in Stop Mode 41
3.6.5 OSCSTEN Bit Set .41
3.6.6 LVD Enabled in Stop Mode .42
3.6.7 On-Chip Peripheral Modules in Stop Modes 42
3.6.8 System Options Register (SOPT) .45
3.6.9 System Power Management Status and Control 1

Register (SPMSC1) .46
3.6.10 System Power Management Status and Control 2

Register (SPMSC2) .48

Section 4. On-Chip Memory

4.1 Introduction .51

4.2 HCS08 Core-Defined Memory Map .51
4.2.1 HCS08 Memory Map .52
4.2.2 MC9S08GB60 Memory Map .54
4.2.3 Reset and Interrupt Vector Assignments55

4.3 Register Addresses and Bit Assignments.57

4.4 RAM .63

4.5 60-Kbyte FLASH. .63
4.5.1 Features .64
4.5.2 Program, Erase, and Blank Check Commands65
4.5.3 Command Timing and Burst Programming 67
4.5.3.1 Rows and FLASH Organization .68
4.5.3.2 Program Command Timing Sequence.68
4.5.4 Access Errors .69
4.5.5 Vector Redirection .70
4.5.6 FLASH Block Protection (MC9S08GB60) 71

4.6 Security (MC9S08GB60) .72

4.7 FLASH Registers and Control Bits (MC9S08GB60).74
4.7.1 FLASH Clock Divider Register (FCDIV)74
4.7.2 FLASH Options Register (FOPT and NVFOPT) 76
4.7.3 FLASH Configuration Register (FCNFG)77
4.7.4 FLASH Protection Register (FPROT and NVFPROT)78
4.7.5 FLASH Status Register (FSTAT) .79
Reference Manual — Volume I HCS08 — Revision 1

8 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.7.6 FLASH Command Register (FCMD) 81

4.8 FLASH Application Examples. .82
4.8.1 Initialization of the FLASH Module Clock83
4.8.2 Erase One 512-Byte Page in FLASH84
4.8.3 DoOnStack Subroutine. .86
4.8.4 SpSub Subroutine .88
4.8.5 Program One Byte of FLASH .89

Section 5. Resets and Interrupts

5.1 Introduction .91

5.2 Reset and Interrupt Features for MC9S08GB60 91

5.3 MCU Reset .92

5.4 Computer Operating Properly (COP) Watchdog 93

5.5 Interrupts. .93
5.5.1 Interrupt Stack Frame. .95
5.5.2 External Interrupt Request (IRQ) Pin96
5.5.2.1 Pin Configuration Options .96
5.5.2.2 Edge and Level Sensitivity .97
5.5.3 Interrupt Vectors, Sources, and Local Masks.97

5.6 Low-Voltage Detect (LVD) System. .99
5.6.1 Power-On Reset Operation .99
5.6.2 LVD Reset Operation .99
5.6.3 LVD Interrupt Operation .99
5.6.4 Low-Voltage Warning (LVW) .100

5.7 Real-Time Interrupt (RTI) .100

5.8 Reset, Interrupt, and System Control Registers and
Control Bits .100

5.8.1 Interrupt Request Status and Control Register (IRQSC) . .101
5.8.2 System Reset Status Register (SRS).103
5.8.3 System Background Debug Force Reset

Register (SBDFR). .105
5.8.4 System Options Register (SOPT) 105
5.8.5 System Device Identification Register (SDIDH, SDIDL). . .107
5.8.6 System Real-Time Interrupt Status and Control

Register (SRTISC) .107
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Table of Contents 9
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.7 System Power Management Status and Control 1
Register (SPMSC1) .109

5.8.8 System Power Management Status and Control 2
Register (SPMSC2) .111

Section 6. Central Processor Unit (CPU)

6.1 Introduction .113

6.2 Programmer’s Model and CPU Registers.114
6.2.1 Accumulator (A) .115
6.2.2 Index Register (H:X). .116
6.2.3 Stack Pointer (SP) .118
6.2.4 Program Counter (PC) .122
6.2.5 Condition Code Register .122

6.3 Addressing Modes .131
6.3.1 Inherent Addressing Mode (INH) .132
6.3.2 Relative Addressing Mode (REL) .132
6.3.3 Immediate Addressing Mode (IMM)133
6.3.4 Direct Addressing Mode (DIR) .134
6.3.5 Extended Addressing Mode (EXT).135
6.3.6 Indexed Addressing Mode .135
6.3.6.1 Indexed, No Offset (IX) .135
6.3.6.2 Indexed, No Offset with Post Increment (IX+)136
6.3.6.3 Indexed, 8-Bit Offset (IX1) .136
6.3.6.4 Indexed, 8-Bit Offset with Post Increment (IX1+).136
6.3.6.5 Indexed, 16-Bit Offset (IX2) .136
6.3.6.6 SP-Relative, 8-Bit Offset (SP1) 137
6.3.6.7 SP-Relative, 16-Bit Offset (SP2) 138

6.4 Special Operations .138
6.4.1 Reset Sequence. .139
6.4.2 Interrupts .140
6.4.3 Wait Mode .141
6.4.4 Stop Mode .142
6.4.5 Active Background Mode .142
6.4.6 User’s View of a Bus Cycle .143

6.5 Instruction Set Description by Instruction Types.144
6.5.1 Data Movement Instructions. .144
6.5.1.1 Loads and Stores .145
Reference Manual — Volume I HCS08 — Revision 1

10 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.1.2 Bit Set and Bit Clear. .148
6.5.1.3 Memory-to-Memory Moves .149
6.5.1.4 Register Transfers and Nibble Swap150
6.5.2 Math Instructions .151
6.5.2.1 Add, Subtract, Multiply, and Divide 151
6.5.2.2 Increment, Decrement, Clear, and Negate 156
6.5.2.3 Compare and Test .156
6.5.2.4 BCD Arithmetic. .156
6.5.3 Logical Operation Instructions .157
6.5.3.1 AND, OR, Exclusive-OR, and Complement158
6.5.3.2 BIT Instruction .160
6.5.4 Shift and Rotate Instructions .160
6.5.5 Jump, Branch, and Loop Control Instructions 162
6.5.5.1 Unconditional Jump and Branch 164
6.5.5.2 Simple Branches .164
6.5.5.3 Signed Branches .165
6.5.5.4 Unsigned Branches .165
6.5.5.5 Bit Condition Branches. .166
6.5.5.6 Loop Control. .167
6.5.6 Stack-Related Instructions .168
6.5.7 Miscellaneous Instructions .173

6.6 Summary Instruction Table. .176

6.7 Assembly Language Tutorial .186
6.7.1 Parts of a Listing Line. .187
6.7.2 Assembler Directives .188
6.7.2.1 BASE — Set Default Number Base for Assembler 189
6.7.2.2 INCLUDE — Specify Additional Source Files 189
6.7.2.3 NOLIST/LIST — Turn Off or Turn On Listing190
6.7.2.4 ORG — Set Program Starting Location190
6.7.2.5 EQU — Equate a Label to a Value 192
6.7.2.6 dc.b — Define Byte-Sized Constants in Memory192
6.7.2.7 dc.w — Define 16-Bit (Word) Constants in Memory . . .194
6.7.2.8 ds.b — Define Storage (Reserve) Memory Bytes 194
6.7.3 Labels. .196
6.7.4 Expressions .198
6.7.5 Equate File Conventions .200
6.7.6 Object Code (S19) Files .201
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Table of Contents 11
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Section 7. Development Support

7.1 Introduction .209

7.2 Features .210

7.3 Background Debug Controller (BDC)212
7.3.1 BKGD Pin Description .213
7.3.2 Communication Details .215
7.3.2.1 BDC Communication Speed Considerations215
7.3.2.2 Bit Timing Details .217
7.3.3 BDC Registers and Control Bits .220
7.3.3.1 BDC Status and Control Register 220
7.3.3.2 BDC Breakpoint Match Register 223
7.3.4 BDC Commands .223
7.3.4.1 SYNC — Request Timed Reference Pulse226
7.3.4.2 ACK_ENABLE .227
7.3.4.3 ACK_DISABLE. .227
7.3.4.4 BACKGROUND .228
7.3.4.5 READ_STATUS. .228
7.3.4.6 WRITE_CONTROL .230
7.3.4.7 READ_BYTE .231
7.3.4.8 READ_BYTE_WS .232
7.3.4.9 READ_LAST .233
7.3.4.10 WRITE_BYTE .233
7.3.4.11 WRITE_BYTE_WS .234
7.3.4.12 READ_BKPT .235
7.3.4.13 WRITE_BKPT .235
7.3.4.14 GO .236
7.3.4.15 TRACE1. .236
7.3.4.16 TAGGO .236
7.3.4.17 READ_A. .237
7.3.4.18 READ_CCR .237
7.3.4.19 READ_PC .238
7.3.4.20 READ_HX .239
7.3.4.21 READ_SP .239
7.3.4.22 READ_NEXT .240
7.3.4.23 READ_NEXT_WS .241
7.3.4.24 WRITE_A .241
7.3.4.25 WRITE_CCR .242
7.3.4.26 WRITE_PC. .242
7.3.4.27 WRITE_HX. .242
7.3.4.28 WRITE_SP. .243
7.3.4.29 WRITE_NEXT .243
Reference Manual — Volume I HCS08 — Revision 1

12 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.30 WRITE_NEXT_WS .244
7.3.5 Serial Interface Hardware Handshake Protocol245
7.3.6 Hardware Handshake Abort Procedure248
7.3.7 BDC Hardware Breakpoint .253
7.3.8 Differences from M68HC12 BDM.254
7.3.8.1 8-Bit Architecture .255
7.3.8.2 Command Formats .255
7.3.8.3 Read and Write with Status .256
7.3.8.4 BDM Versus Stop and Wait Modes257
7.3.8.5 SYNC Command .257
7.3.8.6 Hardware Breakpoint .258

7.4 Part Identification and BDC Force Reset258
7.4.1 System Device Identification Registers (SDIDH:SDIDL) . .259
7.4.2 System Background Debug Force Reset Register.260

7.5 On-Chip Debug System (DBG). .260
7.5.1 Comparators A and B. .261
7.5.2 Bus Capture Information and FIFO Operation262
7.5.3 Change-of-Flow information .264
7.5.4 Tag vs. Force Breakpoints and Triggers 265
7.5.5 CPU Breakpoint Requests .266
7.5.6 Trigger Modes .266
7.5.6.1 A-Only Trigger .268
7.5.6.2 A OR B Trigger. .268
7.5.6.3 A Then B Trigger .268
7.5.6.4 Event-Only B Trigger (Store Data)268
7.5.6.5 A Then Event-Only B Trigger (Store Data) 269
7.5.6.6 A AND B Data Trigger (Full Mode).269
7.5.6.7 A AND NOT B Data Trigger (Full Mode) 269
7.5.6.8 Inside Range Trigger: A ≤ Address ≤ B270
7.5.6.9 Outside Range Trigger: Address < A or Address > B . .270
7.5.7 DBG Registers and Control Bits. .270
7.5.7.1 Debug Comparator A High Register (DBGCAH)271
7.5.7.2 Debug Comparator A Low Register (DBGCAL)271
7.5.7.3 Debug Comparator B High Register (DBGCBH)271
7.5.7.4 Debug Comparator B Low Register (DBGCBL)271
7.5.7.5 Debug FIFO High Register (DBGFH).272
7.5.7.6 Debug FIFO Low Register (DBGFL) 272
7.5.7.7 Debug Control Register .273
7.5.7.8 Debug Trigger Register .275
7.5.7.9 Debug Status Register .276
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Table of Contents 13
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8 Application Information and Examples278
7.5.8.1 Orientation to the Debugger Examples 280
7.5.8.2 Example 1: Stop Execution at Address A 281
7.5.8.3 Example 2: Stop Execution at the Instruction at

Address A. .282
7.5.8.4 Example 3: Stop Execution at the Instruction at

Address A or Address B .283
7.5.8.5 Example 4: Begin Trace at the Instruction at

Address A. .284
7.5.8.6 Example 5: End Trace to Stop After A-Then-B

Sequence .285
7.5.8.7 Example 6: Begin Trace On Write of Data B to

Address A. .286
7.5.8.8 Example 7: Capture the First Eight Values Read From

Address B. .287
7.5.8.9 Example 8: Capture Values Written to Address B

After Address A Read. .288
7.5.8.10 Example 9: Trigger On Any Execution Within a

Routine .289
7.5.8.11 Example 10: Trigger On Any Attempt To Execute

Outside FLASH. .290
7.5.9 Hardware Breakpoints and ROM Patching 291

Appendix A. Instruction Set Details

A.1 Introduction .293

A.2 Nomenclature .293

A.3 Convention Definitions .298

A.4 Instruction Set. .298
ADC Add with Carry .299
ADD Add without Carry. .300
AIS Add Immediate Value (Signed) to Stack Pointer 301
AIX Add Immediate Value (Signed) to Index Register 302
AND Logical AND .303
ASL Arithmetic Shift Left .304
ASR Arithmetic Shift Right .305
BCC Branch if Carry Bit Clear. .306
BCLR n Clear Bit n in Memory. .307
BCS Branch if Carry Bit Set .308
Reference Manual — Volume I HCS08 — Revision 1

14 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BEQ Branch if Equal .309
BGE Branch if Greater Than or Equal To310
BGND Background .311
BGT Branch if Greater Than. .312
BHCC Branch if Half Carry Bit Clear .313
BHCS Branch if Half Carry Bit Set .314
BHI Branch if Higher .315
BHS Branch if Higher or Same. .316
BIH Branch if IRQ Pin High .317
BIL Branch if IRQ Pin Low .318
BIT Bit Test .319
BLE Branch if Less Than or Equal To320
BLO Branch if Lower .321
BLS Branch if Lower or Same .322
BLT Branch if Less Than .323
BMC Branch if Interrupt Mask Clear .324
BMI Branch if Minus .325
BMS Branch if Interrupt Mask Set. .326
BNE Branch if Not Equal .327
BPL Branch if Plus .328
BRA Branch Always .329
BRCLR n Branch if Bit n in Memory Clear .331
BRN Branch Never .332
BRSET n Branch if Bit n in Memory Set. .333
BSET n Set Bit n in Memory .334
BSR Branch to Subroutine .335
CBEQ Compare and Branch if Equal .336
CLC Clear Carry Bit .337
CLI Clear Interrupt Mask Bit .338
CLR Clear. .339
CMP Compare Accumulator with Memory 340
COM Complement (One’s Complement) 341
CPHX Compare Index Register with Memory.342
CPX Compare X (Index Register Low) with Memory343
DAA Decimal Adjust Accumulator .344
DBNZ Decrement and Branch if Not Zero 346
DEC Decrement .347
DIV Divide .348
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Table of Contents 15
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EOR Exclusive-OR Memory with Accumulator349
INC Increment .350
JMP Jump .351
JSR Jump to Subroutine .352
LDA Load Accumulator from Memory 353
LDHX Load Index Register from Memory.354
LDX Load X (Index Register Low) from Memory355
LSL Logical Shift Left. .356
LSR Logical Shift Right .357
MOV Move .358
MUL Unsigned Multiply .359
NEG Negate (Two’s Complement) .360
NOP No Operation .361
NSA Nibble Swap Accumulator .362
ORA Inclusive-OR Accumulator and Memory.363
PSHA Push Accumulator onto Stack .364
PSHH Push H (Index Register High) onto Stack.365
PSHX Push X (Index Register Low) onto Stack 366
PULA Pull Accumulator from Stack .367
PULH Pull H (Index Register High) from Stack.368
PULX Pull X (Index Register Low) from Stack369
ROL Rotate Left through Carry. .370
ROR Rotate Right through Carry .371
RSP Reset Stack Pointer .372
RTI Return from Interrupt .373
RTS Return from Subroutine .374
SBC Subtract with Carry. .375
SEC Set Carry Bit .376
SEI Set Interrupt Mask Bit. .377
STA Store Accumulator in Memory .378
STHX Store Index Register .379
STOP Enable IRQ Pin, Stop Processing 380
STX Store X (Index Register Low) in Memory381
SUB Subtract .382
SWI Software Interrupt. .383
TAP Transfer Accumulator to Processor Status Byte 384
TAX Transfer Accumulator to X (Index Register Low) 385
TPA Transfer Processor Status Byte to Accumulator 386
Reference Manual — Volume I HCS08 — Revision 1

16 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TST Test for Negative or Zero .387
TSX Transfer Stack Pointer to Index Register 388
TXA Transfer X (Index Register Low) to Accumulator389
TXS Transfer Index Register to Stack Pointer390
WAIT Enable Interrupts; Stop Processor391

Appendix B. Equate File Conventions

B.1 Introduction .393

B.2 Memory Map Definition. .394

B.3 Vector Definitions .395

B.4 Bits Defined in Two Ways. .395

B.5 Complete Equate File for MC9S08GB60397
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Table of Contents 17
For More Information On This Product,

 Go to: www.freescale.com

Table of Contents

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Reference Manual — Volume I HCS08 — Revision 1

18 Table of Contents MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

HCS08 Family Reference Manual

Section 1. General Information and Block Diagram

1.1 Introduction to the HCS08 Family of Microcontrollers

Motorola’s new HCS08 Family of microcontrollers, while containing new
instructions to implement rapid debugging and development, is still fully
compatible with all legacy code written for the M68HC08 Family. This
reference manual uses the MC9S08GB60, the first HCS08 Family
member, for describing applications and module behavior. When
working with another HCS08 Family MCU, refer to the device data sheet
for information specific to that MCU.

Each MCU device in the HCS08 Family consists of the HCS08 core plus
several memory and peripheral modules. The HCS08 core consists of:

• HCS08 CPU

• Background debug controller (BDC)

• Support for up to 32 interrupt/reset sources

• Chip-level address decode

The HCS08 CPU executes all HC08 instructions, as well as a
background (BGND) instruction and additional addressing modes on the
LDHX, STHX, and CPHX instructions to improve compiler efficiency.
The maximum clock speed for the CPU is 40 MHz (typically generated
from a crystal or internal clock generator). The CPU performs operations
at this 40 MHz rate and the maximum bus rate is 20 MHz (half the CPU
clock frequency). See Section 6. Central Processor Unit (CPU) for
more information.

The background debug controller (BDC) is built into the CPU core to
allow easier access to address generation circuits and CPU register
information. The BDC includes one hardware breakpoint. Other more
sophisticated breakpoints are normally included in the separate on-chip
debug module. The BDC allows access to internal register and memory
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA General Information and Block Diagram 19
For More Information On This Product,

 Go to: www.freescale.com

General Information and Block Diagram

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

locations via a single pin on the MCU. See Section 7. Development
Support for more information.

The core includes support for up to 32 interrupt or reset sources with
separate vectors. The peripheral modules provide local interrupt enable
circuitry and flag registers. See Section 5. Resets and Interrupts for
more information.

Although the exact memory map for each derivative is different, some
basic aspects are controlled by decode logic in the HCS08 core which is
not expected to change from one HCS08 derivative to another. The
registers for input/output (I/O) ports and most control and status
registers for peripheral modules are located starting at $0000 and
extending for 32, 64, 96, or 128 bytes. The space from the end of these
direct page registers to $107F is reserved for static RAM memory. A
space starting at $1800 is reserved for high-page registers. These are
status and control registers that do not need to be accessed as often as
the direct page registers. For example, system setup registers that are
written only once after reset may be located in this high-register space
to make more room in the direct addressing space for registers and
RAM. The remaining space from $1C00 through $FFFF is reserved for
FLASH or ROM memory. The last 64 locations ($FFC0–$FFFF) are
further classified as vector space (for up to 32 interrupt and reset
vectors).

1.2 Programmer’s Model for the HCS08 CPU

The programmer’s model for the HCS08 CPU shown in Figure 1-1
includes the same registers as the M68HC08. These include one 8-bit
accumulator (A), a 16-bit index register made up of separately
accessible upper (H) and lower (X) 8-bit halves, a 16-bit stack pointer
(SP), a 16-bit program counter (PC) and an 8-bit condition code register
(CCR) which includes five processor status flags (V, H, N, Z, and C) and
the global interrupt mask (I).
Reference Manual — Volume I HCS08 — Revision 1

20 General Information and Block Diagram MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

General Information and Block Diagram
Peripheral Modules

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1-1. CPU Registers

1.3 Peripheral Modules

The combination of peripheral modules included on a specific derivative
can vary widely, however there will always be memory for programs and
data, and there will always be a clock module and debug module. Some
of the peripheral modules in the HCS08 Family include:

• 4K–60K byte FLASH or ROM memory

• 128–4K byte Static RAM

• Asynchronous serial I/O (SCI)

• Synchronous serial I/O (SPI and IIC)

• Timer/PWM modules (TPM)

• Keyboard interrupts (KBI)

• Analog to digital converter (ADC)

• Clock generation modules

– Full-featured internal clock generator (ICG) capable of
operation with no external components (frequency
multiplication is accomplished with a frequency-locked loop
(FLL) that does not use any external filter components)

– Traditional Pierce oscillator with no FLL or PLL (OSC)

SP

PC

CONDITION CODE REGISTER

CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY (FROM BIT 3)
TWO’S COMPLEMENT OVERFLOW

H X

0

0

0

7

15

15

7 0

ACCUMULATOR A

INDEX REGISTER (LOW)INDEX REGISTER (HIGH)

STACK POINTER

8 7

PROGRAM COUNTER

16-BIT INDEX REGISTER H:X

CCRCV 1 1 H I N Z
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA General Information and Block Diagram 21
For More Information On This Product,

 Go to: www.freescale.com

General Information and Block Diagram

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Debug module with nine trigger modes and bus capture FIFO
(DBG)

Always refer to the appropriate data sheet for more specific information
about the features in each HCS08 derivative MCU.

1.4 Features of the MC9S08GB60

The first device in the HCS08 Family is the MC9S08GB60 which is
presented here as a representative example of a derivative HCS08
MCU.

1.4.1 Standard Features of the HCS08 Family

• 40-MHz HCS08 CPU (central processor unit)

• HC08 instruction set with added BGND instruction

• Background debugging system

• Breakpoint capability to allow single breakpoint setting during
in-circuit debugging (plus two more breakpoints in on-chip debug
module)

• Debug module containing two comparators and nine trigger
modes. Eight deep FIFO for storing change-of-flow addresses and
event-only data. Debug module supports both tag and force
breakpoints.

• Support for up to 32 interrupt/reset sources

• Power-saving modes: wait plus three stops

• System protection features:

– Optional computer operating properly (COP) reset

– Low-voltage detection with reset or interrupt

– Illegal opcode detection with reset

– Illegal address detection with reset (some devices don’t have
illegal addresses)
Reference Manual — Volume I HCS08 — Revision 1

22 General Information and Block Diagram MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

General Information and Block Diagram
Block Diagram of the MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

1.4.2 Features of MC9S08GB60 MCU

• 60K on-chip in-circuit programmable FLASH memory with block
protection and security options

• 4K on-chip random-access memory (RAM)

• 8-channel, 10-bit analog-to-digital converter (ATD)

• Two serial communications interface modules (SCI)

• Serial peripheral interface module (SPI)

• Clock source options include crystal, resonator, external clock or
internally generated clock with precision NVM trimming

• Inter-integrated circuit bus module to operate up to 100 kbps (IIC)

• One 3-channel and one 5-channel 16-bit timer/pulse width
modulator (TPM) modules with selectable input capture, output
compare, and edge-aligned PWM capability on each channel.
Each timer module may be configured for buffered, centered PWM
(CPWM) on all channels (TPMx).

• 8-pin keyboard interrupt module (KBI)

• 16 high-current pins (limited by package dissipation)

• Software selectable pullups on ports when used as input.
Selection is on an individual port bit basis. During output mode,
pullups are disengaged.

• Internal pullup on RESET and IRQ pin to reduce customer system
cost

• 56 general-purpose input/output (I/O) pins, depending on package
selection

• 64-pin low-profile quad flat package (LQFP)

1.5 Block Diagram of the MC9S08GB60

Figure 1-2 is an overall block diagram of the MC9S08GB60 MCU
showing all major peripheral systems and all device pins. The
MC9S08GB60 is a representative device in the HCS08 Family.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA General Information and Block Diagram 23
For More Information On This Product,

 Go to: www.freescale.com

General Information and Block Diagram

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1-2. MC9S08GB60 Block Diagram

PTD3/TPM2CH0
PTD4/TPM2CH1
PTD5/TPM2CH2
PTD6/TPM2CH3

PTC1/RxD2
PTC0/TxD2

VSS

VDD

PTE3/MISO
PTE2/SS

PTA7/KBIP7–

PTE0/TxD1
PTE1/RxD1

PTD2/TPM1CH2
PTD1/TPM1CH1
PTD0/TPM1CH0

PTC7
PTC6
PTC5
PTC4
PTC3/SCL
PTC2/SDA

PO
RT

 A
PO

RT
 C

PO
RT

 D
P

O
R

T
E

8-BIT KEYBOARD
INTERRUPT MODULE (KBI)

IIC MODULE (IIC)

SERIAL PERIPHERAL
 INTERFACE MODULE (SPI)

USER FLASH

USER RAM
(GB60 = 4096 BYTES)

DEBUG
MODULE (DBG)

(GB60 = 61,268 BYTES)

HCS08 CORE

CPU

BDC

INT

BKP

NOTES:
1. Port pins are software configurable with pullup device if input port.
2. Pin contains software configurable pullup/pulldown device if IRQ enabled (IRQPE = 1).
3. IRQ does not have a clamp diode to VDD. IRQ should not be driven above VDD.
4. Pin contains integrated pullup device.
5. High current drive
6. Pins PTA[7:4] contain software configurable pullup/pulldown device.

NOTE 1

NOTE 1

3-CHANNEL TIMER/PWM
MODULE (TPM1)

PTB7/AD7–

PO
RT

 B

PTE5/SPSCK
PTE4/MOSI

PTE6
PTE7

INTERFACE MODULE (SCI2)

HCS08 SYSTEM CONTROL

RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT

VOLTAGE
REGULATOR

RTI

SERIAL COMMUNICATIONS

COP

IRQ LVD

INTERNAL BUS

LOW-POWER OSCILLATOR

INTERNAL CLOCK
GENERATOR (ICG)

RESET

VSSAD

VDDAD

VREFH
VREFL

ANALOG-TO-DIGITAL
CONVERTER (ATD)

INTERFACE MODULE (SCI1)
SERIAL COMMUNICATIONS

5-CHANNEL TIMER/PWM
MODULE (TPM2)

P
O

R
T

F

PTF7–PTF0

NOTE 1

PTD7/TPM2CH4

8

PTA0/KBIP0

8

PTB0/AD0

8

PTG3
PTG2/EXTAL

PTG0/BKGD/MS
PTG1/XTAL

P
O

R
T

G

PTG4

PTG6
PTG7

PTG5

NOTE 4

NOTES 1, 5

(GB32 = 32,768 BYTES)

(GB32 = 2048 BYTES)

IRQ
NOTES 2, 3

10-BIT

NOTES 1, 6

NOTE 1

NOTES 1, 5
Reference Manual — Volume I HCS08 — Revision 1

24 General Information and Block Diagram MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

HCS08 Family Reference Manual

Section 2. Pins and Connections

2.1 Introduction

This section shows basic connections that are common to typical
application systems. Additional details are provided for power, oscillator,
reset, mode, and background interface connections. The example
system uses the MC9S08GB60, which is a representative device in the
HCS08 Family.

On-chip peripheral systems share pins so that when a peripheral system
is not using a pin or pins, those pins may be used as general-purpose
input/output (I/O) pins. When planning system connections, the designer
should consider the reset condition of these pins, as well as the
characteristics of the pins after software has configured them for their
application purpose.

For example, a serial TxD pin would have the characteristics of an
actively driven CMOS output after the SCI transmitter is enabled.
However, between reset and when application software enables the SCI
transmitter, the pin will have the characteristics of a high-impedance
input. Although floating CMOS inputs are generally considered
undesirable, the delay from reset until the pins are reconfigured for other
functions is so short that this is almost never a serious concern in most
applications. If this is determined to be a problem, the user may need to
connect an external pullup resistor to such pins.

2.2 Recommended System Connections

Figure 2-1 shows pin connections that are common to most typical
HCS08 application systems. This particular example shows the
MC9S08GB60 because it is a representative device in the HCS08
Family. Always refer to the data sheet for a specific derivative to find
detailed information about unusual pins.

A more detailed discussion of system connections follows.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Pins and Connections 25
For More Information On This Product,

 Go to: www.freescale.com

Pins and Connections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 2-1. Basic System Connections

VDD

VSS

XTAL

EXTAL

BKGD/MS

RESET

OPTIONAL
MANUAL
RESET

PORT
A

VDD
1

BACKGROUND HEADER

C1C2 X1

RF RS

CBY
0.1 µF

CBLK
10 µF

+
3 V

+

SYSTEM
POWER

I/O AND

PERIPHERAL

INTERFACE TO

SYSTEM

APPLICATION

PTA0/KBIP0

PTA1/KBIP1

PTA2/KBIP2

PTA3/KBIP3

PTA4/KBIP4

PTA5/KBIP5

PTA6/KBIP6

PTA7/KBIP7

VDD

PORT
B

PTB0/AD0

PTB1/AD1

PTB2/AD2

PTB3/AD3

PTB4/AD4

PTB5/AD5

PTB6/AD6

PTB7/AD7

PORT
C

PTC0/TxD2

PTC1/RxD2

PTC2/SDA

PTC3/SCL

PTC4

PTC5

PTC6

PTC7

PORT
D

PTD0/TPM1CH0

PTD1/TPM1CH1

PTD2/TPM1CH2

PTD3/TPM2CH0

PTD4/TPM2CH1

PTD5/TPM2CH2

PTD6/TPM2CH3

PTD7/TPM2CH4

PORT
E

PTE0/TxD1

PTE1/RxD1

PTE2/SS

PTE3/MISO

PTE4/MOSI

PTE5/SPSCK

PTE6

PTE7

PORT

G

PTG0/BKDG/MS

PTG1/XTAL

PTG2/EXTAL

PTG3

PTG4

PTG5

PTG6

PTG7

PORT

F

PTF0

PTF1

PTF2

PTF3

PTF4

PTF5

PTF6

PTF7

IRQ

ASYNCHRONOUS
INTERRUPT

INPUT

NOTES:
1. Not required if

using the internal
oscillator option.

2. These are the
same pins as
PTG1 and PTG2.

3. BKGD/MS is the
same pin as PTG0.

NOTE 1

NOTE 2

NOTE 2

NOTE 3

9S08GB60VDDAD

VSSAD

CBYAD
0.1 µF

VREFL

VREFH
Reference Manual — Volume I HCS08 — Revision 1

26 Pins and Connections MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Pins and Connections
Recommended System Connections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The following paragraphs discuss system connections in more detail.

2.2.1 Power

VDD and VSS are the primary power supply pins for the HCS08 MCU.
This voltage source supplies power to all I/O buffer circuitry and to an
internal voltage regulator. This internal voltage regulator provides
regulated 2.5-volt (nominal) power to the CPU and other internal circuitry
of the MCU.

Typically, application systems have two separate capacitors across the
power pins. In this case, there should be a bulk electrolytic capacitor,
such as a 10-µF tantalum capacitor, to provide bulk charge storage for
the overall system and a 0.1-µF ceramic bypass capacitor located as
close to the MCU power pins as practical to suppress high-frequency
noise.

Due to the sub-micron process used, internal logic in the HCS08 MCU
uses a lower power supply voltage than earlier MCUs. In addition to
allowing the smaller layout geometry, this also has the benefit of
lowering overall system power requirements. This implies that an
on-chip voltage regulator is used to step down the voltage from the
external MCU supply voltage to the internal logic voltage.

VDDAD and VSSAD are the analog power supply pins for the MCU. This
voltage source supplies power to the ATD. A 0.1-µF ceramic bypass
capacitor should be located as close to the MCU power pins as practical
to suppress high-frequency noise.

2.2.2 MC9S08GB60 Oscillator

This section describes the oscillator in the MC9S08GB60. Not all HCS08
derivatives use the same type of oscillator; some have no external
oscillator components. Always refer to the data sheet for a particular
HCS08 derivative for more details.

The MC9S08GB60 can be operated with no external crystal or oscillator.
When this occurs, the MCU uses an internally generated self-clocked
rate equivalent to about 8-MHz crystal rate. This frequency source is
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Pins and Connections 27
For More Information On This Product,

 Go to: www.freescale.com

Pins and Connections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

used during reset startup to avoid the need for a long crystal startup
delay.

The oscillator in the MC9S08GB60 is a traditional Pierce oscillator that
can accommodate a crystal or ceramic resonator in either of two
frequency ranges selected by the RANGE bit in the ICGC1 register. The
low range is 32 kHz to 100 kHz and the high range is 1 MHz to 16 MHz.

Rather than a crystal or ceramic resonator, an external oscillator with a
frequency up to 40 MHz can be connected to the EXTAL input pin and
the XTAL output pin must be left unconnected.

Refer to Figure 2-1 for the following discussion. RS (when used) and RF
should be low-inductance resistors such as carbon composition
resistors. Wire-wound resistors, and some metal film resistors, have too
much inductance. C1 and C2 normally should be high-quality ceramic
capacitors that are specifically designed for high-frequency applications.

RF is used to provide a bias path to keep the EXTAL input in its linear
range during crystal startup and its value is not generally critical. Typical
systems use 1 MΩ to 10 MΩ. Higher values are sensitive to humidity
and lower values reduce gain and (in extreme cases) could prevent
startup.

C1 and C2 are typically in the 5-pF to 25-pF range and are chosen to
match the requirements of a specific crystal or resonator. Be sure to take
into account printed circuit board (PCB) capacitance and MCU pin
capacitance when sizing C1 and C2. The crystal manufacturer typically
specifies a load capacitance which is the series combination of C1 and
C2 which are usually the same size. As a first-order approximation, use
10 pF as an estimate of combined pin and PCB capacitance for each
oscillator pin (EXTAL and XTAL).

Normally, RS is used for the 32-kHz to 100-kHz range. Use up to 10 kΩ
or consult the crystal manufacturer for recommendations. RS is not
normally needed for the 1-MHz to 16-MHz range and may be replaced
with a direct connection.
Reference Manual — Volume I HCS08 — Revision 1

28 Pins and Connections MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Pins and Connections
Recommended System Connections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.3 Reset

Not all HCS08 derivatives have a reset pin. When there is no reset pin,
you can cause a reset by cycling power to force power-on reset (POR),
using a background command to write to the BDFR bit in the SBDFR
register, or using software to force something like an illegal opcode
reset.

In the MC9S08GB60, the reset pin is a dedicated pin with a pullup device
built in. It has input hysteresis, a 10-mA output driver, and no output slew
rate control. Internal power-on reset and low-voltage reset circuitry
typically make external reset circuitry unnecessary. This pin is normally
connected to the standard 6-pin background debug connector so a
development system can directly reset the MCU system. If desired, a
manual external reset can be added by supplying a simple switch to
ground (pull reset pin low to force a reset).

Whenever any reset is initiated (whether from an external signal or from
an internal system), the reset pin is driven low for about 4.25 µs,
released, and sampled again about 4.75 µs later. If reset was caused by
an internal source such as low-voltage reset or watchdog timeout, the
circuitry expects the reset pin sample to return a logic 1. If the pin is still
low at this sample point, the reset is assumed to be from an external
source. The reset circuitry decodes the cause of reset and records it by
setting a corresponding bit in the reset status register (SRS).

Never connect any significant capacitance to the reset pin because that
would interfere with the circuit and sequence that detects the source of
reset. If an external capacitance prevents the reset pin from rising to a
valid logic 1 before the reset sample point, all resets will appear to be
external resets.

2.2.4 Background/Mode Select (BKGD/MS)

The background/mode select (BKGD/MS) pin includes an internal pullup
device, input hysteresis, a 2-mA output driver, and no output slew rate
control. If nothing is connected to this pin, the MCU will enter normal
operating mode at the rising edge of reset. If a debug system is
connected to the 6-pin standard background debug header, it can hold
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Pins and Connections 29
For More Information On This Product,

 Go to: www.freescale.com

Pins and Connections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BKGD/MS low during the rising edge of reset which forces the MCU to
active background mode.

The BKGD pin is used primarily for background debug controller (BDC)
communications using a custom protocol that uses 16 clock cycles of the
target MCU’s BDC clock per bit time. The target MCU’s BDC clock could
be as fast as the 20-MHz bus clock rate, so there should never be any
significant capacitance connected to the BKGD/MS pin that could
interfere with background serial communications.

Although the BKGD pin is a pseudo open-drain pin, the background
debug communication protocol provides brief, actively driven, high
speedup pulses to ensure fast rise times. Small capacitances from
cables and the absolute value of the internal pullup device play almost
no role in determining rise and fall times on the BKGD pin.

2.2.5 General-Purpose I/O and Peripheral Ports

Fifty-six pins on the MC9S08GB60 are shared among general-purpose
I/O and on-chip peripheral functions such as timers and serial I/O
systems. Immediately after reset, all 56 of these pins except
PTG0/BKGD/MS are configured as high-impedance general-purpose
inputs with internal pullup devices disabled. To avoid extra current drain
from floating input pins, the reset initialization routine in the application
program should either enable on-chip pullup devices or change the
direction of unused pins to outputs so the pins do not float.

For information about controlling these pins as general-purpose I/O pins
or, for information about how and when on-chip peripheral systems use
these pins, refer to the appropriate section from the data sheet for a
particular derivative.

When an on-chip peripheral system is controlling a pin, data direction
control bits still determine what is read from port data registers even
though the peripheral module controls the pin direction by controlling the
enable for the pin’s output buffer.

Pullup enable bits for each of the 56 I/O pins control whether on-chip
pullup or pulldown devices are enabled whenever the pin is acting as an
input even if it is being controlled by an on-chip peripheral module.
Reference Manual — Volume I HCS08 — Revision 1

30 Pins and Connections MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Pins and Connections
Recommended System Connections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Sometimes a pulldown resistor is substituted for the pullup resistor
based on control bits, as in the MC9S08GB60 keyboard interrupt pins
and IRQ pin. When the PTA7–PTA4 pins are controlled by the KBI
module in the MC9S08GB60 and are configured for
rising-edge/high-level sensitivity, the pullup enable control bits enable
pulldown devices rather than pullup devices. Similarly, when the IRQ
input in the MC9S08GB60 and is set to detect rising edges, the pullup
enable control bit enables a pulldown device rather than a pullup device.

HCS08 outputs have software controlled slew rate. This feature allows
you to effectively choose between two output transistor sizes. When the
smaller size is chosen, the output switching slew rate is slower which
can result in lower EMI noise. The larger size can be selected where
speed of heavy loads are more important.

Some HCS08 output pins have high-current drivers capable of sourcing
or sinking on the order of 10 mA each (subject to a total chip I/O current.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Pins and Connections 31
For More Information On This Product,

 Go to: www.freescale.com

Pins and Connections

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Reference Manual — Volume I HCS08 — Revision 1

32 Pins and Connections MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

HCS08 Family Reference Manual

Section 3. Modes of Operation

3.1 Introduction

This section discusses stop and wait power-saving modes, as well as
run mode versus the active background mode. Entry into each mode,
exit from each mode, and functionality while in each of the modes are
described.

An on-chip voltage regulator is a new feature of MCUs in Motorola’s
HCS08 Family. The primary function of this regulator is to produce an
internal 2.5-volt logic power supply from the MCU’s VDD power supply.
This regulator has standby, passthrough, and power-down modes,
which are used to place an 9S08GB/GT into stop1, stop2, and stop3
modes. These modes and the related functions and registers are
discussed in this section. Since registers and control bits may not be
identical for all HCS08 derivatives, always refer to the data sheet for a
specific derivative for more information.

3.2 Features

• Run mode for normal user operation

• Active background mode for code development

• Wait mode:

– CPU shuts down to conserve power

– System clocks running

– Full voltage regulation maintained

• Stop modes:

– System clocks stopped; voltage regulator in standby

– Stop1 — Full power down of internal circuits for maximum
power savings
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 33
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

– Stop2 — Partial power down of internal circuits, RAM contents
retained

– Stop3 — All internal circuits powered for fast recovery

– Separate periodic wakeup clock can stay running in stop2,
stop3

– Oscillator can be left on to reduce crystal startup time in stop3

3.3 Run Mode

This is the normal operating mode for the 9S08GB/GT. This mode is
selected when the BKGD/MS pin is high at the rising edge of reset. In
this mode, the CPU executes code from internal memory with execution
beginning at the address fetched from memory at $FFFE:$FFFF after
reset.

3.4 Active Background Mode

The active background mode functions are managed through the
background debug controller (BDC) in the HCS08 core. The BDC,
together with the on-chip debug module (DBG), provide the means for
analyzing MCU operation during software development.

Active background mode is entered in any of five ways:

• When the BKGD/MS pin is low at the rising edge of reset

• When a BACKGROUND command is received through the BKGD
pin

• When a BGND instruction is executed

• When encountering a BDC breakpoint

• When encountering a DBG breakpoint

Once in active background mode, the CPU is held in a suspended state
waiting for serial background commands rather than executing
instructions from the user’s application program.
Reference Manual — Volume I HCS08 — Revision 1

34 Modes of Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation
Active Background Mode

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Background commands are of two types:

• Non-intrusive commands, defined as commands that can be
issued while the user program is running. Non-intrusive
commands can be issued through the BKGD pin while the MCU is
in run mode; non-intrusive commands can also be executed when
the MCU is in the active background mode. Non-intrusive
commands include:

– Memory access commands

– Memory-access-with-status commands

– BDC register access commands

– The BACKGROUND command

• Active background commands, which can only be executed while
the MCU is in active background mode. Active background
commands include commands to:

– Read or write CPU registers

– Trace one user program instruction at a time

– Leave active background mode to return to the user’s
application program (GO)

The active background mode is used to program a bootloader or user
application program into the FLASH program memory before the MCU
is operated in run mode for the first time. When the 9S08GB/GT is
shipped from the Motorola factory, the FLASH program memory is
erased by default unless specifically noted so there is no program that
could be executed in run mode until the FLASH memory is initially
programmed. The active background mode can also be used to erase
and reprogram the FLASH memory after it has been previously
programmed.

Users may choose to use some other communication channel such as
the on-chip serial communications interface (SCI) to erase and
reprogram the FLASH memory. Typically, the user would program a
bootloader into the upper address locations of the FLASH. This
bootloader could allow execution of normal user application programs.
When some special sequence of characters is received through the SCI
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 35
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

or some special combination of I/O signals is detected, control can be
passed to the bootloader to allow FLASH erase and programming or
other debug operations.

The user decides the operation of the bootloader program because the
operation is not written and preprogrammed into the MCU by Motorola.
The user is free to write this program to do anything within the MCU’s
capability. The function of this bootloader or other application programs
is primarily limited by the imagination of the programmer.

For additional information about the active background mode, refer to
Section 7. Development Support.

3.5 Wait Mode

Wait mode is entered by executing a WAIT instruction. Upon execution
of the WAIT instruction, the CPU enters a low-power state in which it is
not clocked. The I bit in CCR is cleared when the CPU enters the wait
mode, enabling interrupts. When an interrupt request occurs, the CPU
exits the wait mode and resumes processing, beginning with the
stacking operations leading to the interrupt service routine. Peripheral
modules can be disabled to conserve power in wait mode but a
peripheral must be enabled to be the source of an interrupt that will wake
the MCU from wait.

Only the BACKGROUND command and memory-access-with-status
commands are available when the MCU is in wait mode. The
memory-access-with-status commands do not allow memory access,
but they report an error indicating that the MCU is in either stop or wait
mode. The BACKGROUND command can be used to wake the MCU
from wait mode and enter active background mode.
Reference Manual — Volume I HCS08 — Revision 1

36 Modes of Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation
Stop Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6 Stop Modes

One of three stop modes is entered upon execution of a STOP
instruction when the STOPE bit in the system option register is set. In all
stop modes, all internal clocks are halted. If the STOPE bit is not set
when the CPU executes a STOP instruction, the MCU will not enter any
of the stop modes and an illegal opcode reset is forced. The stop modes
are selected by setting the appropriate bits in the system power
management status and control 2 register (SPMSC2).

Table 3-1 summarizes the behavior of the MCU in each of the stop
modes.

Normally, the interrupt input paths for the IRQ and keyboard interrupt
inputs pass through clocked synchronization logic. Since there are no
clocks when the MCU is in stop mode, these synchronizers are
bypassed in stop mode so asynchronous inputs to IRQ for all stop
modes and keyboard interrupt inputs for stop3 can wake the MCU from
stop.

Table 3-1. Stop Mode Behavior

Mode
CPU, Digital
Peripherals,

FLASH
RAM

Clock
Module

ATD KBI Regulator I/O Pins RTI

Stop1 Off Off Off Disabled Off Off Reset Off

Stop2 Off Standby Off Disabled Off Standby
States
held

Optionally on

Stop3 Standby Standby
Standby

(1) Disabled Optionally on Standby
States
held

Optionally on

1. Crystal oscillator can be configured to run in stop3. Please see the ICG registers.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 37
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 3-2 summarizes the configuration and exit conditions for stop1,
stop2, and stop3.

3.6.1 Stop1 Mode

Stop1 mode provides the lowest possible standby power consumption
by causing the internal circuitry of the MCU to be powered down. To
select entry into stop1 mode, the PDC bit in SPMSC2 must be set and
the PPDC bit in SPMSC2 must be clear upon execution of a STOP
instruction.

When the MCU is in stop1 mode, all internal circuits that are powered
from the voltage regulator are turned off. The voltage regulator is in a
low-power standby state, as is the ATD.

Exit from stop1 is done by asserting either of the wake-up pins on the
MCU: RESET or IRQ. IRQ is always an active low input when the MCU
is in stop1, regardless of how it was configured before entering stop1.

Entering stop1 mode automatically asserts LVD. Stop1 cannot be exited
until VDD > VLVDH/L rising (VDD must rise above the LVI rearm voltage).

Upon wake-up from stop1 mode, the MCU will start up as from a
power-on reset (POR). The CPU will take the reset vector.

Table 3-2. Stop Mode Selection and Source of Exit

Mode

SPMC2
Configuration Source of

Exit
Condition Upon Exit(1)

1. POR is valid exit in all cases.

PDC PPDC

Stop1 1 0 IRQ or reset POR

Stop2 1 1
IRQ or reset,
RTI

POR (PPDF bit set in
SPMSCR)

Stop3 0
Don’t
care

IRQ or reset,
RTI, KBI

Either reset or normal
operation continues
from the interrupt vector
Reference Manual — Volume I HCS08 — Revision 1

38 Modes of Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation
Stop Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6.2 Stop2 Mode

Stop2 mode provides very low standby power consumption and
maintains the contents of RAM and the current state of all of the I/O pins.
To select entry into stop2, the user must execute a STOP instruction
while the PPDC and PDC bits in SPMSC2 are set.

Before entering stop2 mode, the user can save the contents of the I/O
port registers, as well as any other memory-mapped registers which they
want to restore after exit of stop2, to locations in RAM. Upon exit of
stop2, these values can be restored by user software before pin driver
latches are opened.

When the MCU is in stop2 mode, all internal circuits that are powered
from the voltage regulator are turned off, except for the RAM. The
voltage regulator is in a low-power standby state, as is the ATD. Upon
entry into stop2, the states of the I/O pins are latched. The states are
held while in stop2 mode and after exiting stop2 mode until a logic 1 is
written to PPDACK in SPMSC2.

Exit from stop2 is done by asserting either of the wake-up pins: RESET
or IRQ, or by an RTI interrupt. IRQ is always an active low input when
the MCU is in stop2, regardless of how it was configured before entering
stop2. When the RTI is used to cause a wakeup event, a separate
self-clocked source (≈1 kHz) for the real-time interrupt allows a wakeup
from stop2 or stop3 mode with no external components. When
RTIS2:RTIS1:RTIS0 = 0:0:0, the real-time interrupt function and this
1-kHz source are disabled. Power consumption is lower when the 1-kHz
source is disabled.

Upon wake-up from stop2 mode, the MCU will start up as from a
power-on reset (POR) except pin states remain latched. The CPU will
take the reset vector. The system and all peripherals will be in their
default reset states and must be initialized.

After waking up from stop2, the PPDF bit in SPMSC2 is set. This flag
may be used to direct user code to go to stop2 recovery routine. PPDF
remains set and the I/O pin states remain latched until a logic 1 is written
to PPDACK in SPMSC2.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 39
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

To maintain I/O state for pins that were configured as general-purpose
I/O, the user must restore the contents of the I/O port registers, which
have been saved in RAM, to the port registers before writing to the
PPDACK bit. If the port registers are not restored from RAM before
writing to PPDACK, then the register bits will assume their reset states
when the I/O pin latches are opened and the I/O pins will switch to their
reset states.

For pins that were configured as peripheral I/O, the user must
reconfigure the peripheral module that interfaces to the pin before writing
to the PPDACK bit. If the peripheral module is not enabled before writing
to PPDACK, the pins will be controlled by their associated port control
registers when the I/O latches are opened.

3.6.3 Stop3 Mode

Upon entering stop3 mode, all of the clocks in the MCU, including the
oscillator itself, are halted. The clock module (ICG on the
MC9S08GB/GT) enters its standby state, as does the voltage regulator
and the ATD. The states of all of the internal registers and logic, as well
as the RAM content, are maintained. The I/O pin states are not latched
at the pin as in stop2. Instead they are maintained by virtue of the states
of the internal logic driving the pins being maintained.

Exit from stop3 is done by asserting RESET, an asynchronous interrupt
pin, or through the real-time interrupt. The asynchronous interrupt pins
are the IRQ or KBI pins.

If stop3 is exited by means of the RESET pin, then the MCU will be reset
and operation will resume after taking the reset vector. Exit by means of
an asynchronous interrupt or the real-time interrupt will result in the MCU
taking the appropriate interrupt vector.

A separate self-clocked source (≈1 kHz) for the real-time interrupt allows
a wakeup from stop2 or stop3 mode with no external components. When
RTIS2:RTIS1:RTIS0 = 0:0:0, the real-time interrupt function and this
1-kHz source are disabled. Power consumption is lower when the 1-kHz
source is disabled, but in that case the real-time interrupt cannot wake
the MCU from stop.
Reference Manual — Volume I HCS08 — Revision 1

40 Modes of Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation
Stop Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6.4 Active BDM Enabled in Stop Mode

Entry into the active background mode from run mode is enabled if the
ENBDM bit in BDCSCR is set. This register is described in the
Section 7. Development Support section of this reference manual. If
ENBDM is set when the CPU executes a STOP instruction, the system
clocks to the background debug logic remain active when the MCU
enters stop mode so background debug communication is still possible.
In addition, the voltage regulator does not enter its low-power standby
state but maintains full internal regulation. If the user attempts to enter
either stop1 or stop2 with ENBDM set, the MCU will instead enter stop3.

Most background commands are not available in stop mode. The
memory-access-with-status commands do not allow memory access,
but they report an error indicating that the MCU is in either stop or wait
mode. The BACKGROUND command can be used to wake the MCU
from stop and enter active background mode if the ENBDM bit is set.
Once in background debug mode, all background commands are
available. The table below summarizes the behavior of the MCU in stop
when entry into the background debug mode is enabled.

3.6.5 OSCSTEN Bit Set

When the oscillator is enabled in stop mode (OSCSTEN = 1), the
individual clock generators are enabled but the clock feed to the rest of
the MCU is turned off. This option is provided to avoid long oscillator
startup times if necessary.

Table 3-3. BDM Enabled Stop Mode Behavior

Mode PDC PPDC
CPU, Digital
Peripherals,

FLASH
RAM

Clock
Module

ATD Regulator I/O Pins RTI

Stop3
Don’t
care

Don’t
care

Standby Standby Active Disabled Active
States
held

Optionally on
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 41
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.6.6 LVD Enabled in Stop Mode

The LVD system is capable of generating either an interrupt or a reset
when the supply voltage drops below the LVD voltage. If the LVD is
enabled in stop by setting the LVDE and the LVDSE bits in SPMSC1
when the CPU executes a STOP instruction, then the voltage regulator
remains active during stop mode. If the user attempts to enter either
stop1 or stop2 with the LVD enabled for stop (LVDSE = 1), the MCU will
instead enter stop3. The table below summarizes the behavior of the
MCU in stop when the LVD is enabled.

3.6.7 On-Chip Peripheral Modules in Stop Modes

When the MCU enters any stop mode, system clocks to the internal
peripheral modules are stopped. Even in the exception case
(ENBDM = 1), where clocks are kept alive to the background debug
logic, clocks to the peripheral systems are halted to reduce power
consumption. Refer to 3.6.1 Stop1 Mode, 3.6.2 Stop2 Mode, and
3.6.3 Stop3 Mode for specific information on system behavior in stop
modes. The information provided here applies to the MC9S08GB60.
Consult the device-specific data sheet for information about another
MCU.

I/O Pins

• All I/O pin states remain unchanged when the MCU enters stop3
mode.

• If the MCU is configured to go into stop2 mode, all I/O pins states
are latched before entering stop.

• If the MCU is configured to go into stop1 mode, all I/O pins are
forced to their default reset state upon entry into stop.

Table 3-4. LVD Enabled Stop Mode Behavior

Mode PDC PPDC
CPU, Digital
Peripherals,

FLASH
RAM

Clock
Module

ATD Regulator I/O Pins RTI

Stop3
Don’t
care

Don’t
care

Standby Standby Standby Disabled Active
States
held

Optionally on
Reference Manual — Volume I HCS08 — Revision 1

42 Modes of Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation
Stop Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Memory

The contents of the FLASH memory are non-volatile and are preserved
in any of the stop modes.

• All RAM and register contents are preserved while the MCU is in
stop3 mode.

• All registers will be reset upon wake-up from stop2, but the
contents of RAM are preserved and pin states remain latched until
the PPDACK bit is written. The user may save any
memory-mapped register data into RAM before entering stop2
and restore the data upon exit from stop2.

• All registers will be reset upon wake-up from stop1 and the
contents of RAM are not preserved. The MCU must be initialized
as upon reset.

ICG — In stop3 mode, the ICG enters its low-power standby state. Either
the oscillator or the internal reference may be kept running when the ICG
is in standby by setting the appropriate control bit (OSCSTEN). In both
stop2 and stop1 modes, the ICG is turned off. Neither the oscillator nor
the internal reference can be kept running in stop2 or stop1, even if
enabled within the ICG module. Upon exit from stop1 or stop2, the ICG
must be initialized as if from a POR. The digitally controlled oscillator
(DCO) in the ICG preserves previous frequency settings, allowing fast
frequency lock when recovering from stop3 mode.

CPU — On entry to stop mode, the CPU clocks are stopped and CPU
operation is halted. If the voltage regulator was not configured to go into
power-down mode and an interrupt wakes the CPU from stop, CPU
clocks are restored and the CPU resumes processing with the stacking
operation leading to the interrupt service routine. When an RTI
instruction is executed to return from this interrupt, the return address
takes the CPU back to the instruction that immediately follows the STOP
instruction. If the voltage regulator was powered down or a reset was
used to wake the MCU from stop mode, processing resumes by fetching
the reset vector.

TPM — When the MCU enters stop mode, the clock to the TPM1 and
TPM2 modules stop. The modules halt operation. If the MCU is
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 43
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

configured to go into stop2 or stop1 mode, the TPM modules will be
reset upon wake-up from stop and must be reinitialized.

ATD — When the MCU enters stop mode, the ATD will enter a
low-power standby state. No conversion operation will occur while in
stop. If the MCU is configured to go into stop2 or stop1 mode, the ATD
will be reset upon wake-up from stop and must be reinitialized.

KBI — During stop3, the KBI pins that are enabled continue to function
as interrupt sources that are capable of waking the MCU from stop3. The
KBI is disabled in stop1 and stop2 and must be reinitialized after waking
up from either of these modes.

SCI — Take precautions to avoid going into stop mode while SCI
communications are in progress. Since clocks are stopped, any serial
character that was being received or sent will be stopped, causing the
communication to fail. No SCI characters can be received while the MCU
is stopped. When the MCU enters stop mode, the clocks to the SCI1 and
SCI2 modules stop. The modules halt operation. If the MCU is
configured to go into stop2 or stop1 mode, the SCI modules will be reset
upon wake-up from stop and must be reinitialized.

SPI — It would be unusual to go into stop mode while SPI
communications are in progress. Since clocks are stopped, any serial
transfer that was in progress will be stopped. Since the SPI is a
synchronous serial communication interface, there is no lower limit on
the communication speed. Although it would be unusual, a transfer that
was in progress when the MCU went into stop3 can resume after stop.
No SPI transfers can be completed while the MCU is stopped. When the
MCU enters stop mode, the clocks to the SPI module stop. The module
halts operation. If the MCU is configured to go into stop2 or stop1 mode,
the SPI module will be reset upon wake-up from stop and must be
reinitialized.

IIC — When the MCU enters stop mode, the clocks to the IIC module
stop. The module halts operation. If the MCU is configured to go into
stop2 or stop1 mode, the IIC module will be reset upon wake-up from
stop and must be reinitialized.
Reference Manual — Volume I HCS08 — Revision 1

44 Modes of Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation
Stop Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Voltage Regulator — The voltage regulator enters a low-power standby
state when the MCU enters any of the stop modes unless the LVD is
enabled in stop mode or BDM is enabled.

3.6.8 System Options Register (SOPT)

This register may be read at any time. Bits 3 and 2 are unimplemented
and always read 0. This is a write-once register so only the first write
after reset is honored. Any subsequent attempt to write to SOPT
(intentionally or unintentionally) is ignored to avoid accidental changes
to these sensitive settings. SOPT should be written during the user’s
reset initialization program to set the desired controls even if the desired
settings are the same as the reset settings.

Figure 3-1. System Options Register (SOPT)

COPE — COP Watchdog Enable

This write-once bit defaults to 1 after reset. This bit does not relate
directly to modes of operation, but is shown here because some bits
in this register can be written only once after reset.

1 = COP watchdog timer enabled (force reset on timeout).
0 = COP watchdog timer disabled.

COPT — COP Watchdog Timeout

This write-once bit defaults to 1 after reset. This bit does not relate
directly to modes of operation, but is shown here because some bits
in this register can be written only once after reset.

1 = Long timeout period selected (218 cycles of BUSCLK).
0 = Short timeout period selected (213 cycles of BUSCLK).

Bit 7 6 5 4 3 2 1 Bit 0

Read:
COPE(1) COPT(1) STOPE(1)

0 0
BKGDPE

Write:

Reset: 1 1 0 1 0 0 1 1

= Unimplemented or Reserved

1. This bit can be written only one time after reset. Additional writes are ignored.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 45
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STOPE — Stop Mode Enable

This write-once bit defaults to 0 after reset, which disables stop mode.
If stop mode is disabled and a user program attempts to execute a
STOP instruction, an illegal opcode reset is forced.

1 = Stop mode enabled.
0 = Stop mode disabled.

BKGDPE — Background Debug Mode Pin Enable

The BKGDPE bit enables the PTD0/BKGD/MS pin to function as
BKGD/MS. When the bit is clear, the pin will function as PTD0, which
is an output only general purpose I/O. This pin always defaults to
BKGD/MS function after any reset.

1 = BKGD pin enabled.
0 = BKGD pin disabled.

3.6.9 System Power Management Status and Control 1 Register (SPMSC1)

Figure 3-2. System Power Management Status and Control 1 Register (SPMSC1)

Bit 7 6 5 4 3 2 1 Bit 0

Read: LVDF 0
LVDIE LVDRE(1) LVDSE(1) LVDE(1)

0 0

Write: LVDACK

Reset: 0 0 0 1 1 1 0 0

= Unimplemented or Reserved

1. This bit can be written only one time after reset. Additional writes are ignored.
Reference Manual — Volume I HCS08 — Revision 1

46 Modes of Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation
Stop Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LVDF — Low-Voltage Detect Flag

Provided LVDE = 1, this read-only status bit indicates a low-voltage
detect event. This bit does not relate directly to modes of operation,
but is shown here because some bits in this register can be written
only once after reset.

LVDACK — Low-Voltage Detect Acknowledge

This write-only bit is used to acknowledge low voltage detection
events (write 1 to clear LVDF). Reads always return logic 0. This bit
does not relate directly to modes of operation, but is shown here
because some bits in this register can be written only once after reset.

LVDIE — Low-Voltage Detect Interrupt Enable

This read/write bit enables hardware interrupt requests for LVDF. This
bit does not relate directly to modes of operation, but is shown here
because some bits in this register can be written only once after reset.

1 = Request a hardware interrupt when LVDF = 1.
0 = Hardware interrupt disabled (use polling).

LVDRE — Low-Voltage Detect Reset Enable

This read/write bit enables LVDF events to generate a hardware reset
(provided LVDE = 1). This bit does not relate directly to modes of
operation, but is shown here because some bits in this register can be
written only once after reset.

1 = Force an MCU reset when LVDF = 1.
0 = LVDF does not generate hardware resets.

LVDSE — Low-Voltage Detect Stop Enable

Provided LVDE = 1, this read/write bit determines whether the
low-voltage detect function operates when the MCU is in stop mode.
This bit does not relate directly to modes of operation, but is shown
here because some bits in this register can be written only once after
reset.

1 = Low-voltage detect enabled during stop mode.
0 = Low-voltage detect disabled during stop mode.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 47
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LVDE — Low-Voltage Detect Enable

This read/write bit enables low-voltage detect logic and qualifies the
operation of other bits in this register. This bit does not relate directly
to modes of operation, but is shown here because some bits in this
register can be written only once after reset.

1 = LVD logic enabled.
0 = LVD logic disabled.

3.6.10 System Power Management Status and Control 2 Register (SPMSC2)

This register is used to report the status of the low voltage warning
function, and to configure the stop mode behavior of the MCU.

Figure 3-3. System Power Management Status and Control 2 Register (SPMSC2)

LVWF — Low-Voltage Warning Flag

The LVWF bit indicates the low voltage warning status. This bit does
not relate directly to modes of operation, but is shown here because
some bits in this register can be written only once after reset.

1 = Low voltage warning is present or was present.
0 = Low voltage warning not present.

Bit 7 6 5 4 3 2 1 Bit 0

Read: LVWF 0
LVDV LVWV

PPDF 0
PDC PPDC

Write: LVWACK PPDACK

Power-on reset: 0(1) 0 0 0 0 0 0 0

LVD reset: 0(1) 0 U U 0 0 0 0

Any other reset: 0(1) 0 U U 0 0 0 0

= Unimplemented or Reserved U = Unaffected by reset

1. LVWF will be set in the case when VSupply transitions below the trip point or after reset and VSupply is already
below VLVW.
Reference Manual — Volume I HCS08 — Revision 1

48 Modes of Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation
Stop Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LVWACK — Low-Voltage Warning Acknowledge

The LVWF bit indicates the low voltage warning status. This bit does
not relate directly to modes of operation, but is shown here because
some bits in this register can be written only once after reset.

Writing a logic 1 to LVWACK clears LVWF to a logic 0 if a low voltage
warning is not present.

LVDV — Low-Voltage Detect Voltage Select

The LVDV bit selects the LVD trip point voltage (VLVD). This bit does
not relate directly to modes of operation, but is shown here because
some bits in this register can be written only once after reset.

1 = High trip point selected (for 3 V system).
0 = Low trip point selected (for 2 V system).

LVWV — Low-Voltage Warning Voltage Select

The LVWV bit selects the LVW trip point voltage (VLVW). This bit does
not relate directly to modes of operation, but is shown here because
some bits in this register can be written only once after reset.

1 = High trip point selected (for 3 V system).
0 = Low trip point selected (for 2 V system).

PPDF — Partial Power Down Flag

The PPDF bit indicates that the MCU has exited stop2 mode.
1 = Stop2 mode recovery.
0 = Not stop2 mode recovery.

PPDACK — Partial Power Down Acknowledge

Writing a logic 1 to PPDACK clears the PPDF bit.

PDC — Power Down Control

The write-once PDC bit controls entry into the power down (stop2 and
stop1) modes.

1 = Power down modes are enabled.
0 = Power down modes are disabled.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Modes of Operation 49
For More Information On This Product,

 Go to: www.freescale.com

Modes of Operation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PPDC — Partial Power Down Control

The write-once PPDC bit controls which power down mode, stop1 or
stop2, is selected.

1 = Stop2, partial power down, mode enabled if PDC set.
0 = Stop1, full power down, mode enabled if PDC set.

Table 3-5. Stop Mode Selection and Source of Exit

Mode

SPMC2
Configuration Source of

Exit
Condition Upon Exit

PDC PPDC

Stop1 1 0 IRQ or reset POR

Stop2 1 1
IRQ or reset,
RTI

POR (PPDF bit set in
SPMSCR)

Stop3 0
Don’t
care

IRQ or reset,
RTI, KBI

If reset is used, then
POR; else, normal
operation continues
from the interrupt vector
Reference Manual — Volume I HCS08 — Revision 1

50 Modes of Operation MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

HCS08 Family Reference Manual

Section 4. On-Chip Memory

4.1 Introduction

This section shows the overall 64-Kbyte memory map and then explains
each major memory block in greater detail.

• Direct-page registers, high-page registers, and nonvolatile
registers are shown in tables which provide the register names,
absolute addresses, and the arrangement of control and status
bits within the registers.

• The RAM description includes information about initialization of
the system stack pointer.

• The FLASH section explains programming and erase operations
and block protection.

• The security section explains how internal FLASH and RAM
contents can be protected against unauthorized access.

• The register descriptions explain the control and status bits
associated with the FLASH memory module.

4.2 HCS08 Core-Defined Memory Map

In the HCS08 architecture, the core defines the address decode for six
major blocks within the 64-Kbyte memory space. The on-chip memory
modules use these block decode signals as module selects. The base
address for each peripheral module is determined by additional decode
logic in a system integration module which defines a block of addresses
for each peripheral. The peripheral then uses this module select and
additional low-order address lines to develop the select signals for each
register within the module.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 51
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.1 HCS08 Memory Map

The five major memory spaces that are defined by the core are shown
in Table 4-1. Refer to the data sheet for a particular derivative for exact
information about the size and boundaries of each of these blocks.
4.2.2 MC9S08GB60 Memory Map shows the memory map for the
MC9S08GB60 as a representative example of an HCS08 MCU memory
map.

Direct-page registers include the I/O port registers and most peripheral
control and status registers. Locating these registers in direct address
space ($0000–$00xx) allows bit manipulation instructions to be used to
set, clear, or test any bit in these registers with the BSET, BCLR,
BRSET, and BRCLR instructions. Using the direct addressing mode
versions of other instructions to access these registers also saves
program space and execution time compared to the more general
extended addressing mode instructions.

The RAM memory block starts immediately after the end of the
direct-page register block and extends to higher addresses. For example
in the MC9S08GB60, the direct-page registers are located at
$0000–$007F and the 4096-byte RAM is located at $0080–$107F. This
places a portion of the RAM in the direct addressing space so that
frequently used program variables can take advantage of code size and
execution time savings offered by the direct addressing mode version of
many CPU instructions. Also, since the bit manipulation instruction only
support direct addressing mode, this allows bit-addressable RAM
variables.

Table 4-1. Core-Defined Memory Spaces

Name Address Comment

Direct-page registers $0000–$00xx Up to 128 bytes

RAM $00xx–
Includes some direct
page locations

High-page registers $1800–$18yy System configuration

FLASH Memory –$FFFF Up to 60 Kbytes

Vectors $FFC0–$FFFF Up to 32 x 2 bytes
Reference Manual — Volume I HCS08 — Revision 1

52 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
HCS08 Core-Defined Memory Map

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

High-page registers are located at $1800 to $182B. These are registers
that are used less often than the direct-page registers so they are not
located in the more valuable direct address space. This space includes
a few system configuration registers such as the COP watchdog and
low-voltage detect setup controls, the debug module registers, and the
FLASH module registers.

A few of the registers in the high-page register area should always be
located at the same addresses in all HCS08 derivatives. The SBDFR
register at $1801 includes the BDFR control bit which allows a background
debug host to reset the MCU by way of a serial command. There is also a
device identification number in the SDIDH:SDIDL register pair at $1806
and $1807. These registers allow a host debug system to determine the
type of HCS08 and the mask set revision number. This information allows
the debug host to be aware of memory types and sizes, register names,
bit names, and addresses in the target MCU.

FLASH memory fills the 64-Kbyte memory map to $FFFF. The starting
address of this block depends on how much FLASH memory is included
in the MCU. For example if there is 16 Kbytes of FLASH, it will be located
at $C000–$FFFF. If the FLASH memory block overlaps the high-page
register space, the register block has priority so the FLASH locations at
the conflicting addresses are not accessible. This only occurs when
there is more than 57 Kbytes of FLASH.

The vector space is part of the FLASH memory at $FFC0–$FFFF but it
is separately decoded so that other HCS08 modules can recognize
when an interrupt vector is being fetched.

Specific HCS08 derivatives have other address areas such as a block of
nonvolatile registers and illegal address blocks. These areas are
decoded in a system integration module rather than in the core.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 53
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.2.2 MC9S08GB60 Memory Map

This section describes the memory map of the MC9S08GB60. The data
sheet for each HCS08 device provides similar information explaining the
detailed memory map for that HCS08 derivative.

As shown in Figure 4-1, on-chip memory in the MC9S08GB60 consists
of RAM, FLASH program memory, plus I/O and control/status registers.
The registers are divided into three groups:

• Direct-page registers ($0000 through $007F)

• High-page registers ($1800 through $182B)

• Nonvolatile registers ($FFB0 through $FFBF)

Reset and interrupt vectors are at $FFCC through $FFFF. An illegal
address detect feature on some derivatives forces the MCU to reset if
the CPU attempts to access data or execute an instruction from any
address that is identified as an illegal address in the 64-Kbyte memory
map.

Background debug mode (BDM) accesses do not trigger an illegal
access error. On the MC9S08GB60, all 64 Kbytes of memory space are
used for memory and registers so this device does not have any illegal
address locations.

Unused and reserved locations in register areas are not considered
designated illegal addresses and do not trigger illegal address resets.
Reference Manual — Volume I HCS08 — Revision 1

54 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
HCS08 Core-Defined Memory Map

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4-1. MC9S08GB60 Memory Map

4.2.3 Reset and Interrupt Vector Assignments

Table 4-2 shows address assignments for reset and interrupt vectors in
the MC9S08GB60. For names and address assignments for vectors in
other HCS08 derivatives, always refer to the appropriate data sheet. The
vector names shown in this table are the labels used in the equate file
provided by Motorola for the MC9S08GB60. For more details about
resets, interrupts, interrupt priority, and local interrupt mask controls,
refer to Section 5. Resets and Interrupts.

DIRECT PAGE REGISTERS

RAM

FLASH

HIGH PAGE REGISTERS

FLASH

4096 BYTES

1920 BYTES

59348 BYTES

$0000

$007F
$0080

$107F

$1800
$17FF

$182B
$182C

$FFFF

$1080

MC9S08GB60
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 55
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 4-2. Reset and Interrupt Vectors for the MC9S08GB60

Address
(High/Low) Vector Vector Name

$FFC0:FFC1

$FFCA:FFCB

 Unused Vector Space
 (available for user program)

$FFCC:FFCD RTI Vrti

$FFCE:FFCF IIC Viic

$FFD0:FFD1 ATD Conversion Vatd

$FFD2:FFD3 Keyboard Vkeyboard

$FFD4:FFD5 SCI2 Transmit Vsci2tx

$FFD6:FFD7 SCI2 Receive Vsci2rx

$FFD8:FFD9 SCI2 Error Vsci2err

$FFDA:FFDB SCI1 Transmit Vsci1tx

$FFDC:FFDD SCI1 Receive Vsci1rx

$FFDE:FFDF SCI1 Error Vsci1err

$FFE0:FFE1 SPI Vspi

$FFE2:FFE3 TPM2 Overflow Vtpm2ovf

$FFE4:FFE5 TPM2 Channel 4 Vtpm2ch4

$FFE6:FFE7 TPM2 Channel 3 Vtpm2ch3

$FFE8:FFE9 TPM2 Channel 2 Vtpm2ch2

$FFEA:FFEB TPM2 Channel 1 Vtpm2ch1

$FFEC:FFED TPM2 Channel 0 Vtpm2ch0

$FFEE:FFEF TPM1 Overflow Vtpm1ovf

$FFF0:FFF1 TPM1 Channel 2 Vtpm1ch2

$FFF2:FFF3 TPM1 Channel 1 Vtpm1ch1

$FFF4:FFF5 TPM1 Channel 0 Vtpm1ch0

$FFF6:FFF7 ICG Vicg

$FFF8:FFF9 Low Voltage Detect Vlvd

$FFFA:FFFB IRQ Virq

$FFFC:FFFD SWI Vswi

$FFFE:FFFF Reset Vreset
Reference Manual — Volume I HCS08 — Revision 1

56 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
Register Addresses and Bit Assignments

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.3 Register Addresses and Bit Assignments

The registers in the MC9S08GB60 are divided into these three groups:

• Direct-page registers are located in the first 128 locations in the
memory map, so they are accessible with efficient direct
addressing mode instructions.

• High-page registers are used much less often, so they are located
above $1800 in the memory map. This leaves more room in the
direct page for more frequently used registers and variables.

• The nonvolatile register area consists of a block of 16 locations in
the 60-Kbyte FLASH memory at $FFB0–$FFBF.

Nonvolatile register locations include:

– Two values which are loaded into working registers at reset

– An 8-byte backdoor comparison key which optionally allows a
user to gain controlled access to secure memory

– A reserved location for storage of a trim adjustment value that
could be determined during final testing at Motorola

Since the nonvolatile register locations are FLASH memory, they
must be erased and programmed like other FLASH memory
locations.

Direct-page registers can be accessed with efficient direct addressing
mode instructions. Bit manipulation instructions can be used to access
any bit in any direct-page register. Table 4-3 is a summary of all
user-accessible direct-page registers and control bits.

The registers in Table 4-3 can use the more efficient direct addressing
mode so, as a reminder, only the low order half of the addresses in the
first column are shown in bold. In Table 4-4 and Table 4-5 the whole
address in column one is shown in bold. In Table 4-3, Table 4-4, and
Table 4-5, the register names in column two are shown in bold to set
them apart from the bit names to the right. Cells that are not associated
with named bits are shaded. A shaded cell with a 0 indicates this unused
bit always reads as a 0. Shaded cells with dashes indicate unused or
reserved bit locations that could read as 1s or 0s.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 57
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 4-3. Direct-Page Register Summary (Sheet 1 of 3)

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0
$0000 PTAD PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0
$0001 PTAPE PTAPE7 PTAPE6 PTAPE5 PTAPE4 PTAPE3 PTAPE2 PTAPE1 PTAPE0
$0002 PTASE PTASE7 PTASE6 PTASE5 PTASE4 PTASE3 PTASE2 PTASE1 PTASE0
$0003 PTADD PTADD7 PTADD6 PTADD5 PTADD4 PTADD3 PTADD2 PTADD1 PTADD0
$0004 PTBD PTBD7 PTBD6 PTBD5 PTBD4 PTBD3 PTBD2 PTBD1 PTBD0
$0005 PTBPE PTBPE7 PTBPE6 PTBPE5 PTBPE4 PTBPE3 PTBPE2 PTBPE1 PTBPE0
$0006 PTBSE PTBSE7 PTBSE6 PTBSE5 PTBSE4 PTBSE3 PTBSE2 PTBSE1 PTBSE0
$0007 PTBDD PTBDD7 PTBDD6 PTBDD5 PTBDD4 PTBDD3 PTBDD2 PTBDD1 PTBDD0
$0008 PTCD PTCD7 PTCD6 PTCD5 PTCD4 PTCD3 PTCD2 PTCD1 PTCD0
$0009 PTCPE PTCPE7 PTCPE6 PTCPE5 PTCPE4 PTCPE3 PTCPE2 PTCPE1 PTCPE0
$000A PTCSE PTCSE7 PTCSE6 PTCSE5 PTCSE4 PTCSE3 PTCSE2 PTCSE1 PTCSE0
$000B PTCDD PTCDD7 PTCDD6 PTCDD5 PTCDD4 PTCDD3 PTCDD2 PTCDD1 PTCDD0
$000C PTDD PTDD7 PTDD6 PTDD5 PTDD4 PTDD3 PTDD2 PTDD1 PTDD0
$000D PTDPE PTDPE7 PTDPE6 PTDPE5 PTDPE4 PTDPE3 PTDPE2 PTDPE1 PTDPE0
$000E PTDSE PTDSE7 PTDSE6 PTDSE5 PTDSE4 PTDSE3 PTDSE2 PTDSE1 PTDSE0
$000F PTDDD PTDDD7 PTDDD6 PTDDD5 PTDDD4 PTDDD3 PTDDD2 PTDDD1 PTDDD0
$0010 PTED PTED7 PTED6 PTED5 PTED4 PTED3 PTED2 PTED1 PTED0
$0011 PTEPE PTEPE7 PTEPE6 PTEPE5 PTEPE4 PTEPE3 PTEPE2 PTEPE1 PTEPE0
$0012 PTESE PTESE7 PTESE6 PTESE5 PTESE4 PTESE3 PTESE2 PTESE1 PTESE0
$0013 PTEDD PTEDD7 PTEDD6 PTEDD5 PTEDD4 PTEDD3 PTEDD2 PTEDD1 PTEDD0
$0014 IRQSC 0 0 IRQEDG IRQPE IRQF IRQACK IRQIE IRQMOD
$0015 Reserved — — — — — — — —
$0016 KBISC KBEDG7 KBEDG6 KBEDG5 KBEDG4 KBF KBACK KBIE KBIMOD
$0017 KBIPE KBIPE7 KBIPE6 KBIPE5 KBIPE4 KBIPE3 KBIPE2 KBIPE1 KBIPE0
$0018 SCI1BDH 0 0 0 SBR12 SBR11 SBR10 SBR9 SBR8
$0019 SCI1BDL SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
$001A SCI1C1 LOOPS SCISWAI RSRC M WAKE ILT PE PT
$001B SCI1C2 TIE TCIE RIE ILIE TE RE RWU SBK
$001C SCI1S1 TDRE TC RDRF IDLE OR NF FE PF
$001D SCI1S2 0 0 0 0 0 0 0 RAF
$001E SCI1C3 R8 T8 TXDIR 0 ORIE NEIE FEIE PEIE
$001F SCI1D Bit 7 6 5 4 3 2 1 Bit 0
$0020 SCI2BDH 0 0 0 SBR12 SBR11 SBR10 SBR9 SBR8
$0021 SCI2BDL SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
$0022 SCI2C1 LOOPS SCISWAI RSRC M WAKE ILT PE PT
$0023 SCI2C2 TIE TCIE RIE ILIE TE RE RWU SBK
$0024 SCI2S1 TDRE TC RDRF IDLE OR NF FE PF
$0025 SCI2S2 0 0 0 0 0 0 0 RAF
$0026 SCI2C3 R8 T8 TXDIR 0 ORIE NEIE FEIE PEIE
$0027 SCI2D Bit 7 6 5 4 3 2 1 Bit 0
Reference Manual — Volume I HCS08 — Revision 1

58 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
Register Addresses and Bit Assignments

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

$0028 SPIC1 SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
$0029 SPIC2 0 0 0 MODFEN BIDIROE 0 SPISWAI SPC0
$002A SPIBR 0 SPPR2 SPPR1 SPPR0 0 SPR2 SPR1 SPR0
$002B SPIS SPRF 0 SPTEF MODF 0 0 0 0
$002C Reserved 0 0 0 0 0 0 0 0
$002D SPID Bit 7 6 5 4 3 2 1 Bit 0
$002E Reserved 0 0 0 0 0 0 0 0
$002F Reserved 0 0 0 0 0 0 0 0
$0030 TPM1SC TOF TOIE CPWMS CLKSB CLKSA PS2 PS1 PS0
$0031 TPM1CNTH Bit 15 14 13 12 11 10 9 Bit 8
$0032 TPM1CNTL Bit 7 6 5 4 3 2 1 Bit 0
$0033 TPM1MODH Bit 15 14 13 12 11 10 9 Bit 8
$0034 TPM1MODL Bit 7 6 5 4 3 2 1 Bit 0
$0035 TPM1C0SC CH0F CH0IE MS0B MS0A ELS0B ELS0A 0 0
$0036 TPM1C0VH Bit 15 14 13 12 11 10 9 Bit 8
$0037 TPM1C0VL Bit 7 6 5 4 3 2 1 Bit 0
$0038 TPM1C1SC CH1F CH1IE MS1B MS1A ELS1B ELS1A 0 0
$0039 TPM1C1VH Bit 15 14 13 12 11 10 9 Bit 8
$003A TPM1C1VL Bit 7 6 5 4 3 2 1 Bit 0
$003B TPM1C2SC CH2F CH2IE MS2B MS2A ELS2B ELS2A 0 0
$003C TPM1C2VH Bit 15 14 13 12 11 10 9 Bit 8
$003D TPM1C2VL Bit 7 6 5 4 3 2 1 Bit 0
$003E–
$003F

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$0040 PTFD PTFD7 PTFD6 PTFD5 PTFD4 PTFD3 PTFD2 PTFD1 PTFD0
$0041 PTFPE PTFPE7 PTFPE6 PTFPE5 PTFPE4 PTFPE3 PTFPE2 PTFPE1 PTFPE0
$0042 PTFSE PTFSE7 PTFSE6 PTFSE5 PTFSE4 PTFSE3 PTFSE2 PTFSE1 PTFSE0
$0043 PTFDD PTFDD7 PTFDD6 PTFDD5 PTFDD4 PTFDD3 PTFDD2 PTFDD1 PTFDD0
$0044 PTGD PTGD7 PTGD6 PTGD5 PTGD4 PTGD3 PTGD2 PTGD1 PTGD0
$0045 PTGPE PTGPE7 PTGPE6 PTGPE5 PTGPE4 PTGPE3 PTGPE2 PTGPE1 PTGPE0
$0046 PTGSE PTGSE7 PTGSE6 PTGSE5 PTGSE4 PTGSE3 PTGSE2 PTGSE1 PTGSE0
$0047 PTGDD PTGDD7 PTGDD6 PTGDD5 PTGDD4 PTGDD3 PTGDD2 PTGDD1 PTGDD0
$0048 ICGC1 0 RANGE REFS CLKS OSCSTEN —* 0
$0049 ICGC2 LOLRE MFD LOCRE RFD
$004A ICGS1 CLKST REFST LOLS LOCK LOCS ERCS ICGIF
$004B ICGS2 0 0 0 0 0 0 0 DCOS
$004C ICGFLTU 0 0 0 0 FLT
$004D ICGFLTL FLT
$004E ICGTRM TRIM
$004F Reserved 0 0 0 0 0 0 0 0

* This bit is reserved for Motorola internal use only. Always write a 0 to this bit.

Table 4-3. Direct-Page Register Summary (Sheet 2 of 3)

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 59
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

$0050 ATDC ATDPU DJM RES8 SGN PRS
$0051 ATDSC CCF ATDIE ATDCO ATDCH
$0052 ATDRH BIT9 BIT 8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2
$0053 ATDRL BIT1 BIT0 0 0 0 0 0 0
$0054 ATDPE ATDPE7 ATDPE6 ATDPE5 ATDPE4 ATDPE3 ATDPE2 ATDPE1 ATDPE0
$0055–
$0057

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$0058 IICA ADDR 0
$0059 IICF MULT ICR
$005A IICC IICEN IICIE MST TX TXAK RSTA 0 0
$005B IICS TCF IAAS BUSY ARBL 0 SRW IICIF RXAK
$005C IICD DATA
$005D–
$005F

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$0060 TPM2SC TOF TOIE CPWMS CLKSB CLKSA PS2 PS1 PS0
$0061 TPM2CNTH Bit 15 14 13 12 11 10 9 Bit 8
$0062 TPM2CNTL Bit 7 6 5 4 3 2 1 Bit 0
$0063 TPM2MODH Bit 15 14 13 12 11 10 9 Bit 8
$0064 TPM2MODL Bit 7 6 5 4 3 2 1 Bit 0
$0065 TPM2C0SC CH0F CH0IE MS0B MS0A ELS0B ELS0A 0 0
$0066 TPM2C0VH Bit 15 14 13 12 11 10 9 Bit 8
$0067 TPM2C0VL Bit 7 6 5 4 3 2 1 Bit 0
$0068 TPM2C1SC CH1F CH1IE MS1B MS1A ELS1B ELS1A 0 0
$0069 TPM2C1VH Bit 15 14 13 12 11 10 9 Bit 8
$006A TPM2C1VL Bit 7 6 5 4 3 2 1 Bit 0
$006B TPM2C2SC CH2F CH2IE MS2B MS2A ELS2B ELS2A 0 0
$006C TPM2C2VH Bit 15 14 13 12 11 10 9 Bit 8
$006D TPM2C2VL Bit 7 6 5 4 3 2 1 Bit 0
$006E TPM2C3SC CH3F CH3IE MS3B MS3A ELS3B ELS3A 0 0
$006F TPM2C3VH Bit 15 14 13 12 11 10 9 Bit 8
$0070 TPM2C3VL Bit 7 6 5 4 3 2 1 Bit 0
$0071 TPM2C4SC CH4F CH4IE MS4B MS4A ELS4B ELS4A 0 0
$0072 TPM2C4VH Bit 15 14 13 12 11 10 9 Bit 8
$0073 TPM2C4VL Bit 7 6 5 4 3 2 1 Bit 0
$0074–
$007F

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

Table 4-3. Direct-Page Register Summary (Sheet 3 of 3)

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0
Reference Manual — Volume I HCS08 — Revision 1

60 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
Register Addresses and Bit Assignments

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

High-page registers, shown in Table 4-4, are accessed much less often
than other I/O and control registers so they have been located outside
the direct addressable memory space, starting at $1800.

Table 4-4. High-Page Register Summary

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0

$1800 SRS POR PIN COP ILOP 0 ICG LVD 0

$1801 SBDFR 0 0 0 0 0 0 0 BDFR

$1802 SOPT COPE COPT STOPE — 0 0 BKGDPE —

$1803–
$1805

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$1806 SDIDH REV3 REV2 REV1 REV0 ID11 ID10 ID9 ID8

$1807 SDIDL ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

$1808 SRTISC RTIF RTIACK RTICLKS RTIE 0 RTIS2 RTIS1 RTIS0

$1809 SPMSC1 LVDF LVDACK LVDIE LVDRE LVDSE LVDE 0 0

$180A SPMSC2 LVWF LVWACK LVDV LVWV PPDF PPDACK PDC PPDC

$180B–
$180F

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$1810 DBGCAH Bit 15 14 13 12 11 10 9 Bit 8

$1811 DBGCAL Bit 7 6 5 4 3 2 1 Bit 0

$1812 DBGCBH Bit 15 14 13 12 11 10 9 Bit 8

$1813 DBGCBL Bit 7 6 5 4 3 2 1 Bit 0

$1814 DBGFH Bit 15 14 13 12 11 10 9 Bit 8

$1815 DBGFL Bit 7 6 5 4 3 2 1 Bit 0

$1816 DBGC DBGEN ARM TAG BRKEN RWA RWAEN RWB RWBEN

$1817 DBGT TRGSEL BEGIN 0 0 TRG3 TRG2 TRG1 TRG0

$1818 DBGS AF BF ARMF 0 CNT3 CNT2 CNT1 CNT0

$1819–
$181F

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$1820 FCDIV DIVLD PRDIV8 DIV5 DIV4 DIV3 DIV2 DIV1 DIV0

$1821 FOPT KEYEN FNORED 0 0 0 0 SEC01 SEC00

$1822 Reserved — — — — — — — —

$1823 FCNFG 0 0 KEYACC 0 0 0 0 0

$1824 FPROT FPOPEN FPDIS FPS2 FPS1 FPS0 0 0 0

$1825 FSTAT FCBEF FCCF FPVIOL FACCERR 0 FBLANK 0 0

$1826 FCMD FCMD7 FCMD6 FCMD5 FCMD4 FCMD3 FCMD2 FCMD1 FCMD0

$1827–
$182B

Reserved
—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 61
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Nonvolatile FLASH registers, shown in Table 4-5, are located in the
FLASH memory and include two nonvolatile setup registers for the
FLASH memory module plus an 8-byte backdoor key which optionally
can be used to gain access to secure memory resources. During reset
events, the contents of the two locations in the nonvolatile register area
of the FLASH memory are transferred into corresponding working
registers in the high-page registers to control security and block
protection options.

Provided the key enable (KEYEN) bit is 1, the 8-byte comparison key
can be used to temporarily disengage memory security. This key
mechanism can be accessed only through user code running in secure
memory. (A security key cannot be entered directly through background
debug commands.) This security key can be disabled completely by
programming the KEYEN bit to 0. If the security key is disabled, the only
way to disengage security is by mass erasing the FLASH (normally
through the background debug interface) and verifying that FLASH is
blank. To avoid returning to secure mode after the next reset, program
the security bits (SEC01:SEC00) to the unsecured state (1:0). See
4.6 Security (MC9S08GB60) for more details about secure memory.

Table 4-5. Nonvolatile Register Summary

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0

$FFB0–
$FFB7

NVBACKKEY
8-Byte Comparison Key

$FFB8–
$FFBC

 Reserved —
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

$FFBD NVPROT FPOPEN FPDIS FPS2 FPS1 FPS0 0 0 0

$FFBE Reserved(1) — — — — — — — —

$FFBF NVOPT KEYEN FNORED 0 0 0 0 SEC01 SEC00

1. This location can be used to store a trim value for the ICG.
Reference Manual — Volume I HCS08 — Revision 1

62 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
RAM

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.4 RAM

The MC9S08GB60 includes 4096 bytes of static RAM located from
$0080 to $107F. The first 128 bytes of RAM ($0080–$00FF) can be
accessed using the more efficient direct addressing mode, and any
single bit in this area can be accessed with the bit manipulation
instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most
frequently accessed program variables in this area of RAM is preferred.

Provided the VDD supply voltage remains above the minimum RAM
retention voltage and stop1 mode is not entered, RAM locations retain
their contents. If stop1 mode is selected by setting the PDC bit and
clearing the PPDC bit in SPMSC2, when stop1 is entered, the internal
voltage regulator is turned off and voltage is disabled to internal circuitry,
including the RAM. Upon exit from stop1, RAM contents are uninitialized
and all other registers return to their reset state. (See Section 3. Modes
of Operation for more information about stop modes.)

For compatibility with older M68HC05 MCUs, the HCS08 resets the
stack pointer to $00FF. In the MC9S08GB60, it is usually best to
reinitialize the stack pointer to the top of the RAM ($107F) so the direct
page RAM ($0080–$00FF) can be used for frequently accessed RAM
variables and bit-addressable program variables. Include the following
2-instruction sequence in your reset initialization routine (where
RamLast is equated to $107F in the equate file provided by Motorola).

 LDHX #RamLast+1 ;point one past RAM
 TXS ;SP<-(H:X-1)

4.5 60-Kbyte FLASH

The 60-Kbyte FLASH memory is intended primarily for program storage.
In-circuit programming allows the operating program to be loaded into
the FLASH memory after final assembly of the application product. It is
possible to program the entire 60-Kbyte array through the single-wire
background debug interface in about three seconds. Because no special
voltages are needed for FLASH erase and programming operations,
in-application programming is also possible through the serial
communications interface (SCI) (RS232 interface) or some other
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 63
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

software-controlled communication path. For a more detailed discussion
of in-circuit and in-application programming, refer to 4.8 FLASH
Application Examples.

4.5.1 Features

Features of the FLASH memory include:

• FLASH — 61268 bytes (120 pages of 512 bytes each)

• Single power supply program and erase

• Command interface for fast program and erase operation

• Fast automated byte program, page or mass erase, and blank
check operations (about three seconds to program 60 Kbytes)

• Up to 100,000 program/erase cycles at typical temperature and
voltage

• Flexible block protection

• Security feature for FLASH and RAM

• Auto power-down for low-frequency read accesses

This FLASH memory module includes integrated program/erase voltage
generators and separate command processor state machines which are
capable of performing automated byte programming, page (512 bytes
FLASH) or mass erase, and blank check commands. Commands are
written to the command interface, and status flags report errors and
indicate when commands are complete.

Blocks of 512, 1K, 2K, 4K, 8K, 16K, or 32K bytes at the end of the
FLASH memory can be block protected. Another control bit allows for
block protection of the whole 60-Kbyte FLASH array (see 4.7.4 FLASH
Protection Register (FPROT and NVFPROT). Block protect settings
are programmed into a nonvolatile setup register (NVFPROT). A
security mechanism can be engaged to prevent unauthorized access to
the FLASH and RAM memory contents. An optional user-controlled
backdoor key mechanism can be used to allow controlled access to
secure memory contents for development purposes.
Reference Manual — Volume I HCS08 — Revision 1

64 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
60-Kbyte FLASH

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5.2 Program, Erase, and Blank Check Commands

Before any program or erase command can be accepted, the FLASH
clock divider register (FCDIV) must be written to set the internal clock for
the FLASH module to a frequency (fFCLK) between 150 kHz and
200 kHz (see 4.7.1 FLASH Clock Divider Register (FCDIV)). This
register can be written only once, so normally this write is done during
reset initialization. One period of the resulting clock (1/fFCLK) is used by
the command processor to time program and erase pulses. An integer
number of these timing pulses are used by the command processor to
complete a program or erase command.

Commands are written to the command interfaces of the FLASH to do
any of these:

• Program a byte in the FLASH array

• Erase a 512-byte page of FLASH memory

• Mass erase the whole 60-Kbyte FLASH array

• Check all bytes in the FLASH array for the erased state ($FF)

A strictly monitored procedure must be followed or the command will not
be accepted. This minimizes the possibility of any unintended change to
the FLASH memory contents. The command buffer empty flag (FCBEF)
indicates when the command buffer has room to write a new command.
The command complete flag (FCCF) indicates when all commands are
complete and no new command is waiting in the associated FLASH
command buffer. A command sequence must be completed by writing a
1 to FCBEF to register the command before starting any new command
for the FLASH memory.

Figure 4-2 demonstrates the procedure for issuing commands. Two
types of errors can arise as commands are issued:

• A protection violation error is indicated by the FPVIOL flag in
FSTAT if the command tries to erase or write to a FLASH location
that is block protected (see 4.7.4 FLASH Protection Register
(FPROT and NVFPROT)).

• Any other violation of the required sequence or other error
condition will set the access error (FACCERR) flag bit in the
FSTAT register. Refer to 4.5.4 Access Errors for a detailed list of
actions that cause access errors.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 65
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Assuming no protection violation or access errors arise, a command
sequence can be simplified to three basic steps. They are:

1. Write a data value to an address in the FLASH array. The address
and data information from this write is latched into the command
buffer and this write is a required first step in any command
sequence. For erase and blank check commands, the value of the
data is not important. For page erase commands, the address
may be any address in the 512-byte page of FLASH to be erased.
For mass erase and blank check commands, the address can be
any address in the 60-Kbyte FLASH memory.

2. Write the command code for the desired command to FCMD. The
five valid commands are blank check ($05), byte program ($20),
burst program ($25), page erase ($40), and mass erase ($41).
The command code is latched into the command buffer.

3. Write a 1 to the FCBEF bit in FSTAT to clear FCBEF and register
the command (including its address and data information).

A partial command sequence can be aborted manually by writing a 0 to
FCBEF any time after the write to the memory array and before writing
the 1 that clears FCBEF and registers the complete command. Aborting
a command in this way sets the FACCERR access error flag which must
be cleared before starting a new command.
Reference Manual — Volume I HCS08 — Revision 1

66 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
60-Kbyte FLASH

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 4-2. FLASH Command Flowchart

4.5.3 Command Timing and Burst Programming

This section explains the sequence and timing of nonvolatile memory
commands in greater detail. When more than one byte within a row is
programmed one after the other, it is called burst programming. Byte
programming takes slightly longer for the first byte in a row compared to
queued byte programming commands for subsequent bytes within the
same row.

1

0
FCBEF ?

START

WRITE TO FLASH
TO BUFFER ADDRESS AND DATA

WRITE COMMAND TO FCMD

NO

YES
FPVIOL OR

WRITE 1 TO FCBEF
TO REGISTER COMMAND

AND CLEAR FCBEF(1)

NO

YES
MORE COMMANDS ?

1

0
FCCF ?

ERROR EXIT

DONE

(1) Wait at least four bus cycles before
checking FCBEF or FCCF.

1

0
FACCERR ?

CLEAR ERROR

FACCERR ?
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 67
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5.3.1 Rows and FLASH Organization

The 60-Kbyte FLASH memory array is made up of 120 pages of
512 bytes each. Each page is made up of 8 rows of 64 bytes each,
beginning at address $1000. Address lines A5–A0 define an address
within a FLASH row, A8–A6 identify the row number, and A15–A9
identify the page number. Whole pages of 512 bytes are the smallest
block of FLASH that may be erased. The first 128 bytes ($1000–$107F)
of the first FLASH row are hidden behind the higher priority RAM located
at these same locations.

Rows are important because a burst program command takes less time
when the address is within the same row as the previous byte or burst
program command. To benefit from this reduced program time, the burst
programming command must be registered in the command buffer
before the previous byte programming operation in the same row is
completed (otherwise, the small extra overhead for a new byte
programming operation applies).

4.5.3.2 Program Command Timing Sequence

For this discussion, we assume the FCDIV setting results in a 5-µs
timing pulse to the command state machine. If the FCDIV setting and
system clock speed result in a different timing pulse period, all
programming time intervals will need to be adjusted accordingly.

A complete program command consists of seven timing intervals. They
are:

• Start — 0 to 5 µs, depending on synchronization between the
command and the 200-kHz internal nonvolatile memory clock.
When the command buffer is kept full, each command ends at an
edge of the 200-kHz clock. The new command needs to wait a full
period to synchronize to the clock so the start time can normally
be taken to be the full 5 µs.

• Nonvolatile setup — 5 µs

• Program setup — 10 µs

• Program byte — 20 µs
Reference Manual — Volume I HCS08 — Revision 1

68 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
60-Kbyte FLASH

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Program hold — 10 ns (negligible)

• Nonvolatile hold — 5 µs (minus the program hold time)

• Memory recover time — 5 µs

Programming more than one location in the same row (and as long as
the command buffer remains filled with a burst program command so
there is no gap between commands) is called burst programming, and
all steps except the byte programming time are skipped.

Table 4-6 shows program and erase times. System clock and control bit
settings determine the frequency of FCLK (fFCLK). The time for one cycle
of FCLK is tFcyc = 1/fFCLK. The times are shown as a number of cycles
of FCLK and as an absolute time for the case where tFcyc = 5 µs.

4.5.4 Access Errors

Any of the following specific actions will cause the access error flag
(FACCERR) in FSTAT to be set. In the case of an access error,
FACCERR must be cleared by writing a 1 to FACCERR in FSTAT before
starting a new command.

• Writing to a FLASH address before the internal FLASH clock
frequency has been set by writing to the FCDIV register

• Writing to an unimplemented FLASH location before writing to
FCMD (MC9S08GB60 has no unimplemented FLASH locations.)

• Writing to a FLASH address while FCBEF is not set (A new
command cannot be started until the command buffer is empty.)

Table 4-6. Program and Erase Times

Parameter Cycles of FCLK Time if FCLK = 200 kHz

Byte program 9 45 µs

Byte program (burst) 4 20 µs(1)

1. Excluding start/end overhead

Page erase 4000 20 ms

Mass erase 40,000 200 ms
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 69
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Writing a second time to a FLASH address before registering the
previous command (There is only one write to FLASH for every
command.)

• Writing a second time to FCMD before registering the previous
command (There is only one write to FCMD for every command.)

• Writing to any FLASH control register other than FCMD after
writing to a FLASH address

• Writing any command code other than the five allowed codes
($05, $20, $25, $40, or $41) to FCMD

• Writing to any FLASH control register other than FSTAT (to clear
FCBEF and register the command) after writing the command to
FCMD

• The MCU enters stop mode while a program or erase command is
in progress (The command is aborted.)

• Writing the byte program, burst program, or page erase command
code ($20, $25, or $40) with a background debug command while
the MCU is secured (The background debug controller can only do
blank check and mass erase commands when the MCU is
secure.)

• Writing 0 to FCBEF to cancel a partial command

4.5.5 Vector Redirection

Whenever any block protection is enabled, the reset and interrupt
vectors will be protected. Vector redirection allows users to modify
interrupt vector information without unprotecting bootloader and reset
vector space. Vector redirection is enabled by programming the
FNORED bit in the NVOPT register located at address $FFBF to zero.
For redirection to occur, at least some portion but not all of the FLASH
memory must be block protected by programming the NVPROT register
located at address $FFBD. All of the interrupt vectors (memory locations
$FFC0–$FFFD) are redirected, while the reset vector ($FFFE:FFFF) is
not.

For example, if 512 bytes of FLASH are protected, the protected address
region is from $FE00 through $FFFF. The interrupt vectors
Reference Manual — Volume I HCS08 — Revision 1

70 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
60-Kbyte FLASH

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

($FFC0–$FFFD) are redirected to the locations $FDC0–$FDFD. Now, if
an SPI interrupt is taken for instance, the values in the locations
$FDE0:FDE1 are used for the vector instead of the values in the
locations $FFE0:FFE1. This allows the user to reprogram the
unprotected portion of the FLASH with new program code including new
interrupt vector values while leaving the protected area, which includes
the default vector locations, unchanged.

4.5.6 FLASH Block Protection (MC9S08GB60)

Block protection prevents program or erase changes for FLASH memory
locations in a designated address range. Mass erase is disabled when
any block of FLASH is protected. The MC9S08GB60 allows a block of
memory at the end of FLASH and/or the entire 60 Kbytes of FLASH
memory to be block protected. A disable control bit and a 3-bit control
field allow you to set the size of this block to 512, 1K, 2K, 4K, 8K, 16K,
or 32K bytes. A separate control bit allows block protection of the whole
60-Kbyte FLASH memory array. All five of these control bits are located
in the FPROT register (see 4.7.4 FLASH Protection Register (FPROT
and NVFPROT)).

At reset, the high-page register (FPROT) is loaded with the contents of
the NVFPROT location which is in the nonvolatile register block of the
FLASH memory. The value in FPROT cannot be changed directly from
application software so a runaway program cannot alter the block
protection settings. If the last 512 bytes of FLASH which includes the
NVFPROT register is protected, the application program cannot alter the
block protection settings (intentionally or unintentionally). The FPROT
control bits can be written by background debug commands to allow a
way to erase a protected FLASH memory.

One use for block protection is to block protect an area of FLASH
memory for a bootloader program. Then this bootloader program can be
used to erase the rest of the FLASH memory and reprogram it. Since the
bootloader is protected, it remains intact even if MCU power is lost in the
middle of an erase and reprogram operation.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 71
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.6 Security (MC9S08GB60)

The MC9S08GB60 includes circuitry to prevent unauthorized access to
the contents of FLASH and RAM memory. When security is engaged,
FLASH and RAM are considered secure resources. Direct-page
registers, high-page registers, and the background debug controller are
considered unsecured resources. Programs executing within secure
memory have normal access to any MCU memory locations and
resources. Attempts to access a secure memory location with a program
executing from an unsecured memory space or through the background
debug interface are blocked (writes are ignored and reads return all 0s).

Security is engaged or disengaged based on the state of two nonvolatile
register bits (SEC01:SEC00) in the FOPT register. During reset, the
contents of the nonvolatile location NVFOPT are copied from FLASH
into the working FOPT register in high-page register space. A user
engages security by programming the NVFOPT location which can be
done at the same time the FLASH memory is programmed. The 1:0 state
disengages security while the other three combinations engage security.
Notice that the erased state (1:1) makes the MCU secure. During
development, whenever the FLASH is erased, it is good practice to
immediately program the SEC00 bit to 0 in NVFOPT so
SEC01:SEC00 = 1:0. This would allow the MCU to remain unsecured
after a subsequent reset.

The on-chip debug module cannot be enabled while the MCU is secure.
The separate background debug controller can still be used for
non-intrusive background memory access commands, but the MCU
cannot enter active background mode except by holding BKGD/MS low
at the rising edge of reset.

A user can choose to allow or disallow a security unlocking mechanism
through an 8-byte backdoor security key. If the nonvolatile KEYEN bit in
NVFOPT/FOPT is 0, the backdoor key is disabled and there is no way
to disengage security without completely erasing all FLASH locations. If
KEYEN is 1, a secure user program can temporarily disengage security
by:

1. Writing 1 to KEYACC in the FCNFG register. This makes the
FLASH module interpret writes to the backdoor comparison key
locations (NVBACKKEY through NVBACKKEY+7) as values to be
Reference Manual — Volume I HCS08 — Revision 1

72 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
Security (MC9S08GB60)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

compared against the key rather than as the first step in a FLASH
program or erase command.

2. Writing the user-entered key values to the NVBACKKEY through
NVBACKKEY+7 locations. These writes must be done in order
starting with the value for NVBACKKEY and ending with
NVBACKKEY+7. Normally, user software would get the key codes
from outside the MCU system through a communication interface
such as the SCI.

3. Writing 0 to KEYACC in the FCNFG register. If the 8-byte key that
was just written matches the key stored in the FLASH locations,
SEC01:SEC00 are automatically changed to 1:0 and security will
be disengaged until the next reset.

The security key can be written only from a secure memory, so it cannot
be entered through background commands without the cooperation of a
secure user program.

The backdoor comparison key (NVBACKKEY through NVBACKKEY+7)
is located in FLASH memory locations in the nonvolatile register space
so users can program these locations just as they would program any
other FLASH memory location. The nonvolatile registers are in the same
512-byte block of FLASH as the reset and interrupt vectors, so block
protecting that space also block protects the backdoor comparison key.
Block protects cannot be changed from user application programs, so if
the vector space is block protected, the backdoor security key
mechanism cannot permanently change the block protect, security
settings, or the backdoor key.

Security can always be disengaged through the background debug
interface by following these steps:

1. Disable any block protections by writing FPROT. FPROT can be
written only with background debug commands, not from
application software.

2. Mass erase FLASH, if necessary.

3. Blank check FLASH. Provided FLASH is completely erased,
security is disengaged until the next reset.

To avoid returning to secure mode after the next reset, program
NVFOPT so SEC01:SEC00 = 1:0.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 73
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.7 FLASH Registers and Control Bits (MC9S08GB60)

Although these registers and bits are representative of the FLASH
registers and control bits in any HCS08 derivative, always refer to the
data sheet for a specific HCS08 derivative when writing application
software. The FLASH module in the MC9S08GB60 has six 8-bit
registers in the high-page register space, two locations in the nonvolatile
register space in FLASH memory which are copied into two
corresponding high-page control registers at reset. There is also an
8-byte comparison key in FLASH memory. Refer to Table 4-4 and
Table 4-5 for the absolute address assignments for all FLASH registers.
This section refers to registers and control bits only by their names.
Normally, an equate or header file provided by Motorola is used to
translate these names into the appropriate absolute addresses.

4.7.1 FLASH Clock Divider Register (FCDIV)

Bit 7 of this register is a read-only status flag. Bits 6 through 0 may be
read at any time but can be written only one time. Before any erase or
programming operations are possible, write to this register to set the
frequency of the clock for the nonvolatile memory system within
acceptable limits.

DIVLD — Divisor Loaded Status Flag

When set, this read-only status flag indicates that the FCDIV register
has been written since reset. Reset clears this bit and the first write to
this register causes this bit to become set regardless of the data
written.

1 = FCDIV has been written since reset; erase and program
operations enabled for FLASH

0 = FCDIV has not been written since reset; erase and program
operations disabled for FLASH

Bit 7 6 5 4 3 2 1 Bit 0

Read: DIVLD
PRDIV8 DIV5 DIV4 DIV3 DIV2 DIV1 DIV0

Write:

Reset: 0 0 0 0 0 0 0 0
= Unimplemented or Reserved

Figure 4-3. FLASH Clock Divider Register (FCDIV)
Reference Manual — Volume I HCS08 — Revision 1

74 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
FLASH Registers and Control Bits (MC9S08GB60)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PRDIV8 — Prescale (Divide) FLASH Clock by 8
1 = Clock input to the FLASH clock divider is the bus rate clock

divided by 8
0 = Clock input to the FLASH clock divider is the bus rate clock

[DIV5:DIV0] — Divisor for FLASH Clock Divider

The FLASH clock divider divides the bus rate clock (or the bus rate
clock divided by 8 if PRDIV8 = 1) by the value in the 6-bit [DIV5:DIV0]
field plus one. The resulting frequency of the internal FLASH clock
must fall within the range of 200 kHz to 150 kHz for proper FLASH
operation. Program/Erase timing pulses are one cycle of this internal
FLASH clock which corresponds to a range of 5 µs to 6.7 µs. The
automated programming logic uses an integer number of these
pulses to complete an erase or program operation.

Equation 1: if PRDIV8 = 0, then fFCLK = fBus ÷ ([DIV5:DIV0] + 1)

Equation 2: if PRDIV8 = 1, then fFCLK = fBus ÷ (8 × ([DIV5:DIV0] + 1))

Table 4-7 shows the appropriate values for PRDIV8 and [DIV5:DIV0] for
selected bus frequencies.

Table 4-7. FLASH Clock Divider Settings

fBus
PRDIV8
(Binary)

[DIV5:DIV0]
(Decimal) fFCLK

Program/Erase Timing Pulse
(5 µs Min, 6.7 µs Max)

20 MHz 1 12 192.3 kHz 5.2 µs

10 MHz 0 49 200 kHz 5 µs

8 MHz 0 39 200 kHz 5 µs

4 MHz 0 19 200 kHz 5 µs

2 MHz 0 9 200 kHz 5 µs

1 MHz 0 4 200 kHz 5 µs

200 kHz 0 0 200 kHz 5 µs

150 kHz 0 0 150 kHz 6.7 µs
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 75
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.7.2 FLASH Options Register (FOPT and NVFOPT)

During reset, the contents of the nonvolatile location NVOPT are copied
from FLASH into FOPT. Bits 6 through 2 are not used and always read
0. This register may be read at any time, but writes have no meaning or
effect. To change the value in this register, erase and reprogram the
NVOPT location in FLASH memory as usual and then issue a new MCU
reset.

KEYEN — Backdoor Key Mechanism Enable

When this bit is 0, the backdoor key mechanism cannot be used to
disengage security. The backdoor key mechanism is accessible only
from user (secured) firmware. BDM commands cannot be used to
write key comparison values that would unlock the backdoor key. For
more detailed information about the backdoor key mechanism, refer
to 4.6 Security (MC9S08GB60).

1 = If user firmware writes an 8-byte value that matches the
nonvolatile backdoor key (NVBACKKEY through
NVBACKKEY+7 in that order), security is temporarily
disengaged until the next MCU reset.

0 = No backdoor key access allowed

FNORED — Vector Redirection Disable

When this bit is 1, then vector redirection is disabled.
1 = Vector redirection disabled.
0 = Vector redirection enabled.

SEC01:SEC00 — Security State Code

This 2-bit field determines the security state of the MCU as shown in
Table 4-8. When the MCU is secure, the contents of RAM and
FLASH memory cannot be accessed by instructions from any

Bit 7 6 5 4 3 2 1 Bit 0

Read: KEYEN FNORED 0 0 0 0 SEC01 SEC00

Write:

Reset: This register is loaded from nonvolatile location NVOPT during reset.

= Unimplemented or Reserved

Figure 4-4 FLASH Options Register (FOPT)
Reference Manual — Volume I HCS08 — Revision 1

76 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
FLASH Registers and Control Bits (MC9S08GB60)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

unsecured source including the background debug interface. For
more detailed information about security, refer to 4.6 Security
(MC9S08GB60).

SEC01:SEC00 changes to 1:0 after successful backdoor key entry or a
successful blank check of the FLASH memory.

4.7.3 FLASH Configuration Register (FCNFG)

Bit 5 may be read or written at any time. The remaining bits always read
0 and cannot be written.

KEYACC — Enable Writing of Access Key

This bit enables writing of the backdoor comparison key. For more
detailed information about the backdoor key mechanism, refer to
4.6 Security (MC9S08GB60).

1 = Writes to NVBACKKEY ($FFB0–$FFB7) are interpreted as
comparison key writes.

0 = Writes to $FFB–$FFB7 are interpreted as the start of a FLASH
programming or erase command.

Table 4-8. Security States

SEC01:SEC00 Description

0:0 secure

0:1 secure

1:0 unsecured

1:1 secure

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0
KEYACC

0 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-5. FLASH Configuration Register (FCNFG)
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 77
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.7.4 FLASH Protection Register (FPROT and NVFPROT)

During reset, the contents of the nonvolatile location NVFPROT is
copied from FLASH into FPROT. Bit 6 is not used and always reads 0.
This register may be read at any time, but user program writes have no
meaning or effect. Background debug commands can write to FPROT
at $1824.

Figure 4-6. FLASH Protection Register (FPROT)

FPOPEN — Open Unprotected FLASH for Program/Erase
1 = Any FLASH location, not otherwise block protected or secured,

may be erased or programmed.
0 = Whole FLASH is block protected (no program or erase

allowed).

FPDIS — FLASH Protection Disable
1 = No FLASH block is protected.
0 = FLASH block specified by FPS2:FPS1:FPS0 is block protected

(program and erase not allowed).

FPS2:FPS1:FPS0 — FLASH Protect Selects

When FPDIS = 0, this 3-bit field determines the size of a protected
block of FLASH locations at the high address end of the FLASH (see
Table 4-9). Protected FLASH locations cannot be erased or
programmed.

Bit 7 6 5 4 3 2 1 Bit 0

Read: FPOPEN FPDIS FPS2 FPS1 FPS0 0 0 0

Write: (1) (1) (1) (1) (1)

Reset: This register is loaded from nonvolatile location NVPROT during reset.

= Unimplemented or Reserved

1. Background commands can be used to change the contents of these bits in FPROT.
Reference Manual — Volume I HCS08 — Revision 1

78 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
FLASH Registers and Control Bits (MC9S08GB60)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.7.5 FLASH Status Register (FSTAT)

Bits 3, 1, and 0 always read 0 and writes have no meaning or effect. The
remaining five bits are status bits that can be read at any time. Writes to
these bits have special meanings that are discussed in the bit
descriptions.

Figure 4-7. FLASH Status Register (FSTAT)

FCBEF — FLASH Command Buffer Empty Flag

FLASH commands are buffered so a second command can be written
into the buffer while the command processor is executing another
command during a burst programming sequence. As soon as a
command is finished, the command processor can start on an
additional burst programming command if one is present in the buffer.

Table 4-9. High Address Protected Block

FPS2:FPS1:FPS0 Protected Address Range Protected Block Size Redirected Vectors(1)

0:0:0 $FE00–$FFFF 512 bytes $FDC0–$FDFD(2)

0:0:1 $FC00–$FFFF 1 Kbytes $FBC0–$FBFD

0:1:0 $F800–$FFFF 2 Kbytes $F7C0–$F7FD

0:1:1 $F000–$FFFF 4 Kbytes $EFC0–$EFFD

1:0:0 $E000–$FFFF 8 Kbytes $DFC0–$DFFD

1:0:1 $C000–$FFFF 16 Kbytes $BFC0–$BFFD

1:1:0 $8000–$FFFF 32 Kbytes $7FC0–$7FFD

1:1:1 $8000–$FFFF 32 Kbytes $7FC0–$7FFD

1. No redirection if FPOPEN = 0, or FNORED = 1.
2. Reset vector is not redirected.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
FCBEF

FCCF
FPVIOL FACCERR

0 FBLANK 0 0

Write:

Reset: 1 1 0 0 0 0 0 0

= Unimplemented or Reserved
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 79
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

FCBEF is set automatically when the command buffer can accept a
new command. A command is registered, and FCBEF is cleared, by
writing a 1 to the FCBEF bit. Writing 0 to FCBEF, after a write to the
FLASH but before the FCBEF clear that registers the command,
causes the partially entered command to be manually aborted and
clears the command buffer.

1 = A new command may be written to the command buffer.
0 = Command buffer is full (not ready for additional commands).

FCCF — FLASH Command Complete Flag

FCCF is set automatically when the command buffer is empty and no
command is being processed. FCCF is cleared automatically when a
new command is started (by writing 1 to FCBEF to register a
command). Writing to FCCF has no meaning or effect.

1 = All commands complete
0 = Command in progress

FPVIOL — Protection Violation Flag

FPVIOL is set automatically when FCBEF is cleared to register a
command that attempts to erase or program a location in a protected
block (the erroneous command is ignored). FPVIOL is cleared
automatically by writing a 1 to FPVIOL.

1 = An attempt was made to erase or program a protected location.
0 = No protection violation

FACCERR — Access Error Flag

FACCERR is set automatically when the proper command sequence
is not followed exactly (the erroneous command is ignored), if a
program or erase operation is attempted before the FCDIV register
has been initialized, or if the MCU enters stop while a command was
in progress. For a more detailed discussion of the exact actions that
are considered access errors, see 4.5.4 Access Errors. FACCERR
is cleared by writing a 1 to FACCERR. Writing a 0 to FACCERR has
no meaning or effect.

1 = An access error has occurred.
0 = No access error
Reference Manual — Volume I HCS08 — Revision 1

80 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
FLASH Registers and Control Bits (MC9S08GB60)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

FBLANK — FLASH Verified as All Blank (erased) Flag

FBLANK is set automatically at the conclusion of a blank check
command if the entire FLASH array was verified to be erased.
FBLANK is cleared by clearing FCBEF to write a new valid command.
Writing to FBLANK has no meaning or effect.

1 = After a blank check command is completed and FCCF = 1,
FBLANK = 1 indicates the FLASH array is completely erased
(all $FF).

0 = After a blank check command is completed and FCCF = 1,
FBLANK = 0 indicates the FLASH array is not completely
erased.

4.7.6 FLASH Command Register (FCMD)

Bits 7, 4, 3, and 1 always read 0 and cannot be written by user
application programs. Only five command codes are recognized in
normal user modes as shown in Table 4-10. Refer to 4.5.2 Program,
Erase, and Blank Check Commands for a detailed discussion of
FLASH programming and erase operations.

All other command codes are illegal and generate an access error.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
FCMP7 FCMP6 FCMP5 FCMP4 FCMP3 FCMP2 FCMP1 FCMP0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 4-8. FLASH Command Register (FCMD)

Table 4-10. FLASH Commands

Command FCMD Equate File Label

Blank check $05 mBlank

Byte program $20 mByteProg

Byte program — burst mode $25 mBurstProg

Page erase (512 bytes/page) $40 mPageErase

Mass erase (all FLASH) $41 mMassErase
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 81
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

It is not necessary to perform a blank check command after a mass
erase operation. Blank check is required only as part of the security
unlocking mechanism.

4.8 FLASH Application Examples

This section discusses several examples to demonstrate how
programming and erase operations are performed on the FLASH in an
HCS08 MCU. These examples focus on the routines that would be found
in typical application systems as opposed to the programs that are used
to program the initial application programs into the FLASH the first time.
Normally, a third-party development tool would be used to program the
first application programs (including programs such as those shown in
these examples) into the HCS08 system.

A complete monitor program is presented and discussed in application
note AN2140, Serial Monitor for MC9S08GB60. This bootloader resides
in protected FLASH at the high-address end of the FLASH and works
through the asynchronous serial communications interface (SCI1) of the
MC9S08GB60 to allow a user to program or erase FLASH, or debug
user applications.

A set of primitive binary monitor commands is supported by this monitor
so a host debugger running on your PC can read and write memory or
registers, set breakpoints, trace instructions, or go to a user program.
Refer to AN2140 for more information.

Most third-party debug systems and programmers use the background
debug interface for all programming operations. Typically, they would
download a small routine into the RAM of the target system and then
jump to that routine. This is more efficient than manipulating the FLASH
programming controls through serial background debug commands so it
is the preferred method when larger blocks of nonvolatile memory need
to be programmed. Since the nonvolatile memory modules in HCS08
devices have built-in state machines to process critical timing
operations, it is possible to manipulate the programming controls directly
through serial background commands. Normally, this would only be
done if the development host needed to program a few individual
locations.
Reference Manual — Volume I HCS08 — Revision 1

82 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
FLASH Application Examples

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.8.1 Initialization of the FLASH Module Clock

The internal state machines that control programming and erase
operations on the FLASH use a 150 kHz to 200 kHz clock (FCLK) which
is derived by dividing the BUSCLK. The FLASH clock divider register
(FCDIV) is used to set the divider. FCDIV can only be written one time
after reset and no programming or erase operations are allowed until this
register has been written. It is customary to write this register during a
reset initialization routine shortly after reset.

The divider must be set so that FCLK is between 150 kHz and 200 kHz.
Programming and erase operations use a fixed number of these clock
cycles so the closer FCLK is to 200 kHz, the faster commands can be
performed. For example if FCLK is 200 kHz, it takes 45 microseconds to
program a single random location in FLASH. If FCLK is 150 kHz, the
same byte program operation takes 60 microseconds.

Refer to Figure 4-9 for the following discussion. The first part of this code
example shows an application equate which sets up the initialization
value for the FCDIV register. The second part shows the two lines of
code that would be placed in the reset initialization routine. Notice that
we could not use a MOV instruction to set the initial value in FCDIV
because it is a high-page register and MOV can only be used for
immediate, direct, or indexed operands. The initialization value shown in
this example is for a system that has a 32.768 kHz crystal and is using
the FLL to multiply this up to BUSCLK = 18.874368 MHz. The value in
FCDIV causes this to be divided by 8 × 12, producing
FCLK = 196.608 kHz (as close to 200 kHz as possible without going
over).
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 83
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

initFCDIV: equ %01001011 ;FLASH clock divider
; ||||||||
; |||||||+-DIV0 \
; ||||||+--DIV1 |
; |||||+---DIV2 >-- divide by (11+1)
; ||||+----DIV3 | BUSCLK/(8*12)~=196,608 Hz
; |||+-----DIV4 |
; ||+------DIV5 /
; |+-------PRDIV8 -- divide (prescale) by 8
; +--------DIVLD --- read-only status

 lda initFCDIV
 sta FCDIV ;set fFCLK = about 200kHz

Figure 4-9. FCLK Initialization

The requirement for FCLK to be at least 150 kHz implies that BUSCLK
must also be at least 150 kHz (because the smallest divide that can be
set by FCDIV is 1). This requirement only applies to programming and
erase operations, not to reads. This means lower bus frequencies may
be used to reduce power consumption, but the bus frequency must be
at least 150 kHz during program and erase operations.

Applications that adjust the bus frequency during normal operations
(using post-FLL divider controls), must be aware of the FCLK frequency
requirements for programing and erase operations. Since the FCDIV
register is write-once, it cannot be adjusted to accommodate dynamic
changes in bus frequency. During program and erase operations, the
bus clock would need to be changed to make FCLK fall within legal
limits. Many applications do not adjust the bus clock frequency
dynamically so this issue does not arise.

4.8.2 Erase One 512-Byte Page in FLASH

Program and erase operations for the FLASH memory are a little more
complicated compared to many application programs because it is not
possible to execute a program out of FLASH during FLASH program and
erase operations. This example shows one way to overcome this
limitation by placing the routine on the stack so the CPU is executing out
of stack RAM while the FLASH is unavailable due to the program or
erase operation.
Reference Manual — Volume I HCS08 — Revision 1

84 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
FLASH Application Examples

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The example shown in Figure 4-10 is located in the FLASH memory and
can be used to erase one 512-byte page of FLASH (that is, any page
other than the page where this routine is located). This routine is useful
because HCS08 devices have no separate EEPROM. In an HCS08
device, one or more pages of FLASH could be used for storage of
nonvolatile configuration values or logged history data. Typically, the
main body of the application code, including these routines, would reside
in a block protected portion of the FLASH. A BDM interface pod is
required to change the block protection settings so protected code
cannot be erased accidentally or altered as a result of an application
program error.

This FlashErase1 routine calls the DoOnStack subroutine which, in turn,
copies a small instruction sequence onto the stack and jumps to that
stack routine to complete the requested FLASH program or erase
command before returning to the calling program in FLASH. The initial
steps in the FLASH program or erase command can be executed from
within the FLASH, but the command sequence itself should not be
executed from within the FLASH memory.

;***
;* FlashErase1 - erases one page of FLASH (512 bytes)
;*
;* On entry... H:X - points at a location in the page to be erased
;*
;* Calling convention:
;* jsr FlashErase1
;*
;* Uses: DoOnStack which uses SpSub
;* Returns: H:X unchanged and A = FSTAT shifted left by 2 bits
;* Z=1 if OK, Z=0 if protect violation or access error
;* uses 32 bytes of stack space + 2 bytes for BSR/JSR used to call it
;***
FlashErase1: psha ;adjust sp for DoOnStack entry
 lda #(mFPVIOL+mFACCERR) ;mask
 sta FSTAT ;abort any command and clear errors
 lda #mPageErase ;mask pattern for page erase command
 bsr DoOnStack ;finish command from stack-based sub
 ais #1 ;deallocate data location from stack
 rts ;Z = 0 means there was an error
;********************

Figure 4-10. Erase One 512-Byte Page in FLASH
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 85
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The PDHA instruction at the beginning of FlashErase1 places a dummy
data value onto the stack so the DoOnStack subroutine can fetch it with
an LDA SpSubSize+6,sp instruction later. The AIS #1 instruction just
before the RTS instruction at the end of FlashErase1 deallocates this
byte before returning.

Just in case there was a pending protection violation or access error
(FPVIOL or FACCERR) from some previous operation, the second and
third instructions in FlashErase1 will clear these flags so the command
processor is ready to receive a new command. Within this example case
we do not check these error flags because we are assuming we know
what we are doing. However, some applications will include additional
checks of FPVIOL and FACCERR to guard against unintended errors
such as an attempt to erase a protected location.

4.8.3 DoOnStack Subroutine

This is an unusual subroutine because it moves instructions onto the
stack and then jumps there so that the FLASH command subroutine
finishes execution from the stack RAM. This solves the problem that you
cannot execute instructions out of the FLASH memory while any
program or erase operation is in progress. The DoOnStack subroutine is
located in FLASH, but during the critical portion of the routine when the
program or erase command is actually in progress, the CPU will be
executing instructions on the stack (that is, in the on-chip RAM).

;***
;* DoOnStack - copy SpSub onto stack and call it (see also SpSub)
;* Deallocates the stack space used by SpSub after returning from it.
;* Allows flash prog/erase command to execute out of RAM (on stack)
;* while flash is out of the memory map.
;* This routine can be used for flash byte-program or erase commands
;*
;* Calling Convention:
;* psha ;save data to program (or dummy
;* ; data for an erase command)
;* lda #(mFPVIOL+mFACCERR) ;mask
;* sta FSTAT ;abort any command and clear errors
;* lda #mByteProg ;mask pattern for byte prog command
;* jsr DoOnStack ;execute prog code from stack RAM
;* ais #1 ;deallocate data location from stack
;* ; without disturbing A or CCR
;*
;* or substitute #mPageErase for page erase
Reference Manual — Volume I HCS08 — Revision 1

86 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
FLASH Application Examples

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;*
;* Uses 29 bytes on stack + 2 bytes for BSR/JSR used to call it
;* returns H:X unchanged and A=0 and Z=1 if no flash errors
;**
DoOnStack: pshx
 pshh ;save pointer to flash
 psha ;save command on stack
 ldhx #SpSubEnd ;point at last byte to move to stack
SpMoveLoop: lda ,x ;read from flash
 psha ;move onto stack
 aix #-1 ;next byte to move
 cphx #SpSub-1 ;past end?
 bne SpMoveLoop ;loop till whole sub on stack
 tsx ;point to sub on stack
 tpa ;move CCR to A for testing
 and #$08 ;check the I mask
 bne I_set ;skip if I already set
 sei ;block interrupts while FLASH busy
 lda SpSubSize+6,sp ;preload data for command
 jsr ,x ;execute the sub on the stack
 cli ;ok to clear I mask now
 bra I_cont ;continue to stack de-allocation
I_set: lda SpSubSize+6,sp ;preload data for command
 jsr ,x ;execute the sub on the stack
I_cont: ais #SpSubSize+3 ;deallocate sub body + H:X + command
 ;H:X flash pointer OK from SpSub
 lsla ;A=00 & Z=1 unless PVIOL or ACCERR
 rts ;to flash where DoOnStack was called
;********************

Figure 4-11. DoOnStack Subroutine (Complete FLASH Command)

First, DoOnStack pushes the FLASH location pointer (H:X) and the
command code (A) onto the stack to free up these CPU registers. H:X is
set to point at the last byte of the SpSub subroutine. Next, a 5-instruction
loop copies the stack routine from FLASH onto the stack one byte at a
time. After moving the last byte onto the stack, SP points at the next
lower address. The TSX instruction adds one to SP as the value is
copied to the H:X register pair. This leaves H:X pointing at the first byte
of the routine that was just moved onto the stack.

The next several instructions are used to determine whether or not
interrupts are masked. If interrupts are masked (I set to 1), A is loaded
with the data for the FLASH program or erase operation and the copy of
SpSub on the stack is called. If interrupts were not masked, an SEI
instruction is used to block interrupts, A is loaded, SpSub is called
(JSR ,X), and the ACLI re-enables interrupts. The stack subroutine is
described in 4.8.4 SpSub Subroutine immediately below.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 87
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

After returning from SpSub, the AIS #SpSubSize+3 instruction
deallocates the stack space used for SpSub and associated parameters.
ASLA moves the PVIOL and ACCERR error flags to the most significant
2 bits of A. A should now be 0 if there were no errors.

4.8.4 SpSub Subroutine

The SpSub subroutine (see Figure 4-12) is moved onto the stack by the
DoOnStack subroutine (described in 4.8.3 DoOnStack Subroutine
immediately above) and then it is called (from DoOnStack). This
subroutine completes the program or erase command and then waits for
all FLASH commands to finish before returning. These instructions are
located on the stack in on-chip RAM when they are executed. This
satisfies the requirement that you cannot execute instructions out of
FLASH while a program or erase command is in progress.

;***
;* SpSub - This variation of SpSub performs all of the steps for
;* programming or erasing flash from RAM. SpSub is copied onto the
;* stack, SP is copied to H:X, and then the copy of SpSub in RAM is
;* called using a JSR 0,X instruction.
;*
;* At the time SpSub is called, the data to be programmed (dummy data
;* for an erase command), is in A and the flash address is on the
;* stack above SpSub. After return, PVIOL and ACCERR flags are in bits
;* 6 and 5 of A. If A is shifted left by one bit after return, it
;* should be zero unless there was a flash error.
;*
;* Uses 24 bytes on stack + 2 bytes if a BSR/JSR calls it
;***
SpSub: ldhx SpSubSize+4,sp ;get flash address from stack
 sta 0,x ;write to flash; latch addr and data
 lda SpSubSize+3,sp ;get flash command
 sta FCMD ;write the flash command
 lda #mFCBEF ;mask to initiate command
 sta FSTAT ;[pwpp] register command
 nop ;[p] want min 4~ from w cycle to r
ChkDone: lda FSTAT ;[prpp] so FCCF is valid
 lsla ;FCCF now in MSB
 bpl ChkDone ;loop if FCCF = 0
SpSubEnd: rts ;back into DoOnStack in flash
SpSubSize: equ (*-SpSub)

;********************

Figure 4-12. SpSub Subroutine (Executes on Stack)
Reference Manual — Volume I HCS08 — Revision 1

88 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory
FLASH Application Examples

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In SpSub, H:X is loaded (using a stack pointer-relative LDHX instruction)
with the address for the FLASH program or erase operation. The STA
o,x instruction completes the first step of the FLASH program or erase
command sequence. Next, another stack pointer-relative LOAD
instruction is used to load A with the command code for a PageErase or
a ByteProgram command and this code is written to FCMD. The next
two instruction write a 1 to the FCBEF bit in FSTAT to register the
command and start the program or erase operation.

The cycle-by-cycle activity for the STA FSTAT, NOP, and LDA FSTAT
instructions is shown in square brackets in the comment fields of these
instructions because there is a requirement that there must be at least
four cycles after the FSTAT write that registers the command before the
first read to check the FCBEF or FCCF status flags. The p cycles are
program fetch cycles, the w cycle is where the FSTAT register was
written, and the r cycle is where the FSTAT register is read.

Next, the ASLA instruction moves the FCCF flag to the MSB of the
accumulator and sets or clears the N bit in the CCR according to the
value of FCCF (now in this MSB). If FCCF was clear, the BPL instruction
will cause a branch back to ChkDoneE1 to repeat the status check.
When FCCF is set, the branch will fall through indicating the command
is finished and no additional commands are pending. At this point, the
FLASH reappears in the memory map so it is safe to use the RTS
instruction to return to the calling program in FLASH.

4.8.5 Program One Byte of FLASH

This example demonstrates a simple routine to program a single location
in FLASH. It assumes the location was previously blank (erased to $FF)
and does not perform any error checking. We assume we are following
the correct programming procedure so we will not get access errors and
we assume the programmer knows that the location is not located in a
protected block which would cause a protection violation error. This
example uses the DoOnStack and SpSub routines described in
4.8.3 DoOnStack Subroutine and 4.8.4 SpSub Subroutine above.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA On-Chip Memory 89
For More Information On This Product,

 Go to: www.freescale.com

On-Chip Memory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;***
;* FlashProg1 - programs one byte of FLASH
;* This routine waits for the command to complete before returning.
;* assumes location was blank. This routine can be run from FLASH
;*
;* On entry... H:X - points at the FLASH byte to be programmed
;* A holds the data for the location to be programmed
;*
;* Calling convention:
;* jsr FlashProg1
;*
;* Uses: DoOnStack which uses SpSub
;* Returns: H:X unchanged and A = FSTAT shifted left by 2 bits
;* Z=1 if OK, Z=0 if protect violation or access error
;* uses 32 bytes of stack space + 2 bytes for BSR/JSR used to call it
;***
FlashProg1: psha ;temporarily save entry data
 lda #(mFPVIOL+mFACCERR) ;mask
 sta FSTAT ;abort any command and clear errors
 lda #mByteProg ;mask pattern for byte prog command
 bsr DoOnStack ;execute prog code from stack RAM
 ais #1 ;deallocate data location from stack
 rts ;Z = 0 means there was an error
;********************

Figure 4-13. Program One Byte in FLASH

One advantage of the way FlashProg1 and FlashErase1 are written is
that this code can reside in FLASH. Only the code for the actual
programming or erase operation is copied onto the stack so it can be
executed in RAM while the FLASH is out of the memory map.

One drawback to this approach is that each command must be
completed before anything else can be done. For applications where
only a few locations are programmed at a time, this limitation is not
serious. On the other hand, this approach would not be appropriate for
programming larger blocks of data into the FLASH. For those cases use
an approach where the entire programming algorithm is located in a
RAM routine. Burst programming commands can be queued such that
there is always another command waiting in a buffer so it can
immediately transfer into the on-chip command processor as soon as
the previous command finishes. In the case of programming multiple
bytes within the same 64-byte FLASH row, this allows burst
programming which takes less than half as long as programming a
single isolated byte.
Reference Manual — Volume I HCS08 — Revision 1

90 On-Chip Memory MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

HCS08 Family Reference Manual

Section 5. Resets and Interrupts

5.1 Introduction

This section discusses the basic reset and interrupt mechanisms along
with the various sources of reset and interrupts in most HCS08
derivatives. Some interrupt sources from peripheral modules are
discussed in greater detail within other sections of this reference
manual. This section gathers information about all reset and interrupt
sources in one place for easy reference. A few reset and interrupt
sources, including the computer operating properly (COP) watchdog
and periodic interrupt timer, are not part of on-chip peripheral systems
that have their own sections. These functions and their registers are
described in this section. For more information about the reset and
interrupt sources for a specific derivative, refer to the appropriate data
sheet.

5.2 Reset and Interrupt Features for MC9S08GB60

The set of reset and interrupt sources differs for each HCS08 derivative.
This section describes the sources for the first HCS08 device
(MC9S08GB60). Refer to the data sheet for a specific device for more
information.

Reset and interrupt sources include:

• Eight possible sources of reset:

– Power-on detection (POR)

– External RESET pin with enable

– COP watchdog with enable and two timeout choices

– Illegal address (not applicable on the MC9S08GB60)

– Illegal opcode detect

– Clock generator loss-of-lock and loss-of-clocks
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 91
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

– Low-voltage detect (LVD) with enable

– Serial command from a background debug host

• Reset status register to indicate cause of most recent reset

• 25 separate interrupt vectors (reduces polling overhead):

– Software interrupt instruction (SWI)

– IRQ pin with enable, choice of polarity, level, and/or edge

– Low-voltage detect with enable

– Clock generator loss-of-lock or loss-of-clocks

– Ten timer interrupts; two overflow, eight channels total for two
TPMs

– One SPI interrupt

– Six SCI interrupts; Rx, Tx, and error for each of two SCIs

– Keyboard wakeup

– ATD conversion complete

– Periodic wakeup from stop with enable and multiple rates
based on a separate 1-kHz self-clocked source or an external
source

5.3 MCU Reset

Reset provides a way to start processing from a known set of initial
conditions. During reset, most control and status registers are forced to
initial values and the program counter is loaded from the reset vector
($FFFE:$FFFF). On-chip peripheral modules are disabled and I/O pins
are initially configured as general-purpose high-impedance inputs with
pullup devices disabled. The I bit in the condition code register (CCR) is
set to block maskable interrupts until the user program has a chance to
initialize the stack pointer (SP) and system control settings. SP is forced
to $00FF at reset, but this is almost never where the stack should be
located in an HCS08 system. Normally, SP should be changed during
reset initialization.
Reference Manual — Volume I HCS08 — Revision 1

92 Resets and Interrupts MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts
Computer Operating Properly (COP) Watchdog

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The MCU defaults to using the self-clocked mode (approximately 4 MHz
bus clock) so it doesn’t need to wait for the external oscillator to start and
stabilize. In most systems, the user’s initialization program will configure
the clock module to operate at the system’s optimal frequency.

5.4 Computer Operating Properly (COP) Watchdog

The COP watchdog is intended to force a system reset when the
application software fails to execute as expected. To prevent a system
reset from the COP timer (when it is enabled), application software must
reset the COP timer periodically. If the application program gets lost and
fails to reset the COP before it times out, a system reset is generated to
force the system back to a known starting point. The COP watchdog is
enabled and controlled by the SOPT register (see 5.8.4 System
Options Register (SOPT) for additional information). The COP timer is
reset by writing any value to the address of the reset status register
(SRS). This write does not affect the data in the read-only SRS register.
Instead, the act of writing to this address is decoded and sends a reset
signal to the COP timer.

After any reset, the COP timer is enabled, because depending on any
application program instructions to enable the watchdog that is
supposed to detect software errors is not reliable. If the COP watchdog
is not used in an application, it can be disabled by clearing the COPE bit
in the write-once SOPT register. Also, the COPT bit can be used to
choose one of two timeout periods (218 or 213 cycles of the bus rate
clock). Even if the application will use the reset default settings in COPE
and COPT, you should still write to the write-once SOPT register during
reset initialization to lock in the settings so they cannot be changed
accidentally if the application program gets lost.

The write to SRS that services (clears) the COP timer should not be
placed in an interrupt service routine (ISR) because the ISR could
continue to be executed periodically even if the main application
program fails.

5.5 Interrupts

Interrupts provide a way to save the current CPU status and registers,
execute an interrupt service routine (ISR), and then restore the CPU
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 93
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

status so that processing resumes where it left off before the interrupt.
Other than software interrupt (SWI), which is a program instruction,
interrupts are caused by hardware events such as an edge on the IRQ
pin or the reception of a serial I/O character. The debug module can also
generate SWI interrupts under certain circumstances (see
7.5.9 Hardware Breakpoints and ROM Patching).

If an event occurs in an enabled interrupt source, an associated
read-only status flag will become set, but the CPU will not respond until
and unless the local interrupt mask is a logic 1 to enable the interrupt and
the I bit in the condition code register (CCR) is logic 0 to allow interrupts.
The global interrupt mask (I bit) in the CCR is initially set after reset
which masks (prevents) all maskable interrupt sources. This allows the
user program to initialize the stack pointer and perform other system
setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the
current instruction before responding to the interrupt. The interrupt
sequence follows the same cycle-by-cycle sequence as the SWI
instruction and consists of:

• Saving the CPU registers on the stack

• Setting the I bit in the CCR to mask further interrupts

• Fetching the interrupt vector for the highest priority interrupt that is
currently pending

• Filling the instruction queue with the first three bytes of program
information starting from the address fetched from the interrupt
vector locations

While the CPU is responding to the interrupt, the I bit is automatically set
to avoid the possibility of another interrupt interrupting the ISR itself (this
is called nesting of interrupts). Normally, the I bit is restored to 0 when
the CCR is restored from the value that was stacked on entry to the ISR.
In rare cases, the I bit may be cleared inside an ISR (after clearing the
status flag that generated the interrupt) so that other interrupts can be
serviced without waiting for the first service routine to finish. This
practice is not recommended for anyone other than the most
experienced programmers because it can lead to subtle program errors
that are difficult to debug.
Reference Manual — Volume I HCS08 — Revision 1

94 Resets and Interrupts MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts
Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The interrupt service routine ends with a return-from-interrupt (RTI)
instruction which restores the CCR, A, X, and PC registers to their
pre-interrupt values by reading the previously saved information off the
stack. For compatibility with the M68HC08, the H register is not
automatically saved and restored. So it is good programming practice to
push H onto the stack at the start of the interrupt service routine (ISR)
and restore it just before the RTI that is used to return from the ISR.

5.5.1 Interrupt Stack Frame

Figure 5-1 shows the contents and organization of a stack frame. Before
the interrupt, the stack pointer (SP) points at the next available byte
location on the stack. The current values of CPU registers are stored on
the stack starting with the low-order byte of the program counter (PCL)
and ending with the condition code register (CCR). After stacking, the
SP points at the next available location on the stack which is the address
that is one less than the address where the CCR was saved. The PC
value that is stacked is the address of the instruction in the main program
that would have executed next if the interrupt had not occurred.

Figure 5-1. Interrupt Stack Frame

CONDITION CODE REGISTER

ACCUMULATOR

INDEX REGISTER (LOW BYTE X)

PROGRAM COUNTER HIGH

* High byte (H) of index register is not stacked.

*
PROGRAM COUNTER LOW

•

•

•

•

•

•7 0

UNSTACKING
ORDER

STACKING
ORDER

5

4

3

2

1

1

2

3

4

5

TOWARD LOWER ADDRESSES

TOWARD HIGHER ADDRESSES

SP BEFORE

SP AFTER
INTERRUPT STACKING

THE INTERRUPT
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 95
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When an RTI instruction is executed, these values are recovered from
the stack in reverse order. As part of the RTI sequence, the CPU fills the
instruction pipeline by reading three bytes of program information,
starting from the PC address that was just recovered from the stack.

The status flag that caused the interrupt must be acknowledged
(cleared) before returning from the ISR. Typically, the flag should be
cleared at the beginning of the ISR so that if another interrupt is
generated by this same source, it will be registered so it can be serviced
after completion of the current ISR.

5.5.2 External Interrupt Request (IRQ) Pin

External interrupts are managed by the IRQ status and control register
(IRQSC). When the IRQ function is enabled, synchronous logic monitors
the pin for edge-only or edge-and-level events. When the MCU is in stop
mode and system clocks are shut down, an asynchronous path is used
so the IRQ (if enabled) can wake the MCU from stop.

5.5.2.1 Pin Configuration Options

The IRQ pin enable (IRQPE) control bit in the IRQSC register must be 1
in order for the IRQ pin to act as the interrupt request (IRQ) input. As an
IRQ input, the user can choose the polarity of edges or levels detected
(IRQEDG), whether the pin detects edges-only or edges and levels
(IRQMOD), and whether an event causes an interrupt or just sets the
IRQF flag which can be polled by software.

When the IRQ pin is configured to detect rising edges, an optional
pulldown resistor is available rather than a pullup resistor. BIH and BIL
instructions may be used to detect the level on the IRQ pin when the pin
is configured to act as the IRQ input.

NOTE: The voltage measured on the pulled up IRQ pin may be as low as VDD
– 0.7 V. The internal gates connected to this pin are pulled all the way to
VDD. All other pins with enabled pullup resistors will have an unloaded
measurement of VDD.
Reference Manual — Volume I HCS08 — Revision 1

96 Resets and Interrupts MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts
Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.5.2.2 Edge and Level Sensitivity

Synchronous logic is used to detect edges. Prior to detecting an edge,
the IRQ pin must be at its deasserted logic level. A falling edge is
detected when the enabled IRQ input signal is seen at logic 1 during one
bus cycle and then at logic 0 during the next cycle. A rising edge is
detected when the input signal is seen as a logic 0 during one bus cycle
and then a logic 1 during the next cycle.

The IRQMOD control bit can be set to reconfigure the detection logic so
that it detects edges and levels. In this mode, the IRQF status flag
becomes set when an edge is detected (when the IRQ pin changes from
the deasserted to the asserted level), but the flag is continuously set
(and cannot be cleared) as long as the IRQ pin remains at the asserted
level.

5.5.3 Interrupt Vectors, Sources, and Local Masks

Table 5-1 provides a summary of all interrupt sources in the
MC9S08GB60. Higher-priority sources are located toward the bottom of
the table. The high-order byte of the address for the interrupt service
routine is located at the first address in the vector address column, and
the low-order byte of the address for the interrupt service routine is
located at the next higher address. The vector name is the label used in
the equate or header file provided by Motorola.

When an interrupt condition occurs, an associated flag bit becomes set.
If the associated local interrupt mask is 1, an interrupt request is sent to
the CPU. Within the CPU, if the global interrupt mask (I bit in the CCR)
is 0, the CPU will finish the current instruction, stack the PCL, PCH, X,
A, and CCR CPU registers, set the I bit, and then fetch the interrupt
vector for the highest priority pending interrupt. Processing then
continues in the interrupt service routine.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 97
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 5-1. Interrupt Summary (MC9S08GB60)

Vector
Priority

Address
(High/Low)

Vector
Name Module Source Enable Description

Lower

Higher

$FFC0/FFC1
through

$FFCA/FFCB

 Unused Vector Space
 (available for user program)

$FFCC/FFCD Vrti
System
control

RTIF RTIE
Real-time
interrupt

$FFCE/FFCF Viic IIC IICIS IICIE IIC control

$FFD0/FFD1 Vatd ATD COCO AIEN
AD conversion

complete
$FFD2/FFD3 Vkeyboard KBI KBF KBIE Keyboard pins

$FFD4/FFD5 Vsci2tx SCI2
TDRE

TC
TIE

TCIE
SCI2 transmit

$FFD6/FFD7 Vsci2rx SCI2
IDLE
RDRF

ILIE
RIE

SCI2 receive

$FFD8/FFD9 Vsci2err SCI2

OR
NF
FE
PF

ORIE
NFIE
FEIE
PFIE

SCI2 error

$FFDA/FFDB Vsci1tx SCI1
TDRE

TC
TIE

TCIE
SCI1 transmit

$FFDC/FFDD Vsci1rx SCI1
IDLE
RDRF

ILIE
RIE

SCI1 receive

$FFDE/FFDF Vsci1err SCI1

OR
NF
FE
PF

ORIE
NFIE
FEIE
PFIE

SCI1 error

$FFE0/FFE1 Vspi SPI
SPIF

MODF
SPTEF

SPIE
SPIE

SPTIE
SPI

$FFE2/FFE3 Vtpm2ovf TPM2 TOF TOIE TPM2 overflow
$FFE4/FFE5 Vtpm2ch4 TPM2 CH4F CH4IE TPM2 channel 4
$FFE6/FFE7 Vtpm2ch3 TPM2 CH3F CH3IE TPM2 channel 3
$FFE8/FFE9 Vtpm2ch2 TPM2 CH2F CH2IE TPM2 channel 2
$FFEA/FFEB Vtpm2ch1 TPM2 CH1F CH1IE TPM2 channel 1
$FFEC/FFED Vtpm2ch0 TPM2 CH0F CH0IE TPM2 channel 0
$FFEE/FFEF Vtpm1ovf TPM1 TOF TOIE TPM1 overflow
$FFF0/FFF1 Vtpm1ch2 TPM1 CH2F CH2IE TPM1 channel 2
$FFF2/FFF3 Vtpm1ch1 TPM1 CH1F CH1IE TPM1 channel 1
$FFF4/FFF5 Vtpm1ch0 TPM1 CH0F CH0IE TPM1 channel 0

$FFF6/FFF7 Vicg ICG
ICGIF

(LOLS/LOCS)
LOLRE/LOCRE ICG

$FFF8/FFF9 Vlvd System control LVDF LVDIE
Low-voltage

detect
$FFFA/FFFB Virq IRQ IRQF IRQIE IRQ pin
$FFFC/FFFD Vswi Core SWI Instruction — Software interrupt

$FFFE/FFFF Vreset Systemcontrol

COP
LVD

RESET pin
Illegal opcode

COPE
LVDRE

—
—

Watchdog timer
Low-voltage

detect
External pin

Illegal opcode
Reference Manual — Volume I HCS08 — Revision 1

98 Resets and Interrupts MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts
Low-Voltage Detect (LVD) System

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.6 Low-Voltage Detect (LVD) System

The 9S08GB/GT includes a system to protect against low voltage
conditions in order to protect memory contents and control MCU system
states during supply voltage variations. The system is comprised of a
power-on reset (POR) circuit and an LVD circuit with a user selectable
trip voltage, either high (VLVDH) or low (VLVDL). The LVD circuit is
enabled when LVDE in SPMSC1 is high and the trip voltage is selected
by LVDV in SPMSC2. The LVD is disabled upon entering any of the stop
modes unless the LVDSE bit is set. If LVDSE and LVDE are both set,
then the MCU cannot enter stop1 or stop2, and the current consumption
in stop3 with the LVD enabled will be greater.

5.6.1 Power-On Reset Operation

When power is initially applied to the MCU, or when the supply voltage
drops below the VPOR level, the POR circuit will cause a reset condition.
As the supply voltage rises, the LVD circuit will hold the chip in reset until
the supply has risen above the VLVDH level. Both the POR bit and the
LVD bit in SRS are set following a POR.

5.6.2 LVD Reset Operation

The LVD can be configured to generate a reset upon detection of a low
voltage condition by setting LVDRE to 1. Once an LVD reset has
occurred, the LVD system will hold the MCU in reset until the supply
voltage has risen above the level determined by LVDV. LVDV is not
altered when an LVD reset occurs. The LVD bit in the SRS register is set
following either an LVD reset or POR.

5.6.3 LVD Interrupt Operation

When a low voltage condition is detected and the LVD circuit is
configured for interrupt operation (LVDE set, LVDIE set, and LVDRE
clear), then LVDF will be set and an LVD interrupt will occur.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 99
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.6.4 Low-Voltage Warning (LVW)

The LVD system has a low voltage warning flag to indicate to the user
that the supply voltage is approaching, but is still above, the LVD
voltage. The LVW does not have an interrupt associated with it. There
are two user selectable trip voltages for the LVW, one high (VLVWH) and
one low (VLVWL). The trip voltage is selected by LVWV in SPMSC2.

5.7 Real-Time Interrupt (RTI)

The real-time interrupt function can be used to generate periodic
interrupts based on a divide of the external oscillator during run mode. It
can also be used to wake the MCU from stop2 using the internal 1-kHz
reference, or from stop3 using either the internal reference or the
external oscillator if it is enabled in stop modes. The RTICLKS bit in the
system real-time interrupt status and control register (SRTISC) is used
to select between these two modes of operation.

The SRTISC register includes a read-only status flag, a write-only
acknowledge bit, and a 3-bit control value (RTIS2:RTIS1:RTIS0) used to
disable the clock source to the real-time interrupt or select one of seven
wakeup delays between 8 ms and 1.024 seconds. The 1-kHz clock
source and therefore the periodic rates have a tolerance of about 30
percent. The RTI has a local interrupt enable, RTIE, to allow masking of
the real-time interrupt. It can be disabled by writing 0:0:0 to
RTIS2:RTIS1:RTIS0 so the clock source is disabled and no interrupts
will be generated. See 5.8.6 System Real-Time Interrupt Status and
Control Register (SRTISC) for detailed information about this register.

5.8 Reset, Interrupt, and System Control Registers and Control Bits

One 8-bit register in the direct page register space and five 8-bit
registers in the high-page register space are related to reset and
interrupt systems.

Refer to the direct-page register summary in Section 4. On-Chip
Memory of this reference manual for the absolute address assignments
for all registers. This section refers to registers and control bits only by
Reference Manual — Volume I HCS08 — Revision 1

100 Resets and Interrupts MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

their names. An equate or header file provided by Motorola is used to
translate these names into the appropriate absolute addresses.

Some control bits in the SOPT and SPMSC2 registers are related to
modes of operation. Although brief descriptions of these bits are
provided here, the related functions are discussed in greater detail in
Section 3. Modes of Operation.

This section describes register and bit details for the MC9S08GB60.
Although these descriptions are representative of HCS08 devices, you
should always refer to the data sheet for details about a specific HCS08
device.

5.8.1 Interrupt Request Status and Control Register (IRQSC)

This direct page register includes two unimplemented bits which always
read 0, four read/write bits, one read-only status bit, and one write-only
bit. These bits are used to configure the IRQ function, report status, and
acknowledge IRQ events.

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0
IRQEDG IRQPE

IRQF 0
IRQIE IRQMOD

Write: IRQACK

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 5-2. Interrupt Request Status and Control Register (IRQSC)
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 101
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IRQEDG — Interrupt Request (IRQ) Edge Select

This read/write control bit is used to select the polarity of edges or
levels on the IRQ pin that cause IRQF to be set. The IRQMOD control
bit determines whether the IRQ pin is sensitive to both edges and
levels or just edges. When the IRQ pin is enabled as the IRQ input
and is configured to detect rising edges, the optional pullup resistor is
reconfigured as an optional pulldown resistor.

1 = IRQ is rising edge or rising edge/high-level sensitive.
0 = IRQ is falling edge or falling edge/low-level sensitive.

IRQPE — IRQ Pin Enable

This read/write control bit enables the IRQ pin function. When this bit
is set the IRQ pin can be used as an interrupt request. Also, when this
bit is set, either an internal pull-up or an internal pull-down resistor is
enabled depending on the state of the IRQMOD bit.

1 = IRQ pin function is enabled.
0 = IRQ pin function is disabled.

IRQF — IRQ Flag

This read-only status bit indicates when an interrupt request event
has occurred.

1 = IRQ event detected.
0 = No IRQ request.

IRQACK — IRQ Acknowledge

This write-only bit is used to acknowledge interrupt request events
(write 1 to clear IRQF). Writing 0 has no meaning or effect. Reads
always return logic 0. If edge-and-level detection is selected
(IRQMOD = 1), IRQF cannot be cleared while the IRQ pin remains at
its asserted level.

IRQIE — IRQ Interrupt Enable

This read/write control bit determines whether IRQ events generate a
hardware interrupt request.

1 = Hardware interrupt requested whenever IRQF = 1.
0 = Hardware interrupt requests from IRQF disabled (use polling).
Reference Manual — Volume I HCS08 — Revision 1

102 Resets and Interrupts MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

IRQMOD — IRQ Detection Mode

This read/write control bit selects either edge-only detection or
edge-and-level detection. The IRQEDG control bit determines the
polarity of edges and levels that are detected as interrupt request
events. See 5.5.2.2 Edge and Level Sensitivity for more details.

1 = IRQ event on falling edges and low levels or on rising edges
and high levels.

0 = IRQ event on falling edges or rising edges only.

5.8.2 System Reset Status Register (SRS)

This register includes seven read-only status flags to indicate the source
of the most recent reset. When a debug host forces reset by writing 1 to
BDFR in the FBDFR register, none of the status bits in SRS will be set.
Writing any value to this register address clears the COP watchdog timer
without affecting the contents of this register. The reset state of these
bits depends on what caused the MCU to reset.

Figure 5-3. System Reset Status (SRS)

Bit 7 6 5 4 3 2 1 Bit 0

Read: POR PIN COP ILOP 0 ICG LVD 0

Write: Writing any value to SRS address clears COP watchdog timer.

Power-on reset: 1 0 0 0 0 0 1 0

Low-voltage reset: 0 0 0 0 0 0 1 0

Any other reset: 0 (1) (1) (1) 0 (1) 0 0

1. Any of these reset sources that are active at the time of reset will cause the corresponding bit(s) to be set;
bits corresponding to sources that are not active at the time of reset will be cleared.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 103
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

POR — Power-On Reset

Reset was caused by the power-on detection logic. Since the internal
supply voltage was ramping up at the time, the low-voltage reset
(LVR) status bit is also set to indicate that the reset occurred while the
internal supply was below the LVR threshold.

1 = POR caused reset
0 = Reset not caused by POR

PIN — External Reset Pin

Reset was caused by an active-low level on the external reset pin.
1 = Reset came from external reset pin.
0 = Reset not caused by external reset pin

COP — Computer Operating Properly (COP) Watchdog

Reset was caused by the COP watchdog timer timing out. This reset
source may be blocked by COPE = 0.

1 = Reset caused by COP timeout
0 = Reset not caused by COP timeout

ILOP — Illegal Opcode

Reset was caused by an attempt to execute an unimplemented or
illegal opcode. The STOP instruction is considered illegal if stop is
disabled by STOPE = 0 in the SOPT register. The BGND instruction
is considered illegal if active background mode is disabled by
ENBDM = 0 in the BDCSC register.

1 = Reset caused by an illegal opcode
0 = Reset not caused by an illegal opcode

ICG — Internal Clock Generation Module Reset

Reset was caused by an ICG module reset.
1 = Reset caused by ICG module.
0 = Reset not caused by ICG module.

LVD — Low Voltage Detect

If the LVDRE and LVDSE bits are set and the supply drops below the
LVD trip voltage, an LVD reset will occur. This bit is also set by POR.

1 = Reset caused by LVD trip or POR.
0 = Reset not caused by LVD trip or POR.
Reference Manual — Volume I HCS08 — Revision 1

104 Resets and Interrupts MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.3 System Background Debug Force Reset Register (SBDFR)

This register contains a single write-only control bit. A serial background
command such as WRITE_BYTE must be used to write to SBDFR.
Attempts to write this register from a user program are ignored. Reads
always return $00.

Figure 5-4. System Integration Module Control Register (SBDFR)

BDFR — Background Debug Force Reset

A serial background command such as WRITE_BYTE may be used
to allow an external debug host to force a target system reset. Writing
logic 1 to this bit forces an MCU reset. This bit cannot be written from
a user program.

5.8.4 System Options Register (SOPT)

This register may be read at any time. Bits 3, 2, and 0 are
unimplemented and always read 0. This is a write-once register so only
the first write after reset is honored. Any subsequent attempt to write to
SOPT (intentionally or unintentionally) is ignored to avoid accidental
changes to these sensitive settings. SOPT should be written during the
user’s reset initialization program to set the desired controls even if the
desired settings are the same as the reset settings.

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0 0 0 0 0

Write: BDFR(1)

Reset: 0 0 0 1 0 0 0 0

= Unimplemented or Reserved

1. BDFR is writable only through serial background debug commands, not from user
programs.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
COPE COPT STOPE

0 0
BKGDPE

Write:

Reset: 1 1 0 1 0 0 1 1

= Unimplemented or Reserved

Figure 5-5. System Options Register (SOPT)
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 105
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

COPE — COP Watchdog Enable

This write-once bit defaults to 1 after reset.
1 = COP watchdog timer enabled (force reset on timeout)
0 = COP watchdog timer disabled

COPT — COP Watchdog Timeout

This write-once bit defaults to 1 after reset.
1 = Long timeout period selected (218 cycles of BUSCLK)
0 = Short timeout period selected (213 cycles of BUSCLK)

STOPE — Stop Mode Enable

This write-once bit defaults to 0 after reset, which disables stop mode.
If stop mode is disabled and a user program attempts to execute a
STOP instruction, an illegal opcode reset is forced.

1 = Stop mode enabled
0 = Stop mode disabled

BKGDPE — Background Debug Mode Pin Enable

The BKGDPE bit enables the PTD0/BKGD/MS pin to function as
BKGD/MS. When the bit is clear, the pin will function as PTD0, which
is an output only general purpose I/O. This pin always defaults to
BKGD/MS function after any reset.

1 = BKGD pin enabled.
0 = BKGD pin disabled.
Reference Manual — Volume I HCS08 — Revision 1

106 Resets and Interrupts MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.5 System Device Identification Register (SDIDH, SDIDL)

This read-only register is included so host development systems can
identify the HCS08 derivative and revision number. This allows the
development software to recognize where specific memory blocks,
registers, and control bits are located in a target MCU.

Figure 5-6. System Device Identification Register (SDIDH, SDIDL)

REV[3:0] — Revision Number

The high-order 4 bits of address $1806 are hard coded to reflect the
current mask set revision number (0–F).

ID[11:0] — Part Identification Number

Each derivative in the HCS08 Family has a unique identification
number. The 9S08GB/GT is hard coded to the value $003.

5.8.6 System Real-Time Interrupt Status and Control Register (SRTISC)

This register contains one read-only status flag, one write-only
acknowledge bit, three read/write delay selects, and three
unimplemented bits, which always read 0.

Figure 5-7. System RTI Status and Control Register (SRTISC)

Bit 7 6 5 4 3 2 1 Bit 0

Read: REV3 REV2 REV1 REV0 ID11 ID10 ID9 ID8

Reset: 0(1) 0(1) 0(1) 0(1) 0 0 0 0

Read: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

Reset: 0 0 0 0 0 0 1 0

1. The revision number that is hard coded into these bits reflects the current silicon revision level.

Bit 7 6 5 4 3 2 1 Bit 0

Read: RTIF 0
RTICLKS RTIE

0
RTIS2 RTIS1 RTIS0

Write: RTIACK

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 107
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RTIF — Real-Time Interrupt Flag

This read-only status bit indicates the periodic wakeup timer has
timed out.

1 = Periodic wakeup timer timed out.
0 = Periodic wakeup timer not timed out.

RTIACK — Real-Time Interrupt Acknowledge

This write-only bit is used to acknowledge real-time interrupt request
(write 1 to clear RTIF). Writing 0 has no meaning or effect. Reads
always return logic 0.

RTICLKS — Real-Time Interrupt Clock Select

This read/write bit selects the clock source for the real-time interrupt.
1 = Real-time interrupt request clock source is external clock.
0 = Real-time interrupt request clock source is internal 1-kHz

oscillator.

RTIE — Real-Time Interrupt Enable

This read-write bit enables real-time interrupts.
1 = Real-time interrupts enabled.
0 = Real-time interrupts disabled.

RTIS2:RTIS1:RTIS0 — Real-Time Interrupt Delay Selects

These read/write bits select the wakeup delay for the RTI. The clock
source for the real-time interrupt is a self-clocked source which
oscillates at about 1 kHz, is independent of other MCU clock sources.
Using external clock source the delays will be crystal frequency
divided by value in RTIS2:RTIS1:RTIS0.
Reference Manual — Volume I HCS08 — Revision 1

108 Resets and Interrupts MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.7 System Power Management Status and Control 1 Register (SPMSC1)

This register is used to control actions associated with low VDD detection
circuitry. If low-voltage detection is enabled, by setting LVDE =1, bits 5-3
control the action associated with the low voltage detection. LVDF is a
flag, used to alert the occurrence of low voltage. LVDAC is used to
acknowledge and clear LVDF.

Figure 5-8. System Power Management Status and Control 1 Register (SPMSC1)

Table 5-2. Real-Time Interrupt Frequency

RTIS2:RTIS1:RTIS0 1-kHz Clock Source Delay(1) Using External Clock Source Delay
(crystal frequency)

0:0:0 Disable periodic wakeup timer Disable periodic wakeup timer

0:0:1 8 ms divide by 256

0:1:0 32 ms divide by 1024

0:1:1 64 ms divide by 2048

1:0:0 128 ms divide by 4096

1:0:1 256 ms divide by 8192

1:1:0 512 ms divide by 16384

1:1:1 1.024 s divide by 32768

1. Normal values are shown in this column based on fRTI = 1 kHz. See the appropriate data sheet fRTI for the tolerance
on these values.

Bit 7 6 5 4 3 2 1 Bit 0

Read: LVDF 0
LVDIE LVDRE(1) LVDSE(1) LVDE(1)

0 0

Write: LVDACK

Reset: 0 0 0 1 1 1 0 0

= Unimplemented or Reserved

1. This bit can be written only one time after reset. Additional writes are ignored.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 109
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LVDF — Low-Voltage Detect Flag

Provided LVDE = 1, this read-only status bit indicates a low-voltage
detect event.

LVDACK — Low-Voltage Detect Acknowledge

This write-only bit is used to acknowledge low voltage detection errors
(write 1 to clear LVDF). Reads always return logic 0.

LVDIE — Low-Voltage Detect Interrupt Enable

This read/write bit enables hardware interrupt requests for LVDF.
1 = Request a hardware interrupt when LVDF = 1.
0 = Hardware interrupt disabled (use polling).

LVDRE — Low-Voltage Detect Reset Enable

This read/write bit enables LVDF errors to generate a hardware reset
(provided LVDE = 1).

1 = Force an MCU reset when LVDF = 1.
0 = LVDF does not generate hardware resets.

LVDSE — Low-Voltage Detect Stop Enable

Provided LVDE = 1, this read/write bit determines whether the
low-voltage detect function operates when the MCU is in stop mode.

1 = Low-voltage detect enabled during stop mode.
0 = Low-voltage detect disabled during stop mode.

LVDE — Low-Voltage Detect Enable

This read/write bit enables low-voltage detect logic and qualifies the
operation of other bits in this register.

1 = LVD logic enabled.
0 = LVD logic disabled.
Reference Manual — Volume I HCS08 — Revision 1

110 Resets and Interrupts MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts
Reset, Interrupt, and System Control Registers and Control Bits

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.8.8 System Power Management Status and Control 2 Register (SPMSC2)

This register is used to report the status of the low voltage warning
function, and to configure the stop mode behavior of the MCU.

Figure 5-9. System Power Management Status and Control 2 Register (SPMSC2)

LVWF — Low-Voltage Warning Flag

The LVWF bit indicates the low voltage warning status.
1 = Low voltage warning is present or was present.
0 = Low voltage warning not present.

LVWACK — Low-Voltage Warning Acknowledge

The LVWF bit indicates the low voltage warning status.

Writing a logic 1 to LVWACK clears LVWF to a logic 0 if a low voltage
warning is not present.

LVDV — Low-Voltage Detect Voltage Select

The LVDV bit selects the LVD trip point voltage (VLVD).
1 = High trip point selected (VLVD = VLVDH).
0 = Low trip point selected (VLVD = VLVDL).

LVWV — Low-Voltage Warning Voltage Select

The LVWV bit selects the LVW trip point voltage (VLVW).
1 = High trip point selected (VLVW = VLVWH).
0 = Low trip point selected (VLVW = VLVWL).

Bit 7 6 5 4 3 2 1 Bit 0

Read: LVWF 0
LVDV LVWV

PPDF 0
PDC PPDC

Write: LVWACK PPDACK

Power-on reset: 0(1) 0 0 0 0 0 0 0

LVD reset: 0(1) 0 U U 0 0 0 0

Any other reset: 0(1) 0 U U 0 0 0 0

= Unimplemented or Reserved U = Unaffected by reset

1. LVWF will be set not just in the case when VSupply transitions below the trip point but also after reset and
VSupply is already below VLVW.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Resets and Interrupts 111
For More Information On This Product,

 Go to: www.freescale.com

Resets and Interrupts

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PPDF — Partial Power Down Flag

The PPDF bit indicates that the MCU has exited the stop2 mode.
1 = Stop2 mode recovery.
0 = Not stop2 mode recovery.

PPDACK — Partial Power Down Acknowledge

Writing a logic 1 to PPDACK clears the PPDF bit.

PDC — Power Down Control

The write-once PDC bit controls entry into the power down (stop2 and
stop1) modes.

1 = Power down modes are enabled.
0 = Power down modes are disabled.

PPDC — Partial Power Down Control

The write-once PPDC bit controls which power down mode, stop1 or
stop2, is selected.

1 = Stop2, partial power down, mode enabled if PDC set.
0 = Stop1, full power down, mode enabled if PDC set.
Reference Manual — Volume I HCS08 — Revision 1

112 Resets and Interrupts MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

HCS08 Family Reference Manual

Section 6. Central Processor Unit (CPU)

6.1 Introduction

The HCS08 CPU is the latest generation in a series of a CPU family that
started in 1979 with the NMOS (N-channel metal-oxide semiconductor)
M6805 Family. Next Motorola developed the M146805 Family using
metal gate CMOS (complementary MOS). Eventually, this process was
replaced by silicon gate CMOS and Motorola developed the M68HC05
CPU. The next major step in this series was the M68HC08 which
significantly expanded the instruction set to allow more efficient C
compilers. The current HCS08 CPU has been developed using a new
process-independent design methodology, allowing it to keep pace with
rapid developments in silicon processing technology.

Compared with the M68HC08 CPU, the HCS08 CPU added:

• New addressing modes for LDHX instruction:

– Extended addressing mode (EXT)

– Indexed — no offset (IX)

– Indexed — 8-bit offset (IX1)

– Indexed — 16-bit offset (IX2)

– Stack pointer relative — 8-bit offset (SP1)

• New addressing modes for STHX and CPHX instructions:

– Extended addressing mode (EXT)

– Stack pointer relative — 8-bit offset (SP1)

• New background (BGND) instruction

• Operating bus frequency increased to 20 MHz on first derivatives

• Instruction queue (or pipeline) to improve instruction throughput
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 113
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The new addressing modes for instructions involving the 16-bit H:X
register pair improve the efficiency of C compilers. The BGND instruction
is used only in debug situations to implement software breakpoints.

The instruction queue improves instruction throughput because it makes
the opcode and one byte of operand information available to the CPU
immediately at the start of an instruction. Without the queue, the CPU
would have to spend the first few cycles of an instruction waiting for the
program information to be fetched into the CPU. On any change of flow
— such as branch, jump, or interrupt — the CPU performs three program
fetches to fill this instruction queue. The instruction queue caused some
changes in the cycle counts and the order of operations within
instructions compared to the M68HC08 CPU, but the benefits from being
able to start instructions sooner more than offset the costs for filling the
queue on changes of flow.

6.2 Programmer’s Model and CPU Registers

Figure 6-1 shows the programmer’s model for the HCS08 CPU. These
registers are not located in the memory map of the microcontroller. They
are built directly inside the CPU logic.
Reference Manual — Volume I HCS08 — Revision 1

114 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Programmer’s Model and CPU Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 6-1. CPU Registers

6.2.1 Accumulator (A)

This general-purpose 8-bit register is the primary data register for the
HCS08. Data can be read into A from memory with a load accumulator
(LDA) instruction or from the stack with a pull (PULA) instruction. The
data in A can be written into memory with a store accumulator (STA) or
onto the stack with a push (PSHA). Various addressing mode variations
allow a great deal of flexibility in specifying the memory location involved
in a load or store instruction. Transfer instructions allow values to be
transferred from A to X (TAX), from X to A (TXA), from A to the CCR
(TAP), or from the CCR to A (TPA). The P in TAP and TPA stands for
processor status. The nibble-swap A (NSA) instruction exchanges the
high-order four bits of A with the low-order four bits.

You can also perform mathematical, shift, and logical operations on the
value in A as in ADD, SUB, ASLA, RORA, INCA, DECA, AND, ORA,
EOR, etc. In some of these instructions, such as INCA or ASLA, the
value in A is the only input operand and the result replaces the value in
A. In other cases, such as ADD or AND, there are two operands: the
value in A and a second value from memory. The result of the arithmetic
or logical operation replaces the value in A.

SP

PC

CONDITION CODE REGISTER

CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY (FROM BIT 3)
TWO’S COMPLEMENT OVERFLOW

H X

0

0

0

7

15

15

7 0

ACCUMULATOR A

INDEX REGISTER (LOW)INDEX REGISTER (HIGH)

STACK POINTER

8 7

PROGRAM COUNTER

16-BIT INDEX REGISTER H:X

CCRCV 1 1 H I N Z
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 115
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Multiply and divide instructions use A as an operand and also store part
of the result in A. MUL does an unsigned multiply of A times X and stores
the 16-bit result in X:A. DIV does an unsigned 16-bit by 8-bit divide of
H:A by X and stores the result in A and the remainder in H.

The decimal adjust A (DAA) instruction is used, after an ADD or ADC
instruction involving two BCD numbers, to correct the value in A to a
valid 2-digit BCD number with a proper carry indication. For a more
detailed discussion of this instruction, refer to 6.5.2.4 BCD Arithmetic.

It should be apparent that the accumulator is a very busy register, so it
would be helpful if some operations could avoid using A. For instance,
memory-to-memory move instructions (MOV) are helpful. DBNZ also
helps because it allows a loop counter to be implemented in a memory
variable rather than the accumulator. The X register can also be used as
a second general-purpose 8-bit data register in many cases. Some
arithmetic operations such as clear, increment, decrement, complement,
negate, and shift can also be used with the X register.

6.2.2 Index Register (H:X)

This 16-bit index register is actually two separate 8-bit registers (H and
X). The indexed addressing modes use H:X as a 16-bit base reference
pointer and variations of indexed addressing allow an
instruction-supplied 16-bit offset, 8-bit offset, or no offset. Other
variations of indexed addressing automatically increment the 16-bit
index register after the index is used to access a memory operand. Refer
to 6.3.6 Indexed Addressing Mode for a more detailed discussion of
the indexed addressing mode.

The 8-bit X register (low-order half of H:X) can also be used as a general
purpose data register. The read-modify-write instructions (ASLX, ASRX,
CLRX, COMX, DECX, INCX, LSLX, LSRX, NEGX, ROLX, RORX, and
TSTX) allow a subset of the ALU operations that can be performed on
the accumulator. Be careful not to try to use these instructions when you
really want to affect the full 16-bit H:X index register because these
instructions only affect X. Consider the following instructions and
sequences to get 16-bit versions of 8-bit operations on X.
Reference Manual — Volume I HCS08 — Revision 1

116 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Programmer’s Model and CPU Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 ldhx #$0000 ;16-bit version of CLRX
 aix #1 ;16-bit version of INCX
 aix #-1 ;16-bit version of DECX
 cphx #$0000 ;16-bit version of TSTX

Load, store, push, and pull instructions are available for X with the same
addressing mode variations as the ones used for A. There are also load
and store instructions for the 16-bit H:X register pair; however, not as
many different addressing modes are offered. There are push (PSHH)
and pull (PULH) instructions for H, and simple 2-instruction sequences
can be used to push and pull the full 16-bit index register (H:X).

 pshx ;push low half of H:X
 pshh ;push high half of H:X

 pulh ;pull high half of H:X
 pulx ;pull low half of H:X

Sometimes the stack pointer value needs to be transferred to the H:X
register pair so H:X can act as a pointer to information on the stack. The
stack pointer always points at the next available location on the stack,
but normally the index register should point directly at data. Because of
this, the 16-bit value in SP is incremented by one as it is transferred to
H:X with a TSX instruction. Because of this adjustment, after a TSX
instruction H:X points at the last byte of data that was stacked. A
complementary adjustment takes place during a TXS instruction. (The
value is decremented by one during TXS.) One way to think about this
is that the 16-bit address points at the next available stack location when
it is in SP and to the last byte of information that was stacked when it is
in H:X.

For compatibility with the earlier M68HC05, interrupts do not save the H
register on the stack. It is good practice to include a PSHH instruction as
the first instruction in interrupt service routines (to save H) and to include
a PULH instruction (to restore H) as the last instruction before the RTI
that ends the service routine. You may leave these instructions out if you
are absolutely sure H is not altered in your interrupt service routine, but
be sure there are no AIX instructions or instructions that use the
post-increment variation of indexed addressing because these
instructions could cause H to change. Unless you really can’t tolerate the
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 117
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

extra two bytes of program space, one extra temporary byte on the
stack, and five bus cycles of execution time, it is much safer to simply
include the PSHH and PULH as a matter of habit.

Multiply and divide instructions use X as an operand, and MUL also
stores part of the result in X. MUL does an unsigned multiply of A times
X and stores the 16-bit result in X:A. DIV does an unsigned 16-bit by 8-bit
divide of H:A by X and stores the result in A and the remainder in H.

6.2.3 Stack Pointer (SP)

This 16-bit address pointer register is used by the CPU to automatically
maintain a last-in-first-out (LIFO) stack. When the CPU executes a jump-
or branch-to-subroutine (JSR or BSR) instruction, it automatically saves
the return address on the stack. When the return-from-subroutine (RTS)
instruction at the end of the subroutine is executed, this return address
is automatically recovered from the stack so execution resumes where
it left off when the subroutine was called. Since SP is a full 16-bit register,
the stack may be located anywhere in the memory map, and it may be
any size up to the size of available RAM on the chip.

The stack pointer always points at the next available location on the
stack. When a value is pushed onto the stack, it is written to the address
pointed to by the SP and then SP is automatically decremented to point
at the next available location. When a value is pulled from the stack, SP
is first incremented to point at the most recent data that was pushed on
the stack, and then the data is read from the address now pointed to by
SP. Notice that the data pointed to by SP is not changed in the process
of pulling it from the stack. If you were to look at memory below where
SP is currently pointing, you would see old values that were previously
stored on the stack. When new values are pushed onto the stack, they
over-write whatever is in those memory locations. If RAM in the area of
the stack was cleared during reset initialization, the maximum depth that
the stack has grown to can be seen by noticing which memory locations
are still clear.

For compatibility with the earlier M68HC05, SP is set to $00FF by reset.
This is almost never where the top of the stack in new HCS08
applications should be because the RAM in the area from the end of the
input/output (I/O) and control registers to $00FF is more valuable for
Reference Manual — Volume I HCS08 — Revision 1

118 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Programmer’s Model and CPU Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

frequently accessed variables. The memory area from $0000 to $00FF
can be accessed using the direct addressing mode which saves
program space and executes faster than general accesses to other
memory locations.

Also for compatibility with the M68HC05, the reset stack pointer (RSP)
instruction forces the low-order half of SP to $FF. In the M68HC05, this
forced SP to the same value ($00FF) it had after reset. RSP is seldom
used in the HCS08 because it doesn’t affect the high-order half of SP,
and, therefore, it doesn’t necessarily restore SP to its reset value.

In new HCS08 programs you would typically initialize SP to point at the
highest address in the on-chip RAM. Normally, the following
2-instruction sequence is included within the first few instructions of a
reset initialization routine.

 ldhx #RamLast+1 ;point one past RAM
 txs ;SP<-(H:X-1)

Normally, RamLast is defined in an equate or header file that describes
the particular HCS08 device used in your application. RamLast+1
causes H:X to be loaded with the next higher address past the end of
RAM because the TXS instruction includes an automatic adjustment
(decrement by 1) on the value during the transfer. This adjustment
makes SP point at the next available location on the stack. In this case,
SP now points at the last (highest address value) location in RAM, and
this will be the first location where data will be stacked. The stack will
grow toward lower addresses as values are pushed onto the stack.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 119
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When an interrupt is requested, the CPU saves the current contents of
CPU registers on the stack so, after finishing the interrupt service
routine, processing can resume where it left off. Figure 6-2 shows the
order that CPU registers are saved on the stack in response to an
interrupt. Before the interrupt, SP points to the next available location on
the stack. As each value is saved on the stack, the data is stored to the
location pointed to by SP and SP automatically is decremented to point
at the next available location on the stack. The return-from-interrupt
(RTI) instruction that concludes the interrupt service routine restores the
CPU registers by pulling them from the stack in the reverse order. Refer
to 6.4.2 Interrupts and 5.5 Interrupts for more detailed discussions of
interrupts.

Figure 6-2. Interrupt Stack Frame

For compatibility with the earlier M68HC05 CPU, interrupts do not save
the H register on the stack. It is good practice to include a PSHH
instruction as the first instruction in your interrupt service routines (to
save H) and to include a PULH instruction (to restore H) as the last
instruction before the RTI that ends the service routine.

CONDITION CODE REGISTER

ACCUMULATOR

INDEX REGISTER (LOW BYTE X)

PROGRAM COUNTER HIGH

 High byte (H) of index register is not stacked.

*

*

PROGRAM COUNTER LOW

•

•

•

•

•

•7 0

UNSTACKING
ORDER

STACKING
ORDER

5

4

3

2

1

1

2

3

4

5

TOWARD LOWER ADDRESSES

TOWARD HIGHER ADDRESSES

SP BEFORE

SP AFTER
INTERRUPT STACKING

THE INTERRUPT
Reference Manual — Volume I HCS08 — Revision 1

120 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Programmer’s Model and CPU Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The add immediate value to SP (AIS) instruction may be used to allocate
space on the stack for local variables. Although this is most common in
C programs, the technique is also useful for assembly language
programs. The following code example demonstrates allocation and
deallocation of space for local variables on the stack. There is a more
detailed discussion of stack techniques in 6.5.6 Stack-Related
Instructions.

 ais #-5 ;allocate 5 bytes for locals
 " " " "
 ais #5 ;deallocate local space

SP-relative indexed addressing with 8-bit offset (SP1) or 16-bit offset
(SP2) allows many instructions to directly access the information on the
stack. This is important for efficient C compilers and the same
techniques can be used in assembly language programs.

Push and pull instructions are similar to store and load instructions
except they load or store the data relative to the current SP value rather
than accessing a specific memory location. The stack must always be
“balanced,” meaning that for every operation that places a byte of data
on the stack, there must be a corresponding operation that removes a
byte of data. For each JSR or BSR, there should be an RTS. For each
interrupt or SWI, there should be an RTI. For each push, there should be
a pull. If you allocate space for locals with an AIS instruction, you should
have a corresponding AIS instruction to deallocate the same amount
of space.

Suppose you had a subroutine that included a PSHA instruction, but you
forgot to do a corresponding PULA before returning from the subroutine.
The return from subroutine (RTS) would not work correctly because SP
would not be pointing at the correct return address when RTS was
executed.

Another error is a subroutine that calls itself, but doesn’t have a reliable
way to limit the number of nesting iterations. This produces a stack that
grows beyond the space set aside for the stack. Usually this ends when
stack operations start storing things on top of RAM variables or I/O and
control registers. This is called stack overflow, and it can also happen
when an interrupt service routine clears the I mask inside the service
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 121
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

routine which makes nested interrupts possible. Each level of nesting
adds at least five more bytes to the stack.

6.2.4 Program Counter (PC)

The program counter is a 16-bit register that contains the address of the
next instruction or operand to be fetched.

During normal execution, the program counter automatically increments
to the next sequential memory location every time an instruction or
operand is fetched. Jump, branch, interrupt, and return operations load
the program counter with an address other than that of the next
sequential location. This is called a change-of-flow.

During reset, the program counter is loaded with the reset vector which
is located at address $FFFE and $FFFF. The vector is the address of the
first instruction to be executed after exiting from the reset state.

6.2.5 Condition Code Register

The 8-bit condition code register contains the interrupt mask (I) and five
status flags. Bit 6 and bit 5 are permanently set to logic 1. The following
paragraphs provide detailed information about the CCR bits and how
they are used. Figure 6-3 identifies the CCR bits and their bit positions.

Figure 6-3. Condition Code Register (CCR)

CONDITION CODE REGISTER

CARRY
ZERO
NEGATIVE
INTERRUPT MASK
HALF-CARRY (FROM BIT 3)
TWO’S COMPLEMENT OVERFLOW

7 0

CCRCV 1 1 H I N Z
Reference Manual — Volume I HCS08 — Revision 1

122 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Programmer’s Model and CPU Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The I bit is an interrupt mask control bit unlike the other bits in the CCR
which are processor status bits. The I bit is also the only one of the six
implemented bits in the CCR to be initialized by reset. The I bit is forced
to 1 at reset so interrupts are blocked until you have initialized the stack
pointer. The other five status bits (V, H, N, Z, and C) are unknown after
reset and will take on known values only after executing an instruction
that affects the bit(s). There is no reason to force these bits to a particular
value at reset because it would not make sense to do a conditional
branch that used these bits unless you had just executed an instruction
that affected them.

The five status bits indicate the results of arithmetic and other
instructions. Conditional branch instructions will either branch to a new
program location or allow the program to continue to the next instruction
after the branch, depending on the values in the CCR status bits. Simple
conditional branch instructions (BCC, BCS, BNE, BEQ, BHCC, BHCS,
BMC, BMS, BPL, and BMI) cause a branch depending on the state of a
single CCR bit. Other branch instructions are controlled by a more
complex combination of two or three of the CCR bits. For example
branch if less than or equal (BLE) branches if the Boolean expression
[(Z) | (N⊕ V)] is true. The V bit (which was not present in the older
M68HC05 instruction set) allows signed branches because V is the two’s
complement overflow indicator. Separate unsigned branch instructions
are based on the C bit which is effectively an overflow indicator for
unsigned operations.

Often, the conditional branch immediately follows the instruction that
caused the CCR bit(s) to be updated as in this sequence:

 cmp #5 ;compare accumulator A to 5
 blt less ;branch if A<5
more: deca ;do this if A not < 5
less:
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 123
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Other instructions may be executed between the test and the conditional
branch as long as only instructions that do not disturb the CCR bits that
affect the conditional branch are used. A common example is when a
test is performed in a subroutine or function and the conditional branch
is not executed until the subroutine has returned to the main program.
This is a form of parameter passing (that is, information is returned to the
calling program in the condition code bits). Consider the following
example which checks a character, received through the SCI, to see if it
is the ASCII code for a valid hexadecimal digit 0–9, a–f, or A–F.

 " " " "
 lda SCI1D ;read character from SCI
 jsr upcase ;strip MSB & make upper case
 jsr ishex ;see if valid hex digit
 bne errorHex ;branch if char wasn't hex
goodHex: nop ;here if it was good hex digit
errorHex: ;here if it wasn't
 " " " "

* ishex - check character for valid hexadecimal (0-9 or A-F)
* on entry A contains an unknown upper-case character
* returns with original character in A and Z set or cleared
* if A was valid hexadecimal, Z=1, otherwise Z=0

ishex: psha ;save original character
 cmp #'0' ;check for < ASCII zero
 blo nothex ;branches if C=0 (Z also 0)
 cmp #'9' ;check for 0-9
 bls okhex ;branches if ASCII 0-9
 cmp #'A' ;check for < ASCII A
 blo nothex ;branches if C=0 (Z also 0)
 cmp #'F' ;check for A-F
 bhi nothex ;branches if > ASCII F
okhex: clra ;forces Z bit to 1
nothex: pula ;restore original character
 rts ;return Z=1 if char was hex

Figure 6-4. Parameter Passing in CCR Bits
Reference Manual — Volume I HCS08 — Revision 1

124 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Programmer’s Model and CPU Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Three branch instructions could lead to the exit sequence at nothex and
in each case the programmer knows that the Z bit in the CCR would have
to be 0 if the branch was taken. There are two ways to get to okhex and
in each case the Z bit could be either 0 or 1, so the CLRA instruction is
used to force the Z bit to be set to 1. The PULA and RTS instructions are
executed after the tests that updated the Z bit but before the BNE
errorHex instruction that uses the Z value. This works because the
programmer checked the instruction set details to be sure PULA and
RTS would not disturb the Z bit. This example shows that it is just as
important to know which instructions do not change CCR status bits as
it is to know which instructions do affect CCR status bits.

I — Interrupt Mask

The interrupt mask bit is a global interrupt mask that blocks all
maskable interrupt sources while I = 1. Reset forces the I bit to logic 1
to block interrupts until the application program can initialize the stack
pointer. If interrupts were allowed before the stack pointer was
initialized, CPU register values could get saved (written) to
inappropriate memory locations. The user program can set or clear I
using the set interrupt mask (SEI) and clear interrupt mask (CLI)
instructions, respectively.

The I bit is set automatically in response to any interrupt (including the
SWI instruction) to prevent unwanted nesting of interrupts. It is
possible to explicitly allow nesting of interrupts in a controlled manner
by including a CLI instruction inside an interrupt service routine;
however, this is not usually recommended because it can lead to
subtle system errors which are particularly difficult to find and correct.

The WAIT and STOP instructions automatically clear the I bit because
interrupts are the normal way to wake up the CPU from stop or wait
modes. These instructions could have been designed so a separate
CLI instruction was needed before executing WAIT or STOP.
However, clearing I within these instructions saves the program
space and execution time the separate CLI would have required, and
prevents any possibility of an interrupt getting recognized after I is
cleared but before the WAIT or STOP instruction.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 125
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When an interrupt occurs, The CCR value is saved on the stack
before the I bit is automatically set (I would be 0 in the stacked CCR
value). When the return-from-interrupt (RTI) instruction is executed to
return to the main program, the act of restoring the CCR value from
the stack normally clears the I bit.

When the I bit is set, the change takes effect too late in the instruction
to prevent an interrupt at the instruction boundary immediately
following an SEI or TAP instruction. In the case of setting I with a TAP
or SEI instruction, I is actually set at the instruction boundary at the
end of the TAP or SEI instruction. In the case of clearing I with a TAP
or CLI instruction, I is actually cleared at the instruction boundary at
the end of the TAP or SEI instruction. Because of this, the next
instruction, after a CLI or TAP that cleared I, will always execute even
if an interrupt was already waiting when the CLI or TAP that cleared I
was executed. In the case of the RTI instruction, the CCR is restored
during the first cycle of the instruction so the 1-cycle delay, associated
with clearing I, expires several cycles before the RTI instruction
finishes. WAIT and STOP also clear I in the middle of the instruction,
so the delay expires before actually entering wait or stop mode.

V — Two’s Complement Overflow Flag

This bit is set by the CPU when a two’s complement overflow results
from an arithmetic operation on signed binary values. For an addition
operation, the V bit will be set if the sign (bit 7) is the same for both
operands that were being added, but different from the sign of the
result. For a subtract or compare operation, the V bit will be set if a
positive number (bit 7=0) is subtracted from a negative number
(bit 7=1) and the result is positive, or if a negative number is
subtracted from a positive number and the result is negative.

The most common use of the V bit is to support the signed conditional
branches (BLT, BLE, BGE, and BGT) after executing a CMP, CPHX,
CPX, SBC, or SUB instruction. These instructions cause the ALU to
subtract the contents of the referenced memory location (m) from the
contents of a CPU register (r) and to set or clear V, N, Z, and C
according to the results. (C is used for unsigned branches but not for
signed conditional branches.) In the case of BLT, for example, the
branch will be taken if the CPU register (r) was less than the memory
location (m).
Reference Manual — Volume I HCS08 — Revision 1

126 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Programmer’s Model and CPU Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Several other instructions affect the V bit, and a clever programmer
can sometimes use the condition of the V bit to control program flow.
The Boolean formula for each affected CCR bit is given in the
instruction details in Appendix A. Instruction Set Details.

The ADD and ADC instructions set V if both operands had the same
sign and the sign of the result is different. Since no simple branch
instructions are based on V alone, a sequence of two instructions is
needed to test for two’s complement overflow after an add operation.
You could say BGE to no_overflow, followed by BMI to no_overflow,
and falling through both of these branches implies there was a signed
overflow condition. Operations like this are not common, but they can
be understood by studying Boolean formulae and the Boolean
equations for the branches in the instruction set detail pages in
Appendix A. Instruction Set Details.

Arithmetic or logical shift left (ASL or LSL) is like multiplying a binary
number by two. In this case, the V bit will be set if the sign of the result
is different from the original signed value. The meaning of V after a
right shift is less useful for signed arithmetic operations but could
have some useful logical meaning in some systems.

The DAA instruction can change the V bit, so don’t try to do a signed
branch after a DAA instruction without executing a new compare or
subtract instruction.

H — Half-Carry (Carry from Bit 3 to Bit 4)

The half-carry flag is intended for use with operations involving
binary-coded-decimal (BCD) numbers. A BCD number is a decimal
number from 0 through 9 which is coded into a single 4-bit binary
value. This allows a single 8-bit value to hold exactly two BCD digits.
The hexadecimal values $A through $F are considered illegal BCD
values. The ALU’s normal binary addition function can be used to add
BCD numbers, but the results need to be checked and corrected so
the result is still a valid BCD value. In the earlier M68HC08, the
programmer had to do this checking and correction in a small
program using the BHCC and BHCS conditional branch instructions.
The HCS08 includes the decimal adjust accumulator (DAA)
instruction to simplify the checking and correction operation into a
single instruction.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 127
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The H bit is affected only by a few instructions. RTI restores the H bit
to the value it had before servicing an interrupt. TAP allows the
programmer to directly load all CCR bits with the contents of the
accumulator. The multiply instruction (MUL) clears H as a side effect
of its operation so avoid using a MUL instruction between an add
operation and the DAA, BHCC, or BHCS instruction that needs the
H bit value.

The add instructions (ADD and ADC) are the only instructions that
affect the H bit in a meaningful way. These instructions set the H bit if
there was a carry out of bit 3 into bit 4 of the result (from one BCD digit
to the next). Although BHCC and BHCS instructions could be used to
build a program that restores the result of an addition with BCD
operands into a valid BCD result, it is more likely that you would use
the DAA instruction because it performs the whole checking and
correction operation in a single instruction. Refer to 6.5.2.4 BCD
Arithmetic for a more detailed explanation of BCD arithmetic.

N — Negative Flag

This flag indicates that the most significant bit of the result was set (1).
It is called the negative flag because in two’s complement notation a
number is said to be negative if its most significant bit is a logic 1. If
an operation involves 16-bit numbers (such as LDHX or CPHX), the
N bit will be set if bit 15 of the result is set. In practice, this flag has
many uses that are not related to signed arithmetic.

Branch if plus (BPL) and branch if minus (BMI) are simple branches
which branch based solely on the value in the N bit. The N bit is also
used by the signed branches BLT, BLE, BGE, and BGT since it
indicates the sign of the result. All load, store, move, arithmetic,
logical, shift, and rotate instructions cause the N bit to be updated.
TAP allows N to be set directly from the value in bit 2 of A, and RTI
restores N to the value that was saved on the stack when the interrupt
service routine started.

The most significant bit of an I/O port, a control register, or a memory
variable can be tested efficiently because just loading data from or
storing data to a location automatically updates the N bit. In the
following code fragment, a port is read where a switch is connected to
bit 7. The N bit indicates whether the switch was on or off without any
further test.
Reference Manual — Volume I HCS08 — Revision 1

128 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Programmer’s Model and CPU Registers

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 lda PTAD ;read I/O port A
 bmi swOff ;branches if PTA7 was high
swOn: nop ;here if MSB=0
swOff: ;here if MSB=1 (sw off)

Z — Zero Flag

The Z bit is set to indicate the result of an operation was $00 (or $0000
if it was a 16-bit operation). The related branch instructions are
branch if equal (BEQ) and branch if not equal (BNE) because
compare instructions perform an internal subtraction of a memory
operand from the contents of a CPU register. If the original operands
were equal, the result of this internal subtraction would be 0 and Z
would be set to 1.

Branch if equal (BEQ) and branch if not equal (BNE) are simple
branches which branch based solely on the value in the Z bit. The Z
bit is also used by the signed branches BLE and BGT and the
unsigned branches BLS and BHI. All load, store, move, arithmetic,
logical, shift, and rotate instructions cause the Z bit to be updated.
TAP allows Z to be set directly from the value in bit 1 of A, and RTI
restores Z to the value that was saved on the stack when the interrupt
service routine started.

Figure 6-4. Parameter Passing in CCR Bits shows an example
where the Z bit is used to pass information back to a main program
from a subroutine. To understand this example, study how compare
instructions affect CCR bits and the Boolean formulae that are used
by the branch instructions. This information is found in
Appendix A. Instruction Set Details.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 129
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C — Carry (Out of Bit 7)

After an addition operation, the C bit is set if the source operands
were both greater than or equal to $80 or if one of the operands was
greater than or equal to $80 and the result was less than $80. This is
equivalent to an unsigned overflow. A subtract or compare performs
a subtraction of a memory operand from the contents of a CPU
register so after a subtract operation, the C bit is set if the unsigned
value of the memory operand was greater than the unsigned value of
the CPU register. This is equivalent to an unsigned borrow or
underflow.

Branch if carry clear (BCC) and branch if carry set (BCS) are simple
branches which branch based solely on the value in the C bit. The C
bit is also used by the unsigned branches BLO, BLS, BHS, and BHI.
Add, subtract, shift, and rotate instructions cause the C bit to be
updated. After a divide instruction, C is set if there was an attempt to
perform an illegal divide-by-zero operation. TAP allows C to be set
directly from the value in bit 0 of A, and RTI restores C to the value
that was saved on the stack when the interrupt service routine started.
The branch if bit set (BRSET) and branch if bit clear (BRCLR)
instructions copy the tested bit into the C bit to facilitate efficient
serial-to-parallel conversion algorithms. Set carry (SEC) and clear
carry (CLC) allow the carry bit to be set or cleared directly. This is
useful in combination with the shift and rotate instructions and for
routines that pass status information back to a main program, from a
subroutine, in the C bit.

The C bit is included in shift and rotate operations so those operations
can easily be extended to multibyte operands. The shift and rotate
operations can be considered 9-bit shifts which include an 8-bit
operand or CPU register and the carry bit of the CCR. After a logical
shift, C holds the bit that was shifted out of the 8-bit operand. If a
rotate instruction is used next, this C bit is shifted into the operand for
the rotate, and the bit that gets shifted out the other end of the
operand replaces the value in C so it can be used in subsequent
rotate instructions. Refer to 6.5.4 Shift and Rotate Instructions to
see a more detailed demonstration of this technique.
Reference Manual — Volume I HCS08 — Revision 1

130 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3 Addressing Modes

Whenever the MCU reads information from memory or writes
information into memory, an addressing mode is used to determine the
exact address where the information is read from or written to. This
section explains several different ways to address memory, and each is
useful in varying programming situations. For instance, in some
addressing modes, the address is determined by the assembler when
the program is written. Other addressing modes allow the address to be
influenced by the contents of CPU registers. This is important because
it allows the address to be computed during execution of the program.

Every opcode tells the CPU to perform a certain operation in a certain
way. Many instructions such as load accumulator (LDA) allow several
different ways to specify the memory location to be operated on, and
each addressing mode variation requires a separate opcode. All of these
variations use the same instruction mnemonic, and the assembler
knows which opcode to use based on the syntax of the operand field. In
some cases, special characters are used to indicate a specific
addressing mode (such as the # [pound] symbol which indicates
immediate addressing mode). In other cases, the value of the operand
tells the assembler which addressing mode to use. For example, the
assembler chooses direct addressing mode instead of extended
addressing mode if the operand address is between $0000 and $00FF.

Some instructions use more than one addressing mode. For example,
the move instructions use one addressing mode to access the source
value from memory and a second addressing mode to access the
destination memory location. For these move instructions, both
addressing modes are listed in the documentation. All branch
instructions use relative (REL) addressing mode to determine the
destination for the branch, but BRCLR, BRSET, CBEQ, and DBNZ also
need to access a memory operand. These instructions are classified by
the addressing mode used for the memory operand, and the relative
addressing mode for the branch offset is just assumed.

In the following paragraphs, the discussion includes how each
addressing mode works and the syntax clues the assembler uses to
know that the programmer wants a specific addressing mode.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 131
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3.1 Inherent Addressing Mode (INH)

This addressing mode is used when the CPU inherently knows
everything it needs to complete the instruction, and no addressing
information is supplied in the source code. Usually, the operands that the
CPU needs are located in the CPU’s internal registers, as in ASLA,
CLRX, DAA, DIV, RSP, and others. Instructions like clear carry bit (CLC)
and set interrupt mask (SEI) affect a single bit within the CCR. A few
inherent instructions, including no operation (NOP) and background
(BGND), have no operands.

Another group of instructions listed as inherent (INH) actually access
memory based on the value of the stack pointer. Instructions of this type
include PSHx, PULx, RTI, RTS, and SWI. A purist could argue that SWI
uses a form of indexed addressing to push CPU register values onto the
stack and extended addressing to fetch the SWI vector, but since there
is no program-supplied addressing information, it is considered an
inherent instruction.

6.3.2 Relative Addressing Mode (REL)

Relative addressing mode is used to specify the destination address for
branch instructions. Typically, the programmer specifies the destination
with a program label or an expression in the operand field of the branch
instruction. The assembler calculates the difference between the
location counter (which points at the next address after the branch
instruction at the time) and the address represented by the label or
expression in the operand field. This difference is called the offset and is
an 8-bit two’s complement number. The assembler stores this offset in
the object code for the branch instruction.

During execution, the CPU evaluates the condition that controls the
branch. If the branch condition is true, the CPU sign-extends the offset
to a 16-bit value, adds the offset to the current PC, and uses this as the
address where it will fetch the next instruction and continue execution
rather than continuing execution with the next instruction after the
branch. Since the offset is an 8-bit two’s complement value, the
destination must be within the range –128 to +127 locations from the
address that follows the last byte of object code for the branch
instruction.
Reference Manual — Volume I HCS08 — Revision 1

132 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A common method to create a simple infinite loop is to use a branch
instruction that branches to itself. This is sometimes used to end short
code segments during debug. Typically, to get out of this infinite loop,
use the debug host (through background commands) to stop the
program, examine registers and memory or to start execution from a
new location. This construct is not used in normal application programs
except in the case where the program has detected an error and wants
to force the COP watchdog timer to timeout. (The branch in the infinite
loop executes repeatedly until the watchdog timer eventually causes
a reset.)

6.3.3 Immediate Addressing Mode (IMM)

In this addressing mode, the operand is located immediately after the
opcode in the instruction stream. This addressing mode is used when
the programmer wants to use an explicit value that is known at the time
the program is written. A # (pound) symbol is used to tell the assembler
to use the operand as a data value rather than an address where the
desired value should be accessed.

The size (8 bits or 16 bits) of the immediate operand is assumed based
on the size of the CPU register indicated in the instruction. For example,
a load A or add A instruction implies an 8-bit operand while a load H:X
or compare H:X instruction implies a 16-bit operand to match the width
of the H:X register pair. The assembler automatically will truncate or
extend the operand as needed to match the size needed for the
instruction. Most assemblers generate a warning if a 16-bit operand is
provided where an 8-bit operand was expected.

A common programming error is to accidentally forget the # symbol
before an immediate operand. In the following example, the first
instruction tells the assembler to compare the contents of the H:X
register pair to the address of tableEnd. Leaving the # symbol off in the
second instruction tells the assembler to compare the contents of the
H:X register pair to the 16-bit value stored at tableEnd and tableEnd+1
(using extended addressing mode).
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 133
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 182 C04A 65 00BF cphx #tableEnd ;H:X points at end of table?
 183 C04D 75 BF cphx tableEnd ;compare to value at tableEnd
 184 C04F A6 55 lda #$55 ;load pattern $55 into A
 185 C051 B6 55 lda $55 ;load A from address $0055

It is the programmer’s responsibility to use the # symbol to tell the
assembler when immediate addressing should be used. The assembler
does not consider it an error to leave off the # symbol because the
resulting statement is still a valid instruction (although it may mean
something different than the programmer intended).

6.3.4 Direct Addressing Mode (DIR)

This addressing mode is used to access operands located in direct
address space ($0000 through $00FF). This is a more efficient
addressing mode than extended addressing because the upper 8 bits of
the address are implied rather than being explicitly provided in the
instruction. This saves a byte of program space and the bus cycle that
would have been needed to fetch this byte.

The programmer does not use any special syntax to choose this mode.
Rather, the assembler evaluates the label or expression in the operand
field and automatically chooses direct addressing mode if the resulting
address is in the range $0000 through $00FF. During execution, the
CPU gets the low byte of the direct address from the operand byte that
follows the opcode, appends a high byte of $00, and uses this 16-bit
address ($00xx) to access the intended operand.

Most of the I/O and control registers are located in the first 64 or
128 bytes of memory (a few rarely used registers are located in high
memory at $18xx). Some of the on-chip RAM is also located in the direct
page to allow frequently accessed variables to be located there so direct
addressing can be used. After reset, the stack pointer points at $00FF
and it is recommended that you change SP to point at the top of RAM
instead, to make the RAM below $00FF available for direct addressed
variables.
Reference Manual — Volume I HCS08 — Revision 1

134 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3.5 Extended Addressing Mode (EXT)

In the extended addressing mode, the full 16-bit address of the operand
is included in the object code in the next two bytes after the opcode. This
addressing mode can be used to access any location in the 64-Kbyte
memory map. Normally, the programmer uses a program label to specify
the address and the assembler substitutes the equivalent 16-bit address
as the program is assembled.

6.3.6 Indexed Addressing Mode

Indexed addressing mode is sometimes called indirect addressing mode
because a CPU index register is used as a reference, an offset is
optionally added to the index reference, and the resulting address is then
used to access the intended operand. In some cases the value in the
index register is incremented automatically after the operand has been
accessed. This can save programming steps by making the index
register point at the next operand in a list or by incrementing a loop
count.

An important feature of indexed addressing mode is that the operand
address is computed during execution based on the then-current
contents of a CPU index register rather than being a constant address
location that was determined during program assembly. This allows the
programmer to write a compact program loop that accesses successive
values in a list or table on each pass through the loop. It also allows a
program to be written that accesses different operand locations
depending on the results of earlier program instructions (rather than
accessing a location that was determined when the program was
written).

6.3.6.1 Indexed, No Offset (IX)

In this variation of indexed addressing, the content of the H:X index
register pair is used as the address of the operand to be accessed.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 135
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3.6.2 Indexed, No Offset with Post Increment (IX+)

In this variation of indexed addressing, the content of the H:X index
register pair is used to access the intended operand, and then the H:X
register pair is incremented by one. CBEQ and MOV instructions are the
only instructions which use this addressing mode.

 ldhx #stringBytes ;point at top of block
 lda #' ' ;pattern to search for
findSP: cbeq x+,foundSP ;found ASCII space ($20) ?
; H:X pointing at location after space
 bra findSP ;keep looking
foundSP: aix #-1 ;back up to the space

6.3.6.3 Indexed, 8-Bit Offset (IX1)

In this variation of indexed addressing, an instruction-supplied unsigned
8-bit offset is added to the H:X register pair to form the address of the
operand to be accessed. The addition of the offset is an internal
calculation that does not affect the contents of H:X.

6.3.6.4 Indexed, 8-Bit Offset with Post Increment (IX1+)

In this variation of indexed addressing, an instruction-supplied unsigned
8-bit offset is added to the H:X register pair to form the address of the
operand to be accessed. The addition of the offset is an internal
calculation that does not affect the contents of H:X. After the operand
has been accessed, the H:X register pair is incremented by one. CBEQ
is the only instruction which uses this addressing mode.

6.3.6.5 Indexed, 16-Bit Offset (IX2)

In this variation of indexed addressing, an instruction-supplied unsigned
16-bit offset is added to the H:X register pair to form the address of the
operand to be accessed. The addition of the offset is an internal
calculation that does not affect the contents of H:X.

This addressing mode is particularly useful for addressing two data
structures in different areas of memory from a single index reference
value in H:X. The following example demonstrates this technique.
Reference Manual — Volume I HCS08 — Revision 1

136 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Addressing Modes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 199 ; string compare with one string in flash, the other in RAM (IX2)
 200 C064 45 0088 ldhx #moveBlk1 ;point at string 1 in RAM
 201 C067 65 0092 chkLoop: cphx #moveBlk1+10 ;see if past end
 202 C06A 27 06 beq stringOK ;if so, you are done
 203 C06C D6 BF7F lda (stringBytes-moveBlk1),x ;load from flash
 204 C06F 71 F6 cbeq x+,chkLoop ;compare to byte in flash
 205 C071 9D stringBad: nop ;here if string didn't match
 206 stringOK: ;here if it did

In the example, the two data structures have similar structures. One is in
RAM and holds current data values. The second data structure is a set
of constant values in FLASH memory. The assembler computes the
expression (stringBytes–moveBlk1) to get the 16-bit offset from
moveBlk1 in RAM to stringBytes in flash. As the index is incremented (in
the CBEQ instruction), the LDA (stringBytes-moveBlk1),X accesses the
next byte from stringBytes and CBEQ 0,X+,chkLoop accesses the next
byte from moveBlk1 in RAM.

6.3.6.6 SP-Relative, 8-Bit Offset (SP1)

In this variation of indexed addressing, an instruction-supplied unsigned
8-bit offset is added to the stack pointer (SP) to form the address of the
operand to be accessed. The addition of the offset is an internal
calculation that does not affect the contents of SP. Note that the SP
points at the next available location on the stack rather than the last
value that was pushed onto the stack, so read operations with an offset
of zero are normally not useful.

Stack pointer relative addressing is most commonly used to access
parameters and local variables on the stack. This is a common practice
for compiled C code. Depending on the number of stack relative
accesses and what the H:X register pair is being used for, the compiler
will sometimes temporarily save the current H:X value and move SP into
H:X to allow indexed addressing from H:X rather than SP because
SP-relative addressing typically takes an extra cycle and byte of
program space compared to H:X-relative addressing.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 137
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 209 C072 A7 FD ais #-3 ;space for 3 bytes of locals
 210 ; sp+1 is a byte sized local
 211 ; sp+2:sp+3 is a 16-bit local (an integer variable)
 212 C074 9E6F 02 clr 2,sp ;clear high byte of local int
 213 C077 9E6F 03 clr 3,sp ;clear low byte of local int
 214 C07A A6 04 lda #4
 215 C07C 9EE7 01 sta 1,sp ;set local byte to 4

 217 ; tsx & index based on H:X to save code size comapred to previous
 218 ; tsx cost 1 byte but saved 4 (overall savings equal 3 bytes)
 219 C07F A7 FD ais #-3 ;space for 3 bytes of locals
 220 C081 95 tsx ;H:X <- SP+1
 221 C082 6F 01 clr 1,x ;clear high byte of local int
 222 C084 6F 02 clr 2,x ;clear low byte of local int
 223 C086 A6 04 lda #4
 224 C088 F7 sta ,x ;set local byte to 4

6.3.6.7 SP-Relative, 16-Bit Offset (SP2)

In this variation of indexed addressing, an instruction-supplied unsigned
16-bit offset is added to the stack pointer (SP) to form the address of the
operand to be accessed. The addition of the offset is an internal
calculation that does not affect the contents of SP. Note that the SP
points at the next available location on the stack rather than the last
value that was pushed onto the stack.

This addressing mode is used to access data that is more than 255
locations deep in the stack. If the offset is 255 or less, the assembler will
automatically use the more efficient SP1 addressing mode.

6.4 Special Operations

Most of what the CPU does is described by the instruction set, but a few
special operations need to be considered, such as how the CPU gets
started at the beginning of an application program after power is first
applied. Once the program is running, the current instruction normally
determines what the CPU will do next. A few exceptional events can
cause the CPU to temporarily suspend normal program execution.
Reset events force the CPU to start over at the beginning of the
application program as directed by the contents of the reset vector.
Hardware interrupts can come from external pins or from internal
Reference Manual — Volume I HCS08 — Revision 1

138 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Special Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

peripheral modules. These interrupts cause the CPU to complete the
current instruction and then respond to the interrupt rather than
continuing to the next instruction in the application program. Finally, a
host development system can cause the CPU to go to active background
mode rather than continuing to the next instruction in the application
program.

Wait and stop modes are activated as the result of the WAIT and STOP
instructions, respectively; however, these special instructions also affect
other systems in the microcontroller (MCU). While these modes are
active, CPU activity is suspended indefinitely until some hardware event
occurs to wake up the MCU.

6.4.1 Reset Sequence

Processing begins at the trailing edge of a reset event. The number of
things that can cause reset events can vary slightly from one HCS08
derivative to another; however, the most common sources are power-on
reset, the external RESET pin, low-voltage reset, COP watchdog
timeout, illegal opcode detect, and illegal address access. For more
information about how the MCU recognizes reset events and determines
the differences between internal and external causes, refer to
Section 5. Resets and Interrupts. For detailed information about all of
the possible causes of reset in a particular HCS08 derivative, refer to the
appropriate technical data sheet.

Reset events force the MCU to immediately stop what it is doing and
begin responding to reset. Any instruction that was in process will be
aborted immediately without completing any remaining clock cycles. A
short sequence of activities is completed to decide whether the source
of reset was internal or external and to record the cause of reset. For the
remainder of the time the reset source remains active, the internal clocks
are stopped to save power. At the trailing edge of the reset event, the
clocks resume and the CPU exits from the reset condition.

The CPU performs a 6-cycle sequence to exit reset before starting the
first program instruction. The high-order byte of the reset vector is
fetched from $FFFE and stored in the high-order byte of the program
counter. The low-order byte of the reset vector is fetched from $FFFF
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 139
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

and stored in the low-order byte of the program counter. The next bus
cycle is a free cycle where the CPU does not access memory because
the low-order half of the vector is not yet available to the CPU. Whenever
the CPU performs a memory read operation, there is a 1 cycle delay
before the data has time to propagate into the CPU where it can be used
in any subsequent operation. Next, the CPU places the program counter
address on the bus to fetch the first byte of program information and then
increments the program counter. (The program counter contained the
reset vector that was just fetched from $FFFE, FFFF.) The next cycle
(fifth in the reset sequence) fetches the second byte of program
information into the instruction queue, and the next cycle (last in the
reset sequence) accesses the third byte of program information so it is
on its way into the instruction queue.

After the 6-cycle reset sequence, two bytes of program information are
available to the CPU in the instruction queue and a third byte is on its
way. Notice that MCU operations form a continuous stream of activity
and different parts of the system see different events within this stream
at any particular instant in time. To avoid confusion, the user’s
perception of a bus cycle is used as the single point of reference for all
further discussions. See 6.4.6 User’s View of a Bus Cycle.

6.4.2 Interrupts

As the name implies, interrupts interrupt the normal flow of instructions.
Except for the SWI instruction, interrupts are caused by hardware events
and are generally asynchronous to the operating program. The software
interrupt instruction (SWI) behaves like other interrupts except that it is
not maskable (cannot be inhibited by the I bit in the CCR being 1).

When an interrupt is requested, the CPU completes the current
instruction before responding to the interrupt. The interrupt sequence
follows the same cycle-by-cycle sequence as the SWI instruction and
consists of saving the CPU registers on the stack, setting the I bit in the
CCR to mask further interrupts, fetching the interrupt vector for the
highest priority interrupt that is currently pending, and filling the
instruction queue with the first three bytes of program information for the
interrupt service routine. For more information about how the MCU
recognizes and processes interrupts, refer to Section 5. Resets and
Interrupts.
Reference Manual — Volume I HCS08 — Revision 1

140 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Special Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The interrupt mask bit (I bit) in the CCR acts as a global interrupt mask.
When I is 1, interrupt requests are ignored by the CPU. Immediately after
reset, the I bit is 1 so that interrupts are disabled. Before clearing the I bit
to enable interrupts, initialize the stack pointer.

For compatibility with the earlier M68HC05 Family, the stack pointer is
automatically initialized to $00FF at reset. This is rarely where you want
the stack to be located in an HCS08 system because this would cause
the stack to use valuable direct address space (the space from $0000
through $00FF). Usually, the stack pointer should be set to point at the
highest address in the on-chip RAM. Since there isn’t a load stack
pointer instruction, load H:X with the address of the last RAM location
plus one, and then transfer this value to SP. There is an automatic
adjustment of the 16-bit value as it is transferred from H:X to SP so the
stack pointer will point at the next available location on the stack (in this
case, so H:X points at the last location in the on-chip RAM). Refer to
6.2.3 Stack Pointer (SP) for a more detailed explanation of the stack
pointer.

Again for compatibility with the earlier M68HC05, the HCS08 does not
stack the high-order half of the index register (H) in response to an
interrupt. In rare cases, you can choose not to stack H inside the
interrupt service routine if you are absolutely sure the service routine will
never alter H. Many instructions, including AIX and post-increment
indexed addressing versions of instructions, can cause H to change.
Therefore, it is generally safer to include a PSHH instruction as the first
instruction in the interrupt service routine and a PULH instruction as the
last instruction before the RTI that ends the service routine.

6.4.3 Wait Mode

Wait mode is entered by executing a WAIT instruction. This instruction
clears the I bit in the CCR (so interrupts can wake up the MCU from wait
mode), and then shuts down the clocks in the CPU to save power. The
CPU remains in this low-power state until an interrupt or reset event
wakes it up. For more detailed information about wait mode, refer to
3.5 Wait Mode.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 141
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.4.4 Stop Mode

Stop mode is entered by executing a STOP instruction. This instruction
clears the I bit in the CCR (so interrupts can wake up the MCU from stop
mode), and then shuts down the clocks in the CPU to save power.
Depending on other control settings in the MCU, the system oscillator
may be completely disabled to reduce power consumption even further.
The CPU remains in this low-power state until an interrupt or reset event
wakes it up. The wakeup sequence depends on whether the oscillator
was completely stopped, and what type of clock generation system is
controlling the particular derivative. For more detailed information about
stop mode, refer to 3.6 Stop Modes.

6.4.5 Active Background Mode

Active background mode refers to the condition where the CPU has
stopped executing user program instructions and is waiting for serial
commands from the background debug system. The CPU cannot enter
active background mode unless it has been enabled by a serial
WRITE_CONTROL command which has set the ENDBM bit in the
BDCSCR. (BDCSCR is a status and control register within the
background debug controller (BDC) and is not accessible from the user
program.) The usual way the CPU gets into active background mode is
in response to a BACKGROUND command through the serial
background communication interface (BKGD pin). The CPU can also
enter active background mode due to a reset event where the BKGD pin
is held low at the trailing edge of reset, due to a BGND instruction, or in
response to a hardware breakpoint event.

Reset with BKGD low provides a way for a development system to gain
control of a target MCU immediately after reset before any user reset
vector is fetched and before any user instructions are executed. This is
important in systems where the program memory and vectors are not yet
programmed.

BGND instructions are used only by development systems to set
software breakpoints and should never be used in normal application
programs. If a program runaway condition causes the CPU to encounter
a BGND instruction when no development system is connected to the
BKGD pin, ENBDM would be 0 and the BGND instruction would be
treated as an illegal opcode.
Reference Manual — Volume I HCS08 — Revision 1

142 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Special Operations

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The hardware breakpoint that is built into the BDC system is only
accessible by serial commands through BKGD, so this breakpoint would
only occur if a development system is connected to BKGD and
ENBDM = 1.

Some HCS08 MCUs can have additional hardware breakpoints built
outside the CPU and BDC systems. These hardware breakpoints can be
controlled by user programs as well as development systems. If this type
of hardware breakpoint is encountered while ENBDM = 1, the CPU
completes the current instruction and then enters active background
mode. If this type of hardware breakpoint is encountered while
ENBDM = 0, the CPU will execute an SWI instruction rather than trying
to execute an illegal BGND instruction. With proper planning, this
mechanism can be used to allow a form of ROM patching. Refer to
7.5.9 Hardware Breakpoints and ROM Patching.

The CPU can remain in the active background mode indefinitely until a
serial GO, TRACE1, or TAGGO command causes it to return to the
user’s application program. In a 3-cycle sequence on exit from active
background mode, the CPU does three program fetches to fill the
instruction queue. There is no way for the CPU to know whether the
development system has altered program memory, so the CPU always
refills the instruction queue upon exit from active background mode.

6.4.6 User’s View of a Bus Cycle

In modern microcontrollers, operations are pipelined such that different
parts of the circuit can be working on different information at any
particular instant in time. To avoid confusion, it is important to have a
single consistent point of reference so other system timing can be
related to this common reference. This common reference point for the
HCS08 is a bus cycle. A read bus cycle is considered to begin with the
CPU internally generating an address which is then presented to the
internal address bus. The addressed memory location then places the
requested data on the internal data bus after a memory access time. A
write cycle begins like a read cycle, with the CPU internally generating
an address which is then presented to the internal address bus. Next the
data to be written is presented to the internal data bus and remains valid
long enough for the memory access to be completed.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 143
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Since these internal activities are not directly visible from the outside of
the chip, we must relate this to an external event such as the trailing
edge of a reset event. The cycle-by-cycle sequence for the reset
operation is vvfppp where the first two v cycles are the bus cycles where
the upper and lower bytes of the reset vector are fetched from $FFFE
and $FFFF, respectively. The f cycle is a free cycle where the CPU does
not use the internal buses. The three p cycles are used to fill the
instruction queue with the first three bytes of object code for the user
program beginning at the address just fetched from the reset vector.
From this point, a user can tell exactly what should be on the internal
buses for every bus cycle of a program because every CPU instruction
and exception event has a known sequence of bus cycles.

The exit from reset is synchronized to an internal bus clock so there is
an uncertainty of up to one bus cycle from the actual release of the active
low at the reset pin and when the first v cycle starts. There is a
propagation delay from the external oscillator input (if present) to the
internal bus clock which is not specified because the user cannot access
the internal bus clock to make a measurement.

6.5 Instruction Set Description by Instruction Types

In this section, the instruction is listed by types of instructions.
Explanations of how these instructions can be used within the context of
an application program are provided. Example code segments are used
to show practical examples of common programming constructs.

6.5.1 Data Movement Instructions

This group of instructions is used to move data between memory and
CPU registers, between memory locations, or between CPU registers.
Load, store, and move instructions automatically update the condition
codes based on the value of the data. This allows conditional branching
with BEQ, BNE, BPL, and BMI immediately after a load, store, or move
instruction without having to do a separate test or compare instruction.
Reference Manual — Volume I HCS08 — Revision 1

144 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.1.1 Loads and Stores

Table 6-1. Load and Store Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

LDA #opr8i
LDA opr8a
LDA opr16a
LDA oprx16,X
LDA oprx8,X
LDA ,X
LDA oprx16,SP
LDA oprx8,SP

Load Accumulator from
Memory A ← (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A6
B6
C6
D6
E6
F6

9ED6
9EE6

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

LDHX #opr16i
LDHX opr8a
LDHX opr16a
LDHX ,X
LDHX oprx16,X
LDHX oprx8,X
LDHX oprx8,SP

Load Index Register (H:X)
from Memory H:X ← (M:M + $0001) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX
IX2
IX1
SP1

45
55
32

9EAE
9EBE
9ECE
9EFE

jj kk
dd
hh ll

ee ff
ff
ff

3
4
5
5
6
5
5

LDX #opr8i
LDX opr8a
LDX opr16a
LDX oprx16,X
LDX oprx8,X
LDX ,X
LDX oprx16,SP
LDX oprx8,SP

Load X (Index Register
Low) from Memory X ← (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AE
BE
CE
DE
EE
FE

9EDE
9EEE

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

STA opr8a
STA opr16a
STA oprx16,X
STA oprx8,X
STA ,X
STA oprx16,SP
STA oprx8,SP

Store Accumulator in
Memory M ← (A) 0 – – ↕ ↕ –

DIR
EXT
IX2
IX1
IX
SP2
SP1

B7
C7
D7
E7
F7

9ED7
9EE7

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

STHX opr8a
STHX opr16a
STHX oprx8,SP

Store H:X (Index Reg.) (M:M + $0001) ← (H:X) 0 – – ↕ ↕ –
DIR
EXT
SP1

35
96

9EFF

dd
hh ll
ff

4
5
5

STX opr8a
STX opr16a
STX oprx16,X
STX oprx8,X
STX ,X
STX oprx16,SP
STX oprx8,SP

Store X (Low 8 Bits of
Index Register)
in Memory

M ← (X) 0 – – ↕ ↕ –

DIR
EXT
IX2
IX1
IX
SP2
SP1

BF
CF
DF
EF
FF

9EDF
9EEF

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 145
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Load A and load X cause an 8-bit value to be read from memory into
accumulator A or into the X register. Load H:X causes one 8-bit value to
be read from memory into the H register and a second 8-bit value to be
read from the next sequential memory location into the X register. Load
A and load X each allow eight different addressing modes for maximum
flexibility in accessing memory. LDHX allows seven different addressing
modes to specify the memory locations of the values being read.

The following instructions demonstrate some of the uses for load
instructions. This collection of instructions is not intended to be a
meaningful program. Rather, they are unrelated load instructions to
demonstrate the many possible addressing modes that allow access to
memory in different ways.

 226 ; load A - various addressing modes
 227 ; immediate (IMM) addressing mode examples
 228 C089 A6 55 lda #$55 ;IMM - $ means hexadecimal
 229 C08B A6 64 lda #100 ;decimal 100 (hexadecimal $64)
 230 C08D A6 3F lda #%00111111 ;% means binary
 231 C08F A6 41 lda #'A' ;single quotes around ASCII
 232 C091 A6 8D lda #illegalOp ;label used as immediate value
 233 ; direct (DIR) addressing mode examples
 234 C093 B6 55 lda $55 ;load from address $0055
 235 C095 B6 9D lda directByte ;label as a direct address
 236 ; extended (EXT) addressing mode
 237 C097 C6 FFFE lda $FFFE ;high byte of reset vector
 238 C09A C6 0101 lda extByte ;label used as an address
 239 C09D C6 C09D lda * ;* means "here", loads opcode
 240 C0A0 C6 009D lda fwdRef ;forces ext addressing mode
 241 ; not all assemblers treat forward references the same way
 242 0000 009D fwdRef: equ directByte ;forward referenced direct
 243
 244 C0A3 45 C007 ldhx #stringBytes ;point at string in flash
 245 ; indexed addressing mode (relative to H:X index register pair)
 246 C0A6 D6 4081 lda (moveBlk1-stringBytes),x ;IX2 mode
 247 C0A9 E6 01 lda 1,x ;IX1 - 8-bit offset
 248 C0AB F6 lda ,x ;IX - no offset
 249
 250 ; indexed addressing mode (relative to SP stack pointer)
 251 C0AC 45 0001 ldhx #1
 252 C0AF 94 txs ;temp move SP for 16-bit offset ex.
 253 C0B0 9ED6 012C lda 300,sp ;SP2 - 16-bit offset
 254 C0B4 9EE6 01 lda 1,sp ;SP1 - 8-bit offset
Reference Manual — Volume I HCS08 — Revision 1

146 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Since one operand input to the arithmetic logic unit (ALU) is connected
to the A accumulator, you typically need to use an LDA instruction to
read one value into A before performing mathematical or logical
operations involving a second operand.

; add A + B (assumes sum is < or = 255)
 lda oprA ;oprA -> accumulator
 add oprB ;oprA + oprB -> accumulator

In some cases, you can plan your program so that the results that were
stored in accumulator A as the result of one operation can be used as an
operand in a subsequent operation. This can save the need to store one
result and reload the accumulator with the next operand.

; add A + B + C (assumes sum is < or = 255)
 lda oprA ;oprA -> accumulator
 add oprB ;oprA + oprB -> accumulator
 add oprC ;accum. + oprC -> accum.

The next example shows an intermediate value being saved on the
stack. This is sometimes faster than storing temporary results in
memory. The amount of savings depends on what addressing mode
would be needed to store the temporary value in memory and whether
the X register was needed for something else at the time.

; compute (A + B) - (C + D) (assumes no carry or borrow)
 lda oprC ;oprC -> accumulator
 add oprD ;oprC + oprD -> accumulator
 psha ;intermediate result to SP+1
 lda oprA ;oprA -> accumulator
 add oprB ;oprA + oprB -> accumulator
 sub 1,sp ;(A+B)-(C+D) to accumulator
 ais #1 ;deallocate local space
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 147
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.1.2 Bit Set and Bit Clear

Bit set (BSET) and bit clear (BCLR) instructions can be thought of as
bit-sized store instructions, but these instructions actually read a full 8-bit
location, modify the specified bit, and then re-write the whole 8-bit
location. In certain cases, such as when the target location is something
other than a RAM variable, this subtle behavior can lead to unexpected
results. If a BSET or BCLR instruction attempts to change a bit in a
nonvolatile memory location, naturally, the bit will not change because
nonvolatile memories require a more complex sequence of operations to
make changes.

Some status bits are cleared by a sequence involving a read of the
status bit followed by a write to another register in the peripheral module.
Some users are surprised to find that a BSET or BCLR instruction has
satisfied the requirement to read the status register. To avoid such
problems, just remember that the BSET and BCLR instructions are
read-modify-write instructions that access a full 8-bit location in parallel.

Table 6-2. BSET, BCLR, Move, and Transfer Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

BSET n,opr8a Set Bit n in Memory Mn ← 1 – – – – – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

BCLR n,opr8a Clear Bit n in Memory Mn ← 0 – – – – – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

11
13
15
17
19
1B
1D
1F

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

MOV opr8a,opr8a
MOV opr8a,X+
MOV #opr8i,opr8a
MOV ,X+,opr8a

Move

(M)destination ← (M)source

H:X ← (H:X) + $0001 in
IX+/DIR and DIR/IX+ Modes

0 – – ↕ ↕ –

DIR/DIR
DIR/IX+
IMM/DIR
IX+/DIR

4E
5E
6E
7E

dd dd
dd
ii dd
dd

5
5
4
5

TAX Transfer Accumulator to
X (Index Register Low) X ← (A) – – – – – – INH 97 1

TXA Transfer X (Index Reg.
Low) to Accumulator A ← (X) – – – – – – INH 9F 1

TAP Transfer Accumulator to
CCR CCR ← (A) ↕ ↕ ↕ ↕ ↕ ↕ INH 84 1

TPA Transfer CCR to
Accumulator A ← (CCR) – – – – – – INH 85 1

NSA Nibble Swap
Accumulator A ← (A[3:0]:A[7:4]) – – – – – – INH 62 1
Reference Manual — Volume I HCS08 — Revision 1

148 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Some control or I/O registers do not access the same physical logic
states for reads and writes. In general, do not use read-modify-write
instructions on these locations because they may produce unexpected
results.

 276 ; BSET example - turns on TE without changing RE
 277 C0D3 16 1B bset TE,SCI1C2 ;enable SCI transmitter
 278 ; functionally equivalent to...
 279 C0D5 B6 1B lda SCI1C2 ;read current SCCR2 value
 280 C0D7 AA 08 ora #mTE ;OR in TE bit (mask)
 281 C0D9 B7 1B sta SCI1C2 ;upate value in SCCR2

6.5.1.3 Memory-to-Memory Moves

Move instructions can be helpful in an accumulator architecture like the
HCS08 where the number of registers is limited. MOV performs a read
of an 8-bit value from one memory location and stores the value in a
different location. Like the load and store instructions, MOV causes the
N and Z bits in the CCR to be updated according to the value of the data
being moved.

Although load and store instructions could be used to do the same thing
as a MOV instruction, MOV does not require the accumulator to be
saved so that A can be used as the transport means for the move
operation. In many cases, the MOV approach is faster and smaller
(object code size) than the load-store combination. MOV allows four
different address mode combinations to specify the source and
destination locations for the move.

The following example shows how move instructions can be used to
initialize several register values.

 284 C0DB 6E 03 00 mov #$03,PTAD ;0011 to 4 LS bits
 285 C0DE 6E 0F 03 mov #$0F,PTADD ;make 4 LS bits outputs
 286 C0E1 6E F0 01 mov #$F0,PTAPE ;pullups on 4 MS bits
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 149
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The next example shows a string move operation using load and store
instructions rather than move instructions.

 288 ; block move example to move a string to a RAM block
 289 C0E4 45 0088 ldhx #moveBlk1 ;point at destination block
 290 C0E7 D6 BF7F movLoop1: lda (stringBytes-moveBlk1),x ;get source byte
 291 C0EA 27 04 beq dunLoop1 ;null terminator ends loop
 292 C0EC F7 sta ,x ;save to destination block
 293 C0ED 5C incx ;next location (assumes DIR)
 294 C0EE 20 F7 bra movLoop1 ;continue loop
 295 dunLoop1:

6.5.1.4 Register Transfers and Nibble Swap

TAX and TXA offer an efficient way to transfer a value from A to X or from
X to A. Depending on whether the X register is already being used, this
can be an efficient way to temporarily save the accumulator value so A
can be used for some other operation.

TAP and TPA provide a means for moving the value from A into the CCR
(processor status byte) or from the CCR into A. This is used more in
development tools like debug monitors than in normal user programs.

The nibble swap A (NSA) instruction exchanges the upper and lower
nibbles of the accumulator (A). An 8-bit value is called a byte and a
nibble is the upper- or lower-order four bits of a byte. Each nibble
corresponds to exactly one hexadecimal digit. This instruction is useful
for conversions between binary or hexadecimal and ASCII, and for
operations on binary-coded-decimal (BCD) numbers.

* chexl - convert upper nibble of A to ASCII
* chexr - convert lower nibble of A to ASCII
* on entry A contains any binary (hexadecimal) number
* returns with resulting ASCII character in A

chexl: nsa ;swap nibble into low half
chexr: and #$0F ;strip off upper nibble
 add #$30 ;now $30 - $3F
 cmp #$39 ;check for < or = '9'
 bls dunChex ;if so, just return
 add #7 ;adjust to $41-$46
dunChex: rts ;return with ASCII in A

Reference Manual — Volume I HCS08 — Revision 1

150 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.2 Math Instructions

Math instructions include the traditional add, subtract, multiply, and
divide operations, a collection of utility instructions including increment,
decrement, clear, negate (two’s complement), compare, and test, and a
decimal adjust instruction for computations involving BCD numbers. The
compare instructions are actually subtract operations where the CCR
bits are affected but the result is not written back to a CPU register. The
test instructions affect the N and Z condition code bits, but do not affect
the tested value.

6.5.2.1 Add, Subtract, Multiply, and Divide

Table 6-3. Add, Subtract, Multiply, and Divide Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

ADC #opr8i
ADC opr8a
ADC opr16a
ADC oprx16,X
ADC oprx8,X
ADC ,X
ADC oprx16,SP
ADC oprx8,SP

Add with Carry A ← (A) + (M) + (C) ↕ ↕ – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A9
B9
C9
D9
E9
F9

9ED9
9EE9

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

ADD #opr8i
ADD opr8a
ADD opr16a
ADD oprx16,X
ADD oprx8,X
ADD ,X
ADD oprx16,SP
ADD oprx8,SP

Add without Carry A ← (A) + (M) ↕ ↕ – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AB
BB
CB
DB
EB
FB

9EDB
9EEB

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

AIX #opr8i
Add Immediate Value
(Signed) to Index
Register (H:X)

H:X ← (H:X) + (M)
M is sign extended to a 16-bit value – – – – – – IMM AF ii 2

SUB #opr8i
SUB opr8a
SUB opr16a
SUB oprx16,X
SUB oprx8,X
SUB ,X
SUB oprx16,SP
SUB oprx8,SP

Subtract A ← (A) – (M) ↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A0
B0
C0
D0
E0
F0

9ED0
9EE0

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

SBC #opr8i
SBC opr8a
SBC opr16a
SBC oprx16,X
SBC oprx8,X
SBC ,X
SBC oprx16,SP
SBC oprx8,SP

Subtract with Carry A ← (A) – (M) – (C) ↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A2
B2
C2
D2
E2
F2

9ED2
9EE2

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

MUL Unsigned multiply X:A ← (X) × (A) – 0 – – – 0 INH 42 5

DIV Divide A ← (H:A)÷(X)
H ← Remainder – – – – ↕ ↕ INH 52 6
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 151
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The ADD instructions add the value in A to a memory operand and store
the result in A. ADC adds the value in A, plus the carry bit from a
previous operation, to a memory operand and stores the result in A. This
operation allows performance of multibyte additions as demonstrated by
the following example.

; add 8-bit operand to 24-bit sum
 lda oprA ;8-bit operand to A
 add sum24+2 ;LS byte of 24-bit sum
 sta sum24+2 ;update LS byte
 lda sum24+1 ;middle byte of 24-bit sum
 adc #0 ;propigate any carry
 sta sum24+1 ;update middle byte
 lda sum24 ;get MS byte of 24-bit sum
 adc #0 ;propigate carry into MS byte
 sta sum24 ;update MS byte

The AIX instruction adds a signed 8-bit value to the 16-bit H:X index
register pair and stores the result back into H:X. Unlike other arithmetic
instructions, AIX does not affect the CCR bits.

 ldhx #tblOfStruct ;H:X pointing at first struct
; aix to update pointer into table of 5-byte structures
 aix #5 ;point to next 5-byte struct

The SUB instructions subtract a memory operand from the value in A
and store the result in A. The carry status bit acts as a borrow indicator
for this subtraction. SBC subtracts a memory operand and the carry bit
from a previous operation from the value in A and stores the result back
in A. This operation allows performance of multibyte subtractions as
demonstrated by the following example.

; 16-bit subtract... result16 = oprE - oprF
 lda oprE+1 ;low half of oprE
 sub oprF+1 ;oprE(lo) - oprF(lo)
 sta result16+1 ;low half of result
 lda oprE ;high half of oprE
 sbc oprF ;oprE(hi) - oprF(hi) - borrow
 sta result16 ;high half of result
Reference Manual — Volume I HCS08 — Revision 1

152 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MUL multiplies the unsigned 8-bit value in X by the unsigned 8-bit value
in A and stores the 16-bit result in X:A where the upper eight bits of the
result are stored in X and the lower eight bits of the result are in A. There
is no possibility of a carry (or overflow) since the result will always fit into
X:A, so C is cleared after this operation.

DIV divides the 16-bit unsigned value in H:A by the 8-bit unsigned value
in X and stores the 8-bit result in A and the 8-bit remainder in H. The
divisor in X is left unchanged so it could be used in later calculations. Z
indicates whether the result was zero, and C indicates whether there
was an attempt to divide by zero or if there was an overflow. An overflow
will occur if the result was greater than 255.

This first divide example shows a simple 8-bit by 8-bit integer divide to
get an 8-bit result.

; divide examples
; 8/8 integer divide... A = A/X
 clrh ;clear MS byte of dividend
 lda divid8 ;load 8-bit dividend
 ldx divisor ;load divisor
 div ;H:A/X -> A, remainder -> H
 sta quotient8 ;save result

The second divide example demonstrates how to use DIV to perform an
8-bit by 8-bit divide and another DIV to resolve the remainder into a
fractional result (eight more places to the right of the radix point).

; 8/8 integer divide, resolve remainder to 8 fractional bits...
; r8.f8 = A/X, remainder resolved into 8-bit binary fraction
; 16-bit result -> (8-bit integer result).(8-bit fraction)
 clrh ;clear MS byte of dividend
 lda divid8 ;load 8-bit dividend
 ldx divisor ;load divisor
 div ;H:A/X -> A, remainder -> H
 sta quotient16 ;upper integer part of result
 clra ;H:A = remainder:0
 div ;H:A/X -> A
 sta quotient16+1 ;lower fractional part

In the third divide example, we divide an 8-bit dividend by a larger 8-bit
divisor to get a 16-bit fractional result where the radix point is just left of
the MSB of the result. In a binary fraction, the MSB has a weight of
one-half, the next bit to the right has a weight of one-fourth, and so on.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 153
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

; 8/8 fractional divide, 16-bit fractional result
; .r16 = H/X, result is a 16-bit binary fraction
; radix assumed to be in same position for H and X
; 16-bit result -> .(16-bit fraction)
; divid8 and divisor defined so H & X both loaded with one ldhx
 clra ;clear LS byte of dividend
 ldhx divid8 ;H:X = dividend:divisor
 div ;H:A/X -> A, remainder -> H
 sta quotient16 ;upper byte of result
 clra ;H:A = remainder:0
 div ;H:A/X -> A
 sta quotient16+1 ;next 8 bits of result

The fourth divide example uses a technique like long division to do an
unbounded 16-bit by 8-bit integer divide.

; unbounded 16/8 integer divide (equivalent to long division)
; r16.f8 = H:A/X, result is 16-bit int.8-bit binary fraction
 clrh ;clear MS byte of dividend
 lda divid16 ;upper byte of dividend
 ldx divisor ;load divisor
 div ;H:A/X -> A, remainder -> H
 sta quotient24 ;upper byte of result
 lda divid16+1 ;H:A = remainder:dividend(lo)
 div ;H:A/X -> A, remainder -> H
 sta quotient24+1 ;next byte of result
 clra ;H:A = remainder:0
 div ;H:A/X -> A
 sta quotient24+2 ;fractional bits of result

The fifth divide example demonstrates a 16-bit by 8-bit divide with
overflow checking.

; bounded 16/8 integer divide (with overflow checking)
; r8 = H:A/X, result is 8-bit integer
 ldhx divid16 ;H:X = 16-bit dividend
 txa ;H:A = 16-bit dividend
 ldx divisor ;X = 8-bit divisor
 div ;H:A/X -> A, remainder -> H
 bcs divOvrflow ;Overflow?
 sta quotient8 ;upper byte of result

divOvrflow: ;here on overflow
Reference Manual — Volume I HCS08 — Revision 1

154 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 6-4. Other Arithmetic Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

INC opr8a
INCA
INCX
INC oprx8,X
INC ,X
INC oprx8,SP

Increment

M ← (M) + $01
A ← (A) + $01
X ← (X) + $01
M ← (M) + $01
M ← (M) + $01
M ← (M) + $01

↕ – – ↕ ↕ –

DIR
INH
INH
IX1
IX
SP1

3C
4C
5C
6C
7C

9E6C

dd

ff

ff

5
1
1
5
4
6

DEC opr8a
DECA
DECX
DEC oprx8,X
DEC ,X
DEC oprx8,SP

Decrement

M ← (M) – $01
A ← (A) – $01
X ← (X) – $01
M ← (M) – $01
M ← (M) – $01
M ← (M) – $01

↕ – – ↕ ↕ –

DIR
INH
INH
IX1
IX
SP1

3A
4A
5A
6A
7A

9E6A

dd

ff

ff

5
1
1
5
4
6

CLR opr8a
CLRA
CLRX
CLRH
CLR oprx8,X
CLR ,X
CLR oprx8,SP

Clear

M ← $00
A ← $00
X ← $00
H ← $00
M ← $00
M ← $00
M ← $00

0 – – 0 1 –

DIR
INH
INH
INH
IX1
IX
SP1

3F
4F
5F
8C
6F
7F

9E6F

dd

ff

ff

5
1
1
1
5
4
6

NEG opr8a
NEGA
NEGX
NEG oprx8,X
NEG ,X
NEG oprx8,SP

Negate
(Two’s Complement)

M ← – (M) = $00 – (M)
A ← – (A) = $00 – (A)
X ← – (X) = $00 – (X)
M ← – (M) = $00 – (M)
M ← – (M) = $00 – (M)
M ← – (M) = $00 – (M)

↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

30
40
50
60
70

9E60

dd

ff

ff

5
1
1
5
4
6

CMP #opr8i
CMP opr8a
CMP opr16a
CMP oprx16,X
CMP oprx8,X
CMP ,X
CMP oprx16,SP
CMP oprx8,SP

Compare Accumulator
with Memory

(A) – (M)
(CCR Updated But Operands Not

Changed)
↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A1
B1
C1
D1
E1
F1

9ED1
9EE1

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

CPHX opr16a
CPHX #opr16i
CPHX opr8a
CPHX oprx8,SP

Compare Index Register
(H:X) with Memory

(H:X) – (M:M + $0001)
(CCR Updated But Operands Not

Changed)
↕ – – ↕ ↕ ↕

EXT
IMM
DIR
SP1

3E
65
75

9EF3

hh ll
jj kk
dd
ff

6
3
5
6

CPX #opr8i
CPX opr8a
CPX opr16a
CPX oprx16,X
CPX oprx8,X
CPX ,X
CPX oprx16,SP
CPX oprx8,SP

Compare X (Index
Register Low) with
Memory

(X) – (M)
(CCR Updated But Operands Not

Changed)
↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A3
B3
C3
D3
E3
F3

9ED3
9EE3

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

TST opr8a
TSTA
TSTX
TST oprx8,X
TST ,X
TST oprx8,SP

Test for Negative or Zero

(M) – $00
(A) – $00
(X) – $00
(M) – $00
(M) – $00
(M) – $00

0 – – ↕ ↕ –

DIR
INH
INH
IX1
IX
SP1

3D
4D
5D
6D
7D

9E6D

dd

ff

ff

4
1
1
4
3
5

DAA
Decimal Adjust
Accumulator After ADD or
ADC of BCD Values

(A)10 U – – ↕ ↕ ↕ INH 72 1
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 155
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.2.2 Increment, Decrement, Clear, and Negate

Increment and decrement instructions let you adjust the value in A, X, or
a memory location by one. Clear instructions let you force an 8-bit value
in A, X, H, or a memory location to zero.

Negate instructions perform a two’s complement operation that is
equivalent to multiplying a signed 8-bit value by negative one.
Functionally, this instruction inverts all the bits in A, X, or the memory
location and then adds one. The value $80 represents the signed
number –128. The negative of this value would be +128, but the largest
positive number that can be represented with a two’s complement, 8-bit
number is +127. If A was $80 and you execute a NEGA instruction, the
CPU first inverts all the bits to get $7F and then adds one to get $80.
Since this causes the sign to change from positive to negative, the V bit
in the CCR is set to indicate the error.

6.5.2.3 Compare and Test

CMP instructions affect CCR bits exactly like the corresponding SUB
instruction, but the result is not stored back into the accumulator so A
and the memory operand are left unchanged. Compare instructions
compare the contents of A, X, or the H:X register pair to a memory
operand. In the case of CPHX, M is the address of the referenced
memory location, H corresponds to memory location M, and X
corresponds to memory location M+1. CPHX performs a 16-bit
subtraction (without storing the result back to H:X).

The test instructions are equivalent to subtracting zero from A, X, or a
memory operand. This operation clears V and sets or clears N and Z
according to what was in the tested value. The tested value is not
changed.

6.5.2.4 BCD Arithmetic

In a binary coded decimal (BCD) number, one hexadecimal digit (4
binary bits) represents a single decimal number from 0 to 9. When two
8-bit BDC numbers are added, the CPU actually does a normal binary
addition. Depending on the BCD values involved, this could result in a
value that is no longer a valid 2-digit BCD number. Based on the H and
Reference Manual — Volume I HCS08 — Revision 1

156 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

C condition code bits that resulted from an ADD or ADC instruction
involving two legal BCD numbers, the decimal adjust A (DAA) instruction
“corrects” the result to the proper BCD result and sets or clears the C bit
as needed to reflect the result of the BCD addition. In the past, this was
done with a relatively complex set of instructions that tested the values
of each BCD digit of the result and the H and C bits. The DAA instruction
greatly simplifies this operation.

The following examples demonstrate two of the possible cases that can
result from adding 8-bit BDC numbers and the actions taken by a DAA
instruction to correct the results to the appropriate BCD result and carry
flag. The first example shows a BCD addition that does not require
adjustment. The second example shows a case where the result was not
a legal BCD value and the carry did not reflect the correct BCD result. In
this second example, the DAA instruction adds a correction factor and
adjusts the carry flag to reflect the correct BCD result.

 lda #$11 ;BCD 11
 add #$22 ;11 + 22 = 33
 daa ;no adjustment in this case

 LDA #$59 ;BCD 59
 ADD #$57 ;59 + 57 = $B0
; C=0, H=1, A=$B0 - wanted 59 + 57 = 116 or A=$16 with carry set
 DAA ;adds $66 and sets carry
; $B0 + $66 = $16 with carry bit set

6.5.3 Logical Operation Instructions

These instructions perform eight bitwise Boolean operations in parallel.
For the complement instruction, each bit of the register or memory
operand is inverted. The other logical instructions involve two operands,
one in the accumulator (A) and the other in memory. Immediate, direct,
extended, or indexed (relative to H:X or SP) addressing modes may be
used to access the memory operand. Each bit of the accumulator is
ANDed, ORed, or exclusive-ORed with the corresponding bit of the
memory operand. The result of the logical operation is stored into the
accumulator, overwriting the original operand.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 157
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.3.1 AND, OR, Exclusive-OR, and Complement

These instructions provide the basic AND, OR, exclusive-OR, and invert
functions needed to perform Boolean logical functions.

 lda #$0C ;bit pattern 00001100
 and #$0A ;bit pattern 00001010
; result is..........$08.......................00001000

 lda #$35 ;bit pattern 00110101
 and #$0F ;bit pattern 00001111
; result is..........$05.......................00000101

Table 6-5. Logical Operation Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

AND #opr8i
AND opr8a
AND opr16a
AND oprx16,X
AND oprx8,X
AND ,X
AND oprx16,SP
AND oprx8,SP

Logical AND A ← (A) & (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A4
B4
C4
D4
E4
F4

9ED4
9EE4

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

ORA #opr8i
ORA opr8a
ORA opr16a
ORA oprx16,X
ORA oprx8,X
ORA ,X
ORA oprx16,SP
ORA oprx8,SP

Inclusive OR Accumulator
and Memory A ← (A) | (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AA
BA
CA
DA
EA
FA

9EDA
9EEA

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

EOR #opr8i
EOR opr8a
EOR opr16a
EOR oprx16,X
EOR oprx8,X
EOR ,X
EOR oprx16,SP
EOR oprx8,SP

Exclusive OR
Memory with
Accumulator

A ← (A ⊕ M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A8
B8
C8
D8
E8
F8

9ED8
9EE8

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

COM opr8a
COMA
COMX
COM oprx8,X
COM ,X
COM oprx8,SP

Complement
(One’s Complement)

M ← (M)= $FF – (M)
A ← (A) = $FF – (A)
X ← (X) = $FF – (X)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)

0 – – ↕ ↕ 1

DIR
INH
INH
IX1
IX
SP1

33
43
53
63
73

9E63

dd

ff

ff

5
1
1
5
4
6

BIT #opr8i
BIT opr8a
BIT opr16a
BIT oprx16,X
BIT oprx8,X
BIT ,X
BIT oprx16,SP
BIT oprx8,SP

Bit Test
(A) & (M)

(CCR Updated but Operands
Not Changed)

0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A5
B5
C5
D5
E5
F5

9ED5
9EE5

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

Reference Manual — Volume I HCS08 — Revision 1

158 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

You may notice some similarity between the AND operation and the
BCLR instruction. However, BCLR can be used only on memory
locations $0000–$00FF and can clear only one bit at a time while AND
can clear any combination of bits and may be used with several different
addressing modes to identify the memory operand to be ANDed with A.

 lda #$0C ;bit pattern 00001100
 ora #$0A ;bit pattern 00001010
; result is..........$0E.......................00001110

You may notice some similarity between the ORA operation and the
BSET instruction; however, BSET can be used only on memory
locations $0000–$00FF and can set only one bit at a time while ORA can
set any combination of bits and may be used with several different
addressing modes to identify the memory operand to be ORed with A.

Exclusive-OR can be used to toggle bits in an operand. One operand is
considered a mask where each bit that is set in the mask corresponds to
a bit value in the other operand that will be toggled (inverted). The next
example reads an I/O port, exclusive-ORs it with an immediate mask
value of $03 to toggle the two least significant bits, and then writes the
updated result to the I/O port.

 402 C162 A6 0C lda #$0C ;bit pattern 00001100
 403 C164 A8 0A eor #$0A ;bit pattern 00001010
 404 ; result is..........$06.......................00000110
 405
 406 C166 B6 00 lda PTAD ;read I/O port A
 407 C168 A8 03 eor #$03 ;inverts 2 LSBs
 408 C16A B7 00 sta PTAD ;update I/O port A

Complement instructions simply invert each bit of the operand. Don’t
confuse this with the negate instruction which performs the arithmetic
operation equivalent to multiplication by minus one.

 lda #$C5 ;bit pattern 11000101
 coma ;result is 00111010
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 159
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.3.2 BIT Instruction

The BIT instruction ANDs each bit of A with the corresponding bit of the
addressed memory operand (just like AND), but the result is not stored
to the accumulator. The N and Z condition codes are set or cleared
according to the results of the AND operation to allow conditional
branches after the BIT instruction. If you load A with a mask value where
each bit that is set in the mask corresponds to a bit in the memory
operand to be tested, then execute a BIT instruction, the Z bit will be set
if none of the tested bits were 1s.

 lda SCI1S1 ;read SCI status register
 bit #(mOR+mNF+mFE+mPF) ;mask of all error flags
 bne sciError ;branch if any flags set
; A still contains undisturbed status register

sciError: ;here if any error flags

6.5.4 Shift and Rotate Instructions

All of the shift and rotate instructions operate on a 9-bit field consisting
of an 8-bit value in A, X, or a memory location and the C bit in the CCR.
Drawings are provided in the instruction descriptions to show where the
C bit fits into the shift or rotate operation. The logical shift instructions are
simple shifts which shift a zero into the first bit of the value and shift the
last bit into the carry bit. The arithmetic shifts treat the value to be shifted
as a signed two’s complement number. An arithmetic shift left is like
multiplying a value by 2 and an arithmetic shift right is like dividing the
number by 2. The arithmetic shift right (ASR) instruction copies the
original most significant bit (MSB) back into the MSB to preserve the sign
of the operand. ASL and LSL are just two different mnemonics for the
same instruction because there is no functional difference between the
logical and arithmetic shifts to the left.
Reference Manual — Volume I HCS08 — Revision 1

160 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Including the carry bit in the shifts and rotates allows extension of these
operations to multibyte values. The following examples show a 24-bit
value being shifted either right or left.

Table 6-6. Shift and Rotate Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

LSL opr8a
LSLA
LSLX
LSL oprx8,X
LSL ,X
LSL oprx8,SP

Logical Shift Left
(Same as ASL) ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E68

dd

ff

ff

5
1
1
5
4
6

LSR opr8a
LSRA
LSRX
LSR oprx8,X
LSR ,X
LSR oprx8,SP

Logical Shift Right ↕ – – 0 ↕ ↕

DIR
INH
INH
IX1
IX
SP1

34
44
54
64
74

9E64

dd

ff

ff

5
1
1
5
4
6

ASL opr8a
ASLA
ASLX
ASL oprx8,X
ASL ,X
ASL oprx8,SP

Arithmetic Shift Left
(Same as LSL) ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E68

dd

ff

ff

5
1
1
5
4
6

ASR opr8a
ASRA
ASRX
ASR oprx8,X
ASR ,X
ASR oprx8,SP

Arithmetic Shift Right ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

37
47
57
67
77

9E67

dd

ff

ff

5
1
1
5
4
6

ROL opr8a
ROLA
ROLX
ROL oprx8,X
ROL ,X
ROL oprx8,SP

Rotate Left through Carry ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

39
49
59
69
79

9E69

dd

ff

ff

5
1
1
5
4
6

ROR opr8a
RORA
RORX
ROR oprx8,X
ROR ,X
ROR oprx8,SP

Rotate Right through
Carry ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

36
46
56
66
76

9E66

dd

ff

ff

5
1
1
5
4
6

C

b0b7

0

b0b7

C0

C

b0b7

0

b0b7

C

C

b0b7

b0b7

C

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 161
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

; 24-bit left shift
 clc ;clear C bit
; initial condition sum24 = hhhh hhhh : mmmm mmmm : llll llll : 0
 lsl sum24+2 ;C to LSB of low byte
; now sum24 = hhhh hhhh : mmmm mmmm : C=l(7) : llll lll0
 rol sum24+1 ;rotate middle byte
; now sum24 = hhhh hhhh : C=m(7) : mmmm mmml : llll lll0
 rol sum24 ;rotate high byte
; now sum24 = C=h(7) : hhhh hhhm : mmmm mmml : llll lll0

; 24-bit right shift
 clc ;clear C bit
; initial condition sum24 = 0 : hhhh hhhh : mmmm mmmm : llll llll
 lsr sum24 ;C to MSB of high byte
; now sum24 = 0hhh hhhh : C=h(0) : mmmm mmmm : llll llll
 rol sum24+1 ;rotate middle byte
; now sum24 = 0hhh hhhh : hmmm mmmm : C=m(0) : llll lll0
 rol sum24+2 ;rotate low byte
; now sum24 = 0hhh hhhm : hmmm mmmm : mlll llll : C=l(0)

Figure 6-5. Multibyte Shifts

6.5.5 Jump, Branch, and Loop Control Instructions

The instructions in this group cause a change of flow which means that
the CPU loads a new address into the program counter so program
execution continues at a location other than the next memory location
after the current instruction.

Jump instructions cause an unconditional change in the execution
sequence to a new location in a program. Branch and loop control
instructions cause a conditional change in the execution sequence.
Branch and loop control instructions use relative addressing mode to
conditionally branch to a location that is relative to the location of the
branch. Processor status indicators in the CCR control whether a
conditional branch or loop control instruction will branch to a new
address or simply continue to the next instruction in the program. BRA
is a special case because the branch always occurs and BRN is special
because the branch is never taken (this is functionally equivalent to a
2-byte, 3-cycle NOP). BIL and BIH are special because they use the
state of the IRQ pin rather than the condition of a bit(s) in the CCR to
decide whether to branch.
Reference Manual — Volume I HCS08 — Revision 1

162 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 6-7. Jump and Branch Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

JMP opr8a
JMP opr16a
JMP oprx16,X
JMP oprx8,X
JMP ,X

 Jump PC ← Jump Address – – – – – –

DIR
EXT
IX2
IX1
IX

BC
CC
DC
EC
FC

dd
hh ll
ee ff
ff

3
4
4
3
3

BRA rel Branch Always No Test – – – – – – REL 20 rr 3

BRN rel Branch Never Uses 3 Bus Cycles – – – – – – REL 21 rr 3

BEQ rel Branch if Equal Branch if (Z) = 1 – – – – – – REL 27 rr 3

BNE rel Branch if Not Equal Branch if (Z) = 0 – – – – – – REL 26 rr 3

BCC rel Branch if Carry Bit Clear Branch if (C) = 0 – – – – – – REL 24 rr 3

BCS rel Branch if Carry Bit Set
(Same as BLO) Branch if (C) = 1 – – – – – – REL 25 rr 3

BPL rel Branch if Plus Branch if (N) = 0 – – – – – – REL 2A rr 3

BMI rel Branch if Minus Branch if (N) = 1 – – – – – – REL 2B rr 3

BIL rel Branch if IRQ Pin Low Branch if IRQ pin = 0 – – – – – – REL 2E rr 3

BIH rel Branch if IRQ Pin High Branch if IRQ pin = 1 – – – – – – REL 2F rr 3

BMC rel Branch if Interrupt Mask
Clear Branch if (I) = 0 – – – – – – REL 2C rr 3

BMS rel Branch if Interrupt Mask
Set Branch if (I) = 1 – – – – – – REL 2D rr 3

BHCC rel Branch if Half Carry Bit
Clear Branch if (H) = 0 – – – – – – REL 28 rr 3

BHCS rel Branch if Half Carry Bit
Set Branch if (H) = 1 – – – – – – REL 29 rr 3

BLT rel Branch if Less Than
(Signed Operands) Branch if (N ⊕ V) = 1 – – – – – – REL 91 rr 3

BLE rel
Branch if Less Than
or Equal To
(Signed Operands)

Branch if (Z) | (N ⊕ V) = 1 – – – – – – REL 93 rr 3

BGE rel
Branch if Greater Than or
Equal To
(Signed Operands)

Branch if (N ⊕ V) = 0 – – – – – – REL 90 rr 3

BGT rel Branch if Greater Than
(Signed Operands) Branch if (Z) | (N ⊕ V) = 0 – – – – – – REL 92 rr 3

BLO rel Branch if Lower
(Same as BCS) Branch if (C) = 1 – – – – – – REL 25 rr 3

BLS rel Branch if Lower or Same Branch if (C) | (Z) = 1 – – – – – – REL 23 rr 3

BHS rel Branch if Higher or Same
(Same as BCC) Branch if (C) = 0 – – – – – – REL 24 rr 3

BHI rel Branch if Higher Branch if (C) | (Z) = 0 – – – – – – REL 22 rr 3
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 163
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.5.1 Unconditional Jump and Branch

Jump (JMP), branch always (BRA), and branch never (BRN) are
unconditional and do not depend on the state of any CCR bits. Jump may
be used to go to any memory location in the 64-Kbyte address space
while branch instructions are limited to destinations within –128 to +127
locations from the address immediately after the branch offset byte.

The following example illustrates the use of a JMP instruction to extend
the range of a conditional branch. For every conditional branch
instruction there is another branch that uses the opposite condition. For
example the opposite of a branch if equal (BEQ) instruction is the branch
if not equal (BNE) instruction. Suppose you wrote the instruction:

; beq farAway ;more than 128 locs away

and the assembler flagged an error because farAway was more than
128 locations away. You can replace the BEQ with a BNE that branches
around a jump instruction like this:

 bne aroundJ ;skip if NOT equal
 jmp farAway ;jump if equal
aroundJ: ;here if not equal

6.5.5.2 Simple Branches

The simple branches only depend on the state of a single condition (a
CCR bit or the IRQ pin state).

Table 6-8. Simple Branch Summary

Branch
Condition

Branch
if True

Branch
if False

Z BEQ BNE

C BCS BCC

N BMI BPL

IRQ pin BIH BIL

I BMS BMC

H BHCS BHCC
Reference Manual — Volume I HCS08 — Revision 1

164 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.5.3 Signed Branches

Branch if less than (BLT), branch if less than or equal (BLE), branch if
greater than or equal (BGE), and branch if greater than (BGT) are used
after operations involving signed numbers. The simple branches, branch
if equal (BEQ), and branch if not equal (BNE) can also be used after
operations involving signed numbers.

The M68HC05 Family did not implement the V bit in the CCR, so it could
not do signed branches. The difference between signed and unsigned
branches is that the signed branches use the exclusive-OR of N and V
in place of the C bit which is used in the Boolean equations that control
the unsigned branches. The exclusive-OR of N and V provides an
indication of overflow above +127 (+32,767) or borrow below –128
(–32,768). The C bit indicates overflow beyond +255 (+65,535).

6.5.5.4 Unsigned Branches

Branch if lower (BLO), branch if lower or same (BLS), branch if higher or
same (BHS), and branch if higher (BHI) are used after operations
involving unsigned numbers. The simple branches, branch if equal
(BEQ) and branch if not equal (BNE), can also be used after operations
involving unsigned numbers.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 165
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.5.5 Bit Condition Branches

These branch instructions test a single bit in a memory operand in direct
addressing space ($0000–$00FF) and BRSET branches if the tested bit
is set while BRCLR branches if the bit was clear. Although this seems
like a limited number of locations, it includes all of the I/O and control
register space and a significant portion of the RAM where program
variables may be located. By having separate opcodes for each bit
position, these instructions are particularly efficient, requiring only three
bytes of object code and five bus cycles.

waitRDRF: brclr RDRF,SCI1S1,waitRDRF ;loop till RDRF set

 brclr OneSecond,flags,skipUpdate
updateTime: bclr OneSecond,flags ;acknowledge one sec flag

skipUpdate:

Table 6-9. Bit Branches and Loop Control

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

BRCLR n,opr8a,rel Branch if Bit n in Memory
Clear Branch if (Mn) = 0 – – – – – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BRSET n,opr8a,rel Branch if Bit n in Memory
Set Branch if (Mn) = 1 – – – – – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

CBEQ opr8a,rel
CBEQA #opr8i,rel
CBEQX #opr8i,rel
CBEQ oprx8,X+,rel
CBEQ ,X+,rel
CBEQ oprx8,SP,rel

Compare and Branch if
Equal

Branch if (A) = (M)
Branch if (A) = (M)
Branch if (X) = (M)
Branch if (A) = (M)
Branch if (A) = (M)
Branch if (A) = (M)

– – – – – –

DIR
IMM
IMM
IX1+
IX+
SP1

31
41
51
61
71

9E61

dd rr
ii rr
ii rr
ff rr
rr
ff rr

5
4
4
5
5
6

DBNZ opr8a,rel
DBNZA rel
DBNZX rel
DBNZ oprx8,X,rel
DBNZ ,X,rel
DBNZ oprx8,SP,rel

Decrement and Branch if
Not Zero

Decrement A, X, or M
Branch if (result) ≠ 0

DBNZX Affects X Not H
– – – – – –

DIR
INH
INH
IX1
IX
SP1

3B
4B
5B
6B
7B

9E6B

dd rr
rr
rr
ff rr
rr
ff rr

7
4
4
7
6
8

Reference Manual — Volume I HCS08 — Revision 1

166 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.5.6 Loop Control

The CBEQ instructions compare the contents of the accumulator to a
memory location and branch if they are equal to each other. CBEQA and
CBEQX allow A or X to be compared against an immediate operand. The
H:X-relative indexed versions of CBEQ automatically increment H:X after
comparing A to the indexed memory location. These variations can be
used to check through a list of values in memory looking for a particular
value such as a null at the end of a string, a carriage return, or an
end-of-file mark. The other variations of CBEQ allow a memory location
to be used as a loop counter. (The incrementing or decrementing of this
loop count would be performed by other instructions in the loop.)

 lda #$0D ;ASCII <cr>
 cbeq oprA,gotCR ;skip if oprA=$0D
; here if oprA is anything but <cr>

gotCR: ;here if oprA was <cr>

; similar but IMM addr mode instead of DIR
 lda SCI1DRL ;read SCI character
 cbeqa #$0D,gotCR ;branch if it was <cr>

Other examples showing the CBEQ instruction can be found in
6.3.6.2 Indexed, No Offset with Post Increment (IX+) and
6.3.6.5 Indexed, 16-Bit Offset (IX2).

The DBNZ instructions decrement A, X, or a memory location and then
branch if the decremented value is still not zero. This provides an
efficient way to implement a loop counter.

 lda #4 ;loop count
 sta directByte ;save in RAM

loopTop: nop ;start of program loop

 dbnz directByte,loopTop ;loop directByte times

; use local on stack for loop count
 lda #4 ;loop count
 psha ;put loop count on stack

loopTop1: nop ;start of program loop

 dbnz 1,sp,loopTop1 ;loop directByte times
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 167
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.5.6 Stack-Related Instructions

Table 6-10. Stack-Related Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

RSP Reset Stack Pointer SP ← $FF
(High Byte Not Affected) – – – – – – INH 9C 1

TXS Transfer Index Reg. to SP SP ← (H:X) – $0001 – – – – – – INH 94 2

TSX Transfer SP to Index Reg. H:X ← (SP) + $0001 – – – – – – INH 95 2

JSR opr8a
JSR opr16a
JSR oprx16,X
JSR oprx8,X
JSR ,X

Jump to Subroutine

PC ← (PC) + n (n = 1, 2, or 3)
Push (PCL); SP ← (SP) – $0001
Push (PCH); SP ← (SP) – $0001

PC ← Unconditional Address

– – – – – –

DIR
EXT
IX2
IX1
IX

BD
CD
DD
ED
FD

dd
hh ll
ee ff
ff

5
6
6
5
5

BSR rel Branch to Subroutine

PC ← (PC) + $0002
push (PCL); SP ← (SP) – $0001
push (PCH); SP ← (SP) – $0001

PC ← (PC) + rel

– – – – – – REL AD rr 5

RTS Return from Subroutine SP ← SP + $0001; Pull (PCH)
SP ← SP + $0001; Pull (PCL) – – – – – – INH 81 6

SWI Software Interrupt

PC ← (PC) + $0001
Push (PCL); SP ← (SP) – $0001
Push (PCH); SP ← (SP) – $0001

Push (X); SP ← (SP) – $0001
Push (A); SP ← (SP) – $0001

Push (CCR); SP ← (SP) – $0001
I ← 1;

PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

– – 1 – – – INH 83 11

RTI Return from Interrupt

SP ← (SP) + $0001; Pull (CCR)
SP ← (SP) + $0001; Pull (A)
SP ← (SP) + $0001; Pull (X)

SP ← (SP) + $0001; Pull (PCH)
SP ← (SP) + $0001; Pull (PCL)

↕ ↕ ↕ ↕ ↕ ↕ INH 80 9

PSHA Push Accumulator onto
Stack Push (A); SP ← (SP) – $0001 – – – – – – INH 87 2

PSHH Push H (Index Register
High) onto Stack Push (H); SP ← (SP) – $0001 – – – – – – INH 8B 2

PSHX Push X (Index Register
Low) onto Stack Push (X); SP ← (SP) – $0001 – – – – – – INH 89 2

PULA Pull Accumulator from
Stack SP ← (SP + $0001); Pull (A) – – – – – – INH 86 3

PULH Pull H (Index Register
High) from Stack SP ← (SP + $0001); Pull (H) – – – – – – INH 8A 3

PULX Pull X (Index Register
Low) from Stack SP ← (SP + $0001); Pull (X) – – – – – – INH 88 3

AIS #opr8i Add Immediate Value
(Signed) to Stack Pointer

SP ← (SP) + (M)
M is sign extended to a 16-bit value – – – – – – IMM A7 ii 2
Reference Manual — Volume I HCS08 — Revision 1

168 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The reset stack pointer (RSP) instruction was included for compatibility
with the earlier M6805. This instruction loads the low-order half of SP
with $FF and does not affect the high-order half of SP. In the older
architectures, the high half of SP was hard-wired to $00 so RSP would
force SP to its reset state ($00FF). In HCS08 systems, $00FF would
rarely be used as the starting point of the stack. Also, you cannot be sure
the upper half would remain $00, so RSP is not usually useful in new
HCS08 programs.

Transfer H:X to SP (TXS) is most commonly used to set up the initial SP
value during reset initialization. Since SP points one location below
where the last actual value is located on the stack, the value in H:X is
decremented by one during the TXS transfer from H:X to SP. The
following two instructions may be used to set SP to point to the last
location in RAM which is the normal location for the stack in HCS08
systems.

 ldhx #RamLast+1 ;point one past RAM
 txs ;SP<-(H:X-1)

Transfer SP to H:X (TSX) is typically used to copy the SP value into H:X
so subsequent instructions can access variables on the stack with
H:X-relative indexed addressing instructions which are slightly more
efficient than SP-relative indexed instructions. Because SP points at the
next available location on the stack, the value is automatically
incremented by one during the transfer so H:X points at the most
recently stacked byte of information on the stack after the TSX transfer.

Jump-to-subroutine (JSR) and branch-to-subroutine (BSR) instructions
are used to go to a sequence of instructions (a subroutine) somewhere
else in a program. Normally, at the end of the subroutine, a
return-from-subroutine (RTS) instruction causes the CPU to return to the
next instruction after the JSR or BSR that called the subroutine.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 169
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The software interrupt (SWI) instruction is similar to a JSR except that
the X, A, and CCR registers are saved on the stack in addition to the
return PC address, and, rather than specifying a subroutine address as
part of the instruction, the interrupt service routine address is fetched
from an interrupt vector near the end of memory. In the case of SWI, the
vector is located at $FFFC and $FFFD.

The more detailed sequence of events for the SWI is:

1. PC is advanced to the next location after the SWI opcode (this is
the return address.)

2. Push PCL — Store PC (low byte) at location pointed to by SP and
then decrement SP.

3. Push PCH.

4. Push X, A, and CCR in that order — At the end of this sequence
the SP points at the next address below where the CCR was
pushed.

5. Set I bit in CCR so interrupts are disabled while executing the
interrupt service routine.

6. Load PCH from $FFFC — Fetch high byte of the address for the
interrupt service routine.

7. Load PCL from $FFFD.

8. Go to the address that was fetched from $FFFC:FFFD.

For compatibility with the earlier M68HC05, the H register is not
automatically stacked. It is good practice to manually push H at the
beginning of the interrupt service routine and to pull H just before
returning from the interrupt service routine.

Other hardware interrupts cause the CPU to execute the same
sequence of micro-instructions as the SWI except that each hardware
interrupt source has a different interrupt vector which holds the address
of the interrupt service routine.
Reference Manual — Volume I HCS08 — Revision 1

170 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Normally, the last instruction in an interrupt service routine is a return
from interrupt (RTI). RTI restores the CCR, A, X, PCH, and PCL in the
opposite order that they were saved on the stack. As each byte is pulled
from the stack, SP is incremented by one to point at the data to be pulled
and the appropriate register is loaded from the address pointed to by SP.
After executing RTI, the program resumes at the return address that was
just pulled off the stack during the RTI.

The interrupt mask (I bit in the CCR) is set during entry to the interrupt
just after the CCR is stacked. During the RTI, the pre-interrupt value of
the CCR is restored which typically restores the I bit to 0 to allow new
interrupts.

Push A (PSHA), push X (PSHX), and push H (PSHH) allow individual
CPU registers to be saved on the stack. The push operation stores the
selected register in memory where SP is pointing and then decrements
SP so it points at the next available location on the stack. Pull A, X, and
H (PULA, PULX, and PULH) allow A, X, or H to be loaded with data from
the stack. The pull operation first increments SP and then loads the
selected register with the contents of the memory location pointed to
by SP.

The following example shows one use of pushes and pulls. Some C
compilers use X:A to pass a 16-bit parameter to a function. This code
segment shows how this integer value is saved on the stack (lines 604
and 605) and then later gets loaded into H:X (line 620) where it can be
used as an index pointer. Notice that you can push one register
(line 605) and then pull that value into a different register. (Nothing about
the value on the stack associates it with a particular CPU register.)
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 171
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 579 *********************
 580 * multAcc - 4 iteration mutiply-accumulate example
 581 *********************
 582 ; 9 stack bytes used for this routine including return addr
 583 ; a pointer is passed in X:A, 3 bytes are used for stack locals,
 584 ; and two bytes are used for temporary storage on stack
 585 ; pntr points at list of 4 constant multipliers k(0) - k(3)
 586 ; VarY is a 16-bit integer, VarN is an 8-bit loop count
 587 ; VarY = sum(k(0)*oprA + k(1)*oprB + k(2)*oprC + k(3)*oprD)
 588 ; return result (VarY) in X:A
 589 C1F2 87 multAcc: psha ;save pntr LS byte
 590 C1F3 89 pshx ;save pntr MS byte
 591 C1F4 A7 FD ais #-3 ;allocate for 3 local bytes
 592 ; at this point VarN @ 1,sp; VarY(hi) @ 2,sp; VarY(lo) @ 3,sp;
 593 ; pntr(hi) @ 4,sp; pntr(lo) @ 5,sp
 594 C1F6 9E6F 02 clr 2,sp ;VarY MS byte on stack
 595 C1F9 9E6F 03 clr 3,sp ;VarY LS byte on stack
 596 C1FC A6 04 lda #4 ;loop count
 597 C1FE 9EE7 01 sta 1,sp ;VarN = 4
 598 C201 45 00A0 ldhx #oprA ;operands oprA-oprD
 599 C204 F6 iteration: lda ,x ;get operand(n)
 600 C205 AF 01 aix #1 ;point to next operand
 601 C207 89 pshx ;MS byte of oprX pointer
 602 C208 8B pshh ;LS byte of oprX pointer
 603 ; at this point VarN @ 3,sp; VarY(hi) @ 4,sp; VarY(lo) @ 5,sp;
 604 ; pntr(hi) @ 6,sp; pntr(lo) @ 7,sp
 605 C209 9EFE 06 ldhx 6,sp ;load pntr from stack (6,sp)
 606 C20C 9E6C 07 inc 7,sp ;pntr(lo)=pntr(lo)+1
 607 C20F 26 03 bne skip ;skip if no carry
 608 C211 9E6C 06 inc 6,sp ;add carry into pntr(hi)
 609 C214 FE skip: ldx ,x ;load k(n)
 610 C215 42 mul ;A*X -> X:A
 611 C216 9EEB 05 add 5,sp ;add to VarY(lo)
 612 C219 9EE7 05 sta 5,sp ;update VarY(lo)
 613 C21C 9F txa ;MS byte to A
 614 C21D 8A pulh ;restore oprX pointer (hi)
 615 C21E 88 pulx ;restore oprX pointer (lo)
 616 ; at this point VarN @ 1,sp; VarY(hi) @ 2,sp; VarY(lo) @ 3,sp;
 617 ; pntr(hi) @ 4,sp; pntr(lo) @ 5,sp
 618 C21F 9EE9 02 adc 2,sp ;add with carry to VarY(hi)
 619 C222 9EE7 02 sta 2,sp ;update VarY(hi)
 620 C225 9E6B 01 DB dbnz 1,sp,iteration ;dec VarN and loop if not 0
 621 C229 9EEE 02 ldx 2,sp ;VarY(hi)
 622 C22C 9EE6 03 lda 3,sp ;VarY(lo)
 623 C22F A7 05 ais #5 ;deallocate all locals
 624 C231 81 rts ;return VarY in X:A
 625 *********************
Reference Manual — Volume I HCS08 — Revision 1

172 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The add immediate to stack pointer (AIS) instruction allows an 8-bit
signed immediate value to be added to SP. This is most commonly used
to allocate and deallocate space on the stack for local variables. Adding
a negative number to SP allocates space on the stack and adding a
positive number to SP deallocates space.

 ais #-5 ;allocate 5 bytes for locals
 ais #5 ;deallocate local space

6.5.7 Miscellaneous Instructions

The no-operation (NOP) instruction is typically used in software
generated delay programs. It consumes execution time but does not
cause any changes to condition code bits or other CPU registers. This
example uses a software loop including a NOP to generate a 1 ms delay.

Table 6-11. Miscellaneous Instructions

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

NOP No Operation Uses 1 Bus Cycle – – – – – – INH 9D 1

SEC Set Carry Bit C ← 1 – – – – – 1 INH 99 1

CLC Clear Carry Bit C ← 0 – – – – – 0 INH 98 1

SEI Set Interrupt Mask Bit I ← 1 – – 1 – – – INH 9B 1

CLI Clear Interrupt Mask Bit I ← 0 – – 0 – – – INH 9A 1

BGND Enter Active Background
if ENBDM = 1

Waits For and Processes BDM
Commands Until GO, TRACE1, or

TAGGO
– – – – – – INH 82 5+

WAIT Enable Interrupts; Wait
for Interrupt I bit ← 0; Halt CPU – – 0 – – – INH 8F 2+

STOP

Enable Interrupts:
Stop Processing
Refer to MCU
Documentation

I bit ← 0; Stop Processing – – 0 – – – INH 8E 2+
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 173
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 627 *********************
 628 * dly1ms - delay 1ms at bus frequency = 20MHz
 629 *********************
 630 ; 1 bus cycle = 50 nanoseconds so 20,000 cycles = 1ms
 631 ; JSR (EXT) takes [5 or 6] cycles. Total overhead is 24-25 cycles
 632 ; total delay 20000 = 8n+24; so n = 19976/8 = 2497
 633 C232 8B dly1ms: pshh ;[2] save H
 634 C233 89 pshx ;[2] save X
 635 C234 9D nop ;[1] makes n even
 636 C235 45 09C0 ldhx #2496 ;[3] loop count
 637 C238 AF FF loop1ms: aix #-1 ;[2] H:X = H:X - 1
 638 C23A 65 0000 cphx #$0000 ;[3] check for zero
 639 C23D 26 F9 bne loop1ms ;[3] loop till H:X = $0000
 640 C23F 88 pulx ;[3] restore X
 641 C240 8A pulh ;[3] restore H
 642 C241 81 rts ;[6] return
 643 *********************

One way the set and clear carry (SEC and CLC) instructions can be used
is to force the value of the carry bit before doing a shift or rotate
instruction. See Figure 6-5 for more information.

Set interrupt mask (SEI) and clear interrupt mask (CLI) instructions are
used to disable or enable interrupts, respectively. After reset, the I bit is
set to prevent interrupts before the stack pointer and other system
conditions have been initialized. After enough system initialization has
been completed, use a CLI instruction to enable interrupts. In some
programs, it is necessary to prevent interrupts during some sensitive
code sequence. SEI is used before the sequence and CLI is used after
the sequence to prevent interrupts during the sensitive code sequence.

The background (BGND), WAIT, and STOP instructions are unusual in
that they cause the CPU to stop executing new instructions for an
indefinite period of time. A hardware event, such as an interrupt or a
serial background debug command, is needed to tell the CPU when it is
time to resume processing normal instructions. In the instruction detail
tables, these instructions are listed with a minimum number of bus
cycles, followed by a + (plus) to indicate that this is the minimum number
of cycles needed to complete these instructions.
Reference Manual — Volume I HCS08 — Revision 1

174 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Instruction Set Description by Instruction Types

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BGND instructions can be used by a development system to set
software breakpoints in a user program that is being debugged. Normal
user programs never use the BGND instruction. When the CPU
encounters a BGND instruction, it checks the ENBDM control bit in the
background debug controller module. This control bit is not accessible to
a user program; it can be changed only by reset or a serial background
command. If ENBDM = 0 (its default state), BGND opcodes are treated
as illegal instructions which cause an MCU reset. For more information
about background debug mode, see 7.3 Background Debug
Controller (BDC).

WAIT causes the CPU to shut down its clocks to save power. Other
peripheral systems continue to run normally. An interrupt or reset event
is needed to wake up the CPU from wait mode. The interrupt can come
from the external IRQ pin or from an internal peripheral system. See
3.5 Wait Mode for a detailed discussion of the wait mode.

STOP forces the MCU to turn off all system clocks to reduce system
power to an absolute minimum. In previous M68HC05 and M68HC08
systems, all clocks including the oscillator were disabled in stop mode.
Depending on the version of the clock generation circuitry in an HCS08
system, you can set control bits so the oscillator and the timebase
module continue to operate in stop mode. This provides a means of
waking the MCU from stop mode periodically without any external
components. All clocks other than the oscillator and a small number of
flip-flops in the timebase module are stopped in this mode, so system
power is reduced to a bare minimum.

The HCS08 always starts out using a self-clocked clock source after
reset or stop to avoid delays associated with crystal startup. After stop,
the CPU starts execution by responding to the interrupt or reset event
that woke it up. For more detailed information, refer to 3.6 Stop Modes.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 175
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.6 Summary Instruction Table

Instruction Set Summary Nomenclature

The nomenclature listed here is used in the instruction descriptions in
Table 6-1 through Table 6-12.

Operators

() = Contents of register or memory location shown inside
parentheses

← = Is loaded with (read: “gets”)
& = Boolean AND
| = Boolean OR

⊕ = Boolean exclusive-OR
× = Multiply
÷ = Divide
: = Concatenate

+ = Add
– = Negate (two’s complement)

CPU registers

A = Accumulator
CCR = Condition code register

H = Index register, higher order (most significant) 8 bits
X = Index register, lower order (least significant) 8 bits

PC = Program counter
PCH = Program counter, higher order (most significant) 8 bits
PCL = Program counter, lower order (least significant) 8 bits

SP = Stack pointer

Memory and addressing

M = A memory location or absolute data, depending on
addressing mode

M:M + $0001= A 16-bit value in two consecutive memory locations.
The higher-order (most significant) 8 bits are located
at the address of M, and the lower-order (least
significant) 8 bits are located at the next higher
sequential address.
Reference Manual — Volume I HCS08 — Revision 1

176 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Summary Instruction Table

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Condition code register (CCR) bits

V = Two’s complement overflow indicator, bit 7
H = Half carry, bit 4
I = Interrupt mask, bit 3

N = Negative indicator, bit 2
Z = Zero indicator, bit 1
C = Carry/borrow, bit 0 (carry out of bit 7)

CCR activity notation

– = Bit not affected
0 = Bit forced to 0
1 = Bit forced to 1
↕ = Bit set or cleared according to results of operation
U = Undefined after the operation

Machine coding notation

dd = Low-order 8 bits of a direct address $0000–$00FF
(high byte assumed to be $00)

ee = Upper 8 bits of 16-bit offset
ff = Lower 8 bits of 16-bit offset or 8-bit offset
ii = One byte of immediate data
jj = High-order byte of a 16-bit immediate data value

kk = Low-order byte of a 16-bit immediate data value
hh = High-order byte of 16-bit extended address

ll = Low-order byte of 16-bit extended address
rr = Relative offset

Source form

Everything in the source forms columns, except expressions in italic
characters, is literal information which must appear in the assembly
source file exactly as shown. The initial 3- to 5-letter mnemonic is always
a literal expression. All commas, pound signs (#), parentheses, and plus
signs (+) are literal characters.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 177
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

n — Any label or expression that evaluates to a single
integer in the range 0–7

opr8i — Any label or expression that evaluates to an 8-bit
immediate value

opr16i — Any label or expression that evaluates to a 16-bit
immediate value

opr8a — Any label or expression that evaluates to an 8-bit
value. The instruction treats this 8-bit value as the low
order 8 bits of an address in the direct page of the
64-Kbyte address space ($00xx).

opr16a — Any label or expression that evaluates to a 16-bit
value. The instruction treats this value as an address
in the 64-Kbyte address space.

oprx8 — Any label or expression that evaluates to an unsigned
8-bit value, used for indexed addressing

oprx16 — Any label or expression that evaluates to a 16-bit
value. Since the HCS08 has a 16-bit address bus, this
can be either a signed or an unsigned value.

rel — Any label or expression that refers to an address that
is within –128 to +127 locations from the next address
after the last byte of object code for the current
instruction. The assembler will calculate the 8-bit
signed offset and include it in the object code for this
instruction.

Address modes

INH = Inherent (no operands)
IMM = 8-bit or 16-bit immediate
DIR = 8-bit direct
EXT = 16-bit extended

IX = 16-bit indexed no offset
IX+ = 16-bit indexed no offset, post increment (CBEQ and

MOV only)
IX1 = 16-bit indexed with 8-bit offset from H:X

IX1+ = 16-bit indexed with 8-bit offset, post increment
(CBEQ only)

IX2 = 16-bit indexed with 16-bit offset from H:X
REL = 8-bit relative offset
SP1 = Stack pointer with 8-bit offset
SP2 = Stack pointer with 16-bit offset
Reference Manual — Volume I HCS08 — Revision 1

178 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Summary Instruction Table

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 6-12. Instruction Set Summary (Sheet 1 of 6)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

ADC #opr8i
ADC opr8a
ADC opr16a
ADC oprx16,X
ADC oprx8,X
ADC ,X
ADC oprx16,SP
ADC oprx8,SP

Add with Carry A ← (A) + (M) + (C) ↕ ↕ – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A9
B9
C9
D9
E9
F9

9ED9
9EE9

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

ADD #opr8i
ADD opr8a
ADD opr16a
ADD oprx16,X
ADD oprx8,X
ADD ,X
ADD oprx16,SP
ADD oprx8,SP

Add without Carry A ← (A) + (M) ↕ ↕ – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AB
BB
CB
DB
EB
FB

9EDB
9EEB

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

AIS #opr8i Add Immediate Value
(Signed) to Stack Pointer

SP ← (SP) + (M)
M is sign extended to a 16-bit value – – – – – – IMM A7 ii 2

AIX #opr8i
Add Immediate Value
(Signed) to Index
Register (H:X)

H:X ← (H:X) + (M)
M is sign extended to a 16-bit value – – – – – – IMM AF ii 2

AND #opr8i
AND opr8a
AND opr16a
AND oprx16,X
AND oprx8,X
AND ,X
AND oprx16,SP
AND oprx8,SP

Logical AND A ← (A) & (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A4
B4
C4
D4
E4
F4

9ED4
9EE4

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

ASL opr8a
ASLA
ASLX
ASL oprx8,X
ASL ,X
ASL oprx8,SP

Arithmetic Shift Left
(Same as LSL) ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E68

dd

ff

ff

5
1
1
5
4
6

ASR opr8a
ASRA
ASRX
ASR oprx8,X
ASR ,X
ASR oprx8,SP

Arithmetic Shift Right ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

37
47
57
67
77

9E67

dd

ff

ff

5
1
1
5
4
6

BCC rel Branch if Carry Bit Clear Branch if (C) = 0 – – – – – – REL 24 rr 3

BCLR n,opr8a Clear Bit n in Memory Mn ← 0 – – – – – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

11
13
15
17
19
1B
1D
1F

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

BCS rel Branch if Carry Bit Set
(Same as BLO) Branch if (C) = 1 – – – – – – REL 25 rr 3

BEQ rel Branch if Equal Branch if (Z) = 1 – – – – – – REL 27 rr 3

BGE rel
Branch if Greater Than or
Equal To
(Signed Operands)

Branch if (N ⊕ V) = 0 – – – – – – REL 90 rr 3

BGND Enter Active Background
if ENBDM = 1

Waits For and Processes BDM
Commands Until GO, TRACE1, or

TAGGO
– – – – – – INH 82 5+

BGT rel Branch if Greater Than
(Signed Operands) Branch if (Z) | (N ⊕ V) = 0 – – – – – – REL 92 rr 3

C

b0b7

0

b0b7

C

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 179
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BHCC rel Branch if Half Carry Bit
Clear Branch if (H) = 0 – – – – – – REL 28 rr 3

BHCS rel Branch if Half Carry Bit
Set Branch if (H) = 1 – – – – – – REL 29 rr 3

BHI rel Branch if Higher Branch if (C) | (Z) = 0 – – – – – – REL 22 rr 3

BHS rel Branch if Higher or Same
(Same as BCC) Branch if (C) = 0 – – – – – – REL 24 rr 3

BIH rel Branch if IRQ Pin High Branch if IRQ pin = 1 – – – – – – REL 2F rr 3

BIL rel Branch if IRQ Pin Low Branch if IRQ pin = 0 – – – – – – REL 2E rr 3

BIT #opr8i
BIT opr8a
BIT opr16a
BIT oprx16,X
BIT oprx8,X
BIT ,X
BIT oprx16,SP
BIT oprx8,SP

Bit Test
(A) & (M)

(CCR Updated but Operands
Not Changed)

0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A5
B5
C5
D5
E5
F5

9ED5
9EE5

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

BLE rel
Branch if Less Than
or Equal To
(Signed Operands)

Branch if (Z) | (N ⊕ V) = 1 – – – – – – REL 93 rr 3

BLO rel Branch if Lower
(Same as BCS) Branch if (C) = 1 – – – – – – REL 25 rr 3

BLS rel Branch if Lower or Same Branch if (C) | (Z) = 1 – – – – – – REL 23 rr 3

BLT rel Branch if Less Than
(Signed Operands) Branch if (N ⊕ V) = 1 – – – – – – REL 91 rr 3

BMC rel Branch if Interrupt Mask
Clear Branch if (I) = 0 – – – – – – REL 2C rr 3

BMI rel Branch if Minus Branch if (N) = 1 – – – – – – REL 2B rr 3

BMS rel Branch if Interrupt Mask
Set Branch if (I) = 1 – – – – – – REL 2D rr 3

BNE rel Branch if Not Equal Branch if (Z) = 0 – – – – – – REL 26 rr 3

BPL rel Branch if Plus Branch if (N) = 0 – – – – – – REL 2A rr 3

BRA rel Branch Always No Test – – – – – – REL 20 rr 3

BRCLR n,opr8a,rel Branch if Bit n in Memory
Clear Branch if (Mn) = 0 – – – – – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

01
03
05
07
09
0B
0D
0F

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BRN rel Branch Never Uses 3 Bus Cycles – – – – – – REL 21 rr 3

BRSET n,opr8a,rel Branch if Bit n in Memory
Set Branch if (Mn) = 1 – – – – – ↕

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

00
02
04
06
08
0A
0C
0E

dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr

5
5
5
5
5
5
5
5

BSET n,opr8a Set Bit n in Memory Mn ← 1 – – – – – –

DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)

10
12
14
16
18
1A
1C
1E

dd
dd
dd
dd
dd
dd
dd
dd

5
5
5
5
5
5
5
5

Table 6-12. Instruction Set Summary (Sheet 2 of 6)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C
Reference Manual — Volume I HCS08 — Revision 1

180 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Summary Instruction Table

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSR rel Branch to Subroutine

PC ← (PC) + $0002
push (PCL); SP ← (SP) – $0001
push (PCH); SP ← (SP) – $0001

PC ← (PC) + rel

– – – – – – REL AD rr 5

CBEQ opr8a,rel
CBEQA #opr8i,rel
CBEQX #opr8i,rel
CBEQ oprx8,X+,rel
CBEQ ,X+,rel
CBEQ oprx8,SP,rel

Compare and Branch if
Equal

Branch if (A) = (M)
Branch if (A) = (M)
Branch if (X) = (M)
Branch if (A) = (M)
Branch if (A) = (M)
Branch if (A) = (M)

– – – – – –

DIR
IMM
IMM
IX1+
IX+
SP1

31
41
51
61
71

9E61

dd rr
ii rr
ii rr
ff rr
rr
ff rr

5
4
4
5
5
6

CLC Clear Carry Bit C ← 0 – – – – – 0 INH 98 1

CLI Clear Interrupt Mask Bit I ← 0 – – 0 – – – INH 9A 1

CLR opr8a
CLRA
CLRX
CLRH
CLR oprx8,X
CLR ,X
CLR oprx8,SP

Clear

M ← $00
A ← $00
X ← $00
H ← $00
M ← $00
M ← $00
M ← $00

0 – – 0 1 –

DIR
INH
INH
INH
IX1
IX
SP1

3F
4F
5F
8C
6F
7F

9E6F

dd

ff

ff

5
1
1
1
5
4
6

CMP #opr8i
CMP opr8a
CMP opr16a
CMP oprx16,X
CMP oprx8,X
CMP ,X
CMP oprx16,SP
CMP oprx8,SP

Compare Accumulator
with Memory

(A) – (M)
(CCR Updated But Operands Not

Changed)
↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A1
B1
C1
D1
E1
F1

9ED1
9EE1

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

COM opr8a
COMA
COMX
COM oprx8,X
COM ,X
COM oprx8,SP

Complement
(One’s Complement)

M ← (M)= $FF – (M)
A ← (A) = $FF – (A)
X ← (X) = $FF – (X)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)

0 – – ↕ ↕ 1

DIR
INH
INH
IX1
IX
SP1

33
43
53
63
73

9E63

dd

ff

ff

5
1
1
5
4
6

CPHX opr16a
CPHX #opr16i
CPHX opr8a
CPHX oprx8,SP

Compare Index Register
(H:X) with Memory

(H:X) – (M:M + $0001)
(CCR Updated But Operands Not

Changed)
↕ – – ↕ ↕ ↕

EXT
IMM
DIR
SP1

3E
65
75

9EF3

hh ll
jj kk
dd
ff

6
3
5
6

CPX #opr8i
CPX opr8a
CPX opr16a
CPX oprx16,X
CPX oprx8,X
CPX ,X
CPX oprx16,SP
CPX oprx8,SP

Compare X (Index
Register Low) with
Memory

(X) – (M)
(CCR Updated But Operands Not

Changed)
↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A3
B3
C3
D3
E3
F3

9ED3
9EE3

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

DAA
Decimal Adjust
Accumulator After ADD or
ADC of BCD Values

(A)10 U – – ↕ ↕ ↕ INH 72 1

DBNZ opr8a,rel
DBNZA rel
DBNZX rel
DBNZ oprx8,X,rel
DBNZ ,X,rel
DBNZ oprx8,SP,rel

Decrement and Branch if
Not Zero

Decrement A, X, or M
Branch if (result) ≠ 0

DBNZX Affects X Not H
– – – – – –

DIR
INH
INH
IX1
IX
SP1

3B
4B
5B
6B
7B

9E6B

dd rr
rr
rr
ff rr
rr
ff rr

7
4
4
7
6
8

DEC opr8a
DECA
DECX
DEC oprx8,X
DEC ,X
DEC oprx8,SP

Decrement

M ← (M) – $01
A ← (A) – $01
X ← (X) – $01
M ← (M) – $01
M ← (M) – $01
M ← (M) – $01

↕ – – ↕ ↕ –

DIR
INH
INH
IX1
IX
SP1

3A
4A
5A
6A
7A

9E6A

dd

ff

ff

5
1
1
5
4
6

DIV Divide A ← (H:A)÷(X)
H ← Remainder – – – – ↕ ↕ INH 52 6

Table 6-12. Instruction Set Summary (Sheet 3 of 6)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 181
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EOR #opr8i
EOR opr8a
EOR opr16a
EOR oprx16,X
EOR oprx8,X
EOR ,X
EOR oprx16,SP
EOR oprx8,SP

Exclusive OR
Memory with
Accumulator

A ← (A ⊕ M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A8
B8
C8
D8
E8
F8

9ED8
9EE8

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

INC opr8a
INCA
INCX
INC oprx8,X
INC ,X
INC oprx8,SP

Increment

M ← (M) + $01
A ← (A) + $01
X ← (X) + $01
M ← (M) + $01
M ← (M) + $01
M ← (M) + $01

↕ – – ↕ ↕ –

DIR
INH
INH
IX1
IX
SP1

3C
4C
5C
6C
7C

9E6C

dd

ff

ff

5
1
1
5
4
6

JMP opr8a
JMP opr16a
JMP oprx16,X
JMP oprx8,X
JMP ,X

 Jump PC ← Jump Address – – – – – –

DIR
EXT
IX2
IX1
IX

BC
CC
DC
EC
FC

dd
hh ll
ee ff
ff

3
4
4
3
3

JSR opr8a
JSR opr16a
JSR oprx16,X
JSR oprx8,X
JSR ,X

Jump to Subroutine

PC ← (PC) + n (n = 1, 2, or 3)
Push (PCL); SP ← (SP) – $0001
Push (PCH); SP ← (SP) – $0001

PC ← Unconditional Address

– – – – – –

DIR
EXT
IX2
IX1
IX

BD
CD
DD
ED
FD

dd
hh ll
ee ff
ff

5
6
6
5
5

LDA #opr8i
LDA opr8a
LDA opr16a
LDA oprx16,X
LDA oprx8,X
LDA ,X
LDA oprx16,SP
LDA oprx8,SP

Load Accumulator from
Memory A ← (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A6
B6
C6
D6
E6
F6

9ED6
9EE6

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

LDHX #opr16i
LDHX opr8a
LDHX opr16a
LDHX ,X
LDHX oprx16,X
LDHX oprx8,X
LDHX oprx8,SP

Load Index Register (H:X)
from Memory H:X ← (M:M + $0001) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX
IX2
IX1
SP1

45
55
32

9EAE
9EBE
9ECE
9EFE

jj kk
dd
hh ll

ee ff
ff
ff

3
4
5
5
6
5
5

LDX #opr8i
LDX opr8a
LDX opr16a
LDX oprx16,X
LDX oprx8,X
LDX ,X
LDX oprx16,SP
LDX oprx8,SP

Load X (Index Register
Low) from Memory X ← (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AE
BE
CE
DE
EE
FE

9EDE
9EEE

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

LSL opr8a
LSLA
LSLX
LSL oprx8,X
LSL ,X
LSL oprx8,SP

Logical Shift Left
(Same as ASL) ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E68

dd

ff

ff

5
1
1
5
4
6

LSR opr8a
LSRA
LSRX
LSR oprx8,X
LSR ,X
LSR oprx8,SP

Logical Shift Right ↕ – – 0 ↕ ↕

DIR
INH
INH
IX1
IX
SP1

34
44
54
64
74

9E64

dd

ff

ff

5
1
1
5
4
6

MOV opr8a,opr8a
MOV opr8a,X+
MOV #opr8i,opr8a
MOV ,X+,opr8a

Move

(M)destination ← (M)source

H:X ← (H:X) + $0001 in
IX+/DIR and DIR/IX+ Modes

0 – – ↕ ↕ –

DIR/DIR
DIR/IX+
IMM/DIR
IX+/DIR

4E
5E
6E
7E

dd dd
dd
ii dd
dd

5
5
4
5

Table 6-12. Instruction Set Summary (Sheet 4 of 6)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

C

b0b7

0

b0b7

C0
Reference Manual — Volume I HCS08 — Revision 1

182 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Summary Instruction Table

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MUL Unsigned multiply X:A ← (X) × (A) – 0 – – – 0 INH 42 5

NEG opr8a
NEGA
NEGX
NEG oprx8,X
NEG ,X
NEG oprx8,SP

Negate
(Two’s Complement)

M ← – (M) = $00 – (M)
A ← – (A) = $00 – (A)
X ← – (X) = $00 – (X)
M ← – (M) = $00 – (M)
M ← – (M) = $00 – (M)
M ← – (M) = $00 – (M)

↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

30
40
50
60
70

9E60

dd

ff

ff

5
1
1
5
4
6

NOP No Operation Uses 1 Bus Cycle – – – – – – INH 9D 1

NSA Nibble Swap
Accumulator A ← (A[3:0]:A[7:4]) – – – – – – INH 62 1

ORA #opr8i
ORA opr8a
ORA opr16a
ORA oprx16,X
ORA oprx8,X
ORA ,X
ORA oprx16,SP
ORA oprx8,SP

Inclusive OR Accumulator
and Memory A ← (A) | (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AA
BA
CA
DA
EA
FA

9EDA
9EEA

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

PSHA Push Accumulator onto
Stack Push (A); SP ← (SP) – $0001 – – – – – – INH 87 2

PSHH Push H (Index Register
High) onto Stack Push (H); SP ← (SP) – $0001 – – – – – – INH 8B 2

PSHX Push X (Index Register
Low) onto Stack Push (X); SP ← (SP) – $0001 – – – – – – INH 89 2

PULA Pull Accumulator from
Stack SP ← (SP + $0001); Pull (A) – – – – – – INH 86 3

PULH Pull H (Index Register
High) from Stack SP ← (SP + $0001); Pull (H) – – – – – – INH 8A 3

PULX Pull X (Index Register
Low) from Stack SP ← (SP + $0001); Pull (X) – – – – – – INH 88 3

ROL opr8a
ROLA
ROLX
ROL oprx8,X
ROL ,X
ROL oprx8,SP

Rotate Left through Carry ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

39
49
59
69
79

9E69

dd

ff

ff

5
1
1
5
4
6

ROR opr8a
RORA
RORX
ROR oprx8,X
ROR ,X
ROR oprx8,SP

Rotate Right through
Carry ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

36
46
56
66
76

9E66

dd

ff

ff

5
1
1
5
4
6

RSP Reset Stack Pointer SP ← $FF
(High Byte Not Affected) – – – – – – INH 9C 1

RTI Return from Interrupt

SP ← (SP) + $0001; Pull (CCR)
SP ← (SP) + $0001; Pull (A)
SP ← (SP) + $0001; Pull (X)

SP ← (SP) + $0001; Pull (PCH)
SP ← (SP) + $0001; Pull (PCL)

↕ ↕ ↕ ↕ ↕ ↕ INH 80 9

RTS Return from Subroutine SP ← SP + $0001; Pull (PCH)
SP ← SP + $0001; Pull (PCL) – – – – – – INH 81 6

SBC #opr8i
SBC opr8a
SBC opr16a
SBC oprx16,X
SBC oprx8,X
SBC ,X
SBC oprx16,SP
SBC oprx8,SP

Subtract with Carry A ← (A) – (M) – (C) ↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A2
B2
C2
D2
E2
F2

9ED2
9EE2

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

Table 6-12. Instruction Set Summary (Sheet 5 of 6)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C

C

b0b7

b0b7

C

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 183
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SEC Set Carry Bit C ← 1 – – – – – 1 INH 99 1

SEI Set Interrupt Mask Bit I ← 1 – – 1 – – – INH 9B 1

STA opr8a
STA opr16a
STA oprx16,X
STA oprx8,X
STA ,X
STA oprx16,SP
STA oprx8,SP

Store Accumulator in
Memory M ← (A) 0 – – ↕ ↕ –

DIR
EXT
IX2
IX1
IX
SP2
SP1

B7
C7
D7
E7
F7

9ED7
9EE7

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

STHX opr8a
STHX opr16a
STHX oprx8,SP

Store H:X (Index Reg.) (M:M + $0001) ← (H:X) 0 – – ↕ ↕ –
DIR
EXT
SP1

35
96

9EFF

dd
hh ll
ff

4
5
5

STOP

Enable Interrupts:
Stop Processing
Refer to MCU
Documentation

I bit ← 0; Stop Processing – – 0 – – – INH 8E 2+

STX opr8a
STX opr16a
STX oprx16,X
STX oprx8,X
STX ,X
STX oprx16,SP
STX oprx8,SP

Store X (Low 8 Bits of
Index Register)
in Memory

M ← (X) 0 – – ↕ ↕ –

DIR
EXT
IX2
IX1
IX
SP2
SP1

BF
CF
DF
EF
FF

9EDF
9EEF

dd
hh ll
ee ff
ff

ee ff
ff

3
4
4
3
2
5
4

SUB #opr8i
SUB opr8a
SUB opr16a
SUB oprx16,X
SUB oprx8,X
SUB ,X
SUB oprx16,SP
SUB oprx8,SP

Subtract A ← (A) – (M) ↕ – – ↕ ↕ ↕

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A0
B0
C0
D0
E0
F0

9ED0
9EE0

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

SWI Software Interrupt

PC ← (PC) + $0001
Push (PCL); SP ← (SP) – $0001
Push (PCH); SP ← (SP) – $0001

Push (X); SP ← (SP) – $0001
Push (A); SP ← (SP) – $0001

Push (CCR); SP ← (SP) – $0001
I ← 1;

PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte

– – 1 – – – INH 83 11

TAP Transfer Accumulator to
CCR CCR ← (A) ↕ ↕ ↕ ↕ ↕ ↕ INH 84 1

TAX Transfer Accumulator to
X (Index Register Low) X ← (A) – – – – – – INH 97 1

TPA Transfer CCR to
Accumulator A ← (CCR) – – – – – – INH 85 1

TST opr8a
TSTA
TSTX
TST oprx8,X
TST ,X
TST oprx8,SP

Test for Negative or Zero

(M) – $00
(A) – $00
(X) – $00
(M) – $00
(M) – $00
(M) – $00

0 – – ↕ ↕ –

DIR
INH
INH
IX1
IX
SP1

3D
4D
5D
6D
7D

9E6D

dd

ff

ff

4
1
1
4
3
5

TSX Transfer SP to Index Reg. H:X ← (SP) + $0001 – – – – – – INH 95 2

TXA Transfer X (Index Reg.
Low) to Accumulator A ← (X) – – – – – – INH 9F 1

TXS Transfer Index Reg. to SP SP ← (H:X) – $0001 – – – – – – INH 94 2

WAIT Enable Interrupts; Wait
for Interrupt I bit ← 0; Halt CPU – – 0 – – – INH 8F 2+

Table 6-12. Instruction Set Summary (Sheet 6 of 6)

Source
Form Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

C
yc

le
s

V H I N Z C
Reference Manual — Volume I HCS08 — Revision 1

184 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Summary Instruction Table

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 6-13. Opcode Map (Sheet 1 of 2)
Bit-Manipulation Branch Read-Modify-Write Control Register/Memory

00 5
BRSET0
3 DIR

10 5
BSET0

2 DIR

20 3
BRA

2 REL

30 5
NEG

2 DIR

40 1
NEGA

1 INH

50 1
NEGX

1 INH

60 5
NEG

2 IX1

70 4
NEG

1 IX

80 9
RTI

1 INH

90 3
BGE

2 REL

A0 2
SUB

2 IMM

B0 3
SUB

2 DIR

C0 4
SUB

3 EXT

D0 4
SUB

3 IX2

E0 3
SUB

2 IX1

F0 3
SUB

1 IX
01 5
BRCLR0
3 DIR

11 5
BCLR0

2 DIR

21 3
BRN

2 REL

31 5
CBEQ

3 DIR

41 4
CBEQA

3 IMM

51 4
CBEQX

3 IMM

61 5
CBEQ

3 IX1+

71 5
CBEQ

2 IX+

81 6
RTS

1 INH

91 3
BLT

2 REL

A1 2
CMP

2 IMM

B1 3
CMP

2 DIR

C1 4
CMP

3 EXT

D1 4
CMP

3 IX2

E1 3
CMP

2 IX1

F1 3
CMP

1 IX
02 5
BRSET1
3 DIR

12 5
BSET1

2 DIR

22 3
BHI

2 REL

32 5
LDHX

3 EXT

42 5
MUL

1 INH

52 6
DIV

1 INH

62 1
NSA

1 INH

72 1
DAA

1 INH

82 5+
BGND

1 INH

92 3
BGT

2 REL

A2 2
SBC

2 IMM

B2 3
SBC

2 DIR

C2 4
SBC

3 EXT

D2 4
SBC

3 IX2

E2 3
SBC

2 IX1

F2 3
SBC

1 IX
03 5
BRCLR1
3 DIR

13 5
BCLR1

2 DIR

23 3
BLS

2 REL

33 5
COM

2 DIR

43 1
COMA

1 INH

53 1
COMX

1 INH

63 5
COM

2 IX1

73 4
COM

1 IX

83 11
SWI

1 INH

93 3
BLE

2 REL

A3 2
CPX

2 IMM

B3 3
CPX

2 DIR

C3 4
CPX

3 EXT

D3 4
CPX

3 IX2

E3 3
CPX

2 IX1

F3 3
CPX

1 IX
04 5
BRSET2
3 DIR

14 5
BSET2

2 DIR

24 3
BCC

2 REL

34 5
LSR

2 DIR

44 1
LSRA

1 INH

54 1
LSRX

1 INH

64 5
LSR

2 IX1

74 4
LSR

1 IX

84 1
TAP

1 INH

94 2
TXS

1 INH

A4 2
AND

2 IMM

B4 3
AND

2 DIR

C4 4
AND

3 EXT

D4 4
AND

3 IX2

E4 3
AND

2 IX1

F4 3
AND

1 IX
05 5
BRCLR2
3 DIR

15 5
BCLR2

2 DIR

25 3
BCS

2 REL

35 4
STHX

2 DIR

45 3
LDHX

3 IMM

55 4
LDHX

2 DIR

65 3
CPHX

3 IMM

75 5
CPHX

2 DIR

85 1
TPA

1 INH

95 2
TSX

1 INH

A5 2
BIT

2 IMM

B5 3
BIT

2 DIR

C5 4
BIT

3 EXT

D5 4
BIT

3 IX2

E5 3
BIT

2 IX1

F5 3
BIT

1 IX
06 5
BRSET3
3 DIR

16 5
BSET3

2 DIR

26 3
BNE

2 REL

36 5
ROR

2 DIR

46 1
RORA

1 INH

56 1
RORX

1 INH

66 5
ROR

2 IX1

76 4
ROR

1 IX

86 3
PULA

1 INH

96 5
STHX

3 EXT

A6 2
LDA

2 IMM

B6 3
LDA

2 DIR

C6 4
LDA

3 EXT

D6 4
LDA

3 IX2

E6 3
LDA

2 IX1

F6 3
LDA

1 IX
07 5
BRCLR3
3 DIR

17 5
BCLR3

2 DIR

27 3
BEQ

2 REL

37 5
ASR

2 DIR

47 1
ASRA

1 INH

57 1
ASRX

1 INH

67 5
ASR

2 IX1

77 4
ASR

1 IX

87 2
PSHA

1 INH

97 1
TAX

1 INH

A7 2
AIS

2 IMM

B7 3
STA

2 DIR

C7 4
STA

3 EXT

D7 4
STA

3 IX2

E7 3
STA

2 IX1

F7 2
STA

1 IX
08 5
BRSET4
3 DIR

18 5
BSET4

2 DIR

28 3
BHCC

2 REL

38 5
LSL

2 DIR

48 1
LSLA

1 INH

58 1
LSLX

1 INH

68 5
LSL

2 IX1

78 4
LSL

1 IX

88 3
PULX

1 INH

98 1
CLC

1 INH

A8 2
EOR

2 IMM

B8 3
EOR

2 DIR

C8 4
EOR

3 EXT

D8 4
EOR

3 IX2

E8 3
EOR

2 IX1

F8 3
EOR

1 IX
09 5
BRCLR4
3 DIR

19 5
BCLR4

2 DIR

29 3
BHCS

2 REL

39 5
ROL

2 DIR

49 1
ROLA

1 INH

59 1
ROLX

1 INH

69 5
ROL

2 IX1

79 4
ROL

1 IX

89 2
PSHX

1 INH

99 1
SEC

1 INH

A9 2
ADC

2 IMM

B9 3
ADC

2 DIR

C9 4
ADC

3 EXT

D9 4
ADC

3 IX2

E9 3
ADC

2 IX1

F9 3
ADC

1 IX
0A 5
BRSET5
3 DIR

1A 5
BSET5

2 DIR

2A 3
BPL

2 REL

3A 5
DEC

2 DIR

4A 1
DECA

1 INH

5A 1
DECX

1 INH

6A 5
DEC

2 IX1

7A 4
DEC

1 IX

8A 3
PULH

1 INH

9A 1
CLI

1 INH

AA 2
ORA

2 IMM

BA 3
ORA

2 DIR

CA 4
ORA

3 EXT

DA 4
ORA

3 IX2

EA 3
ORA

2 IX1

FA 3
ORA

1 IX
0B 5
BRCLR5
3 DIR

1B 5
BCLR5

2 DIR

2B 3
BMI

2 REL

3B 7
DBNZ

3 DIR

4B 4
DBNZA

2 INH

5B 4
DBNZX

2 INH

6B 7
DBNZ

3 IX1

7B 6
DBNZ

2 IX

8B 2
PSHH

1 INH

9B 1
SEI

1 INH

AB 2
ADD

2 IMM

BB 3
ADD

2 DIR

CB 4
ADD

3 EXT

DB 4
ADD

3 IX2

EB 3
ADD

2 IX1

FB 3
ADD

1 IX
0C 5
BRSET6
3 DIR

1C 5
BSET6

2 DIR

2C 3
BMC

2 REL

3C 5
INC

2 DIR

4C 1
INCA

1 INH

5C 1
INCX

1 INH

6C 5
INC

2 IX1

7C 4
INC

1 IX

8C 1
CLRH

1 INH

9C 1
RSP

1 INH

BC 3
JMP

2 DIR

CC 4
JMP

3 EXT

DC 4
JMP

3 IX2

EC 3
JMP

2 IX1

FC 3
JMP

1 IX
0D 5
BRCLR6
3 DIR

1D 5
BCLR6

2 DIR

2D 3
BMS

2 REL

3D 4
TST

2 DIR

4D 1
TSTA

1 INH

5D 1
TSTX

1 INH

6D 4
TST

2 IX1

7D 3
TST

1 IX

9D 1
NOP

1 INH

AD 5
BSR

2 REL

BD 5
JSR

2 DIR

CD 6
JSR

3 EXT

DD 6
JSR

3 IX2

ED 5
JSR

2 IX1

FD 5
JSR

1 IX
0E 5
BRSET7
3 DIR

1E 5
BSET7

2 DIR

2E 3
BIL

2 REL

3E 6
CPHX

3 EXT

4E 6
MOV

3 DD

5E 5
MOV

2 DIX+

6E 4
MOV

3 IMD

7E 5
MOV

2 IX+D

8E 2+
STOP

1 INH

9E
Page 2

AE 2
LDX

2 IMM

BE 3
LDX

2 DIR

CE 4
LDX

3 EXT

DE 4
LDX

3 IX2

EE 3
LDX

2 IX1

FE 3
LDX

1 IX
0F 5
BRCLR7
3 DIR

1F 5
BCLR7

2 DIR

2F 3
BIH

2 REL

3F 5
CLR

2 DIR

4F 1
CLRA

1 INH

5F 1
CLRX

1 INH

6F 5
CLR

2 IX1

7F 4
CLR

1 IX

8F 2+
WAIT

1 INH

9F 1
TXA

1 INH

AF 2
AIX

2 IMM

BF 3
STX

2 DIR

CF 4
STX

3 EXT

DF 4
STX

3 IX2

EF 3
STX

2 IX1

FF 2
STX

1 IX

INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset
IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Offset
DIR Direct IX1 Indexed, 8-Bit Offset IX+ Indexed, No Offset with
EXT Extended IX2 Indexed, 16-Bit Offset Post Increment
DD DIR to DIR IMD IMM to DIR IX1+ Indexed, 1-Byte Offset with
IX+D IX+ to DIR DIX+ DIR to IX+ Post Increment Opcode in

Hexadecimal

Number of Bytes

F0 3
SUB

1 IX

HCS08 Cycles
Instruction Mnemonic
Addressing Mode
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 185
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.7 Assembly Language Tutorial

While most readers of this book already have a basic understanding of
assembly language programming, assemblers written by different
third-party development tool vendors often have subtle differences in
syntax rules. This section describes the directives, conventions, and
syntax rules that apply to the code examples used in this book. If a
novice user uses the same Metrowerks assembler that we used, this
section provides enough basic information to start writing simple

Bit-Manipulation Branch Read-Modify-Write Control Register/Memory
9E60 6

NEG
3 SP1

9ED0 5
SUB

4 SP2

9EE0 4
SUB

3 SP1
9E61 6

CBEQ
4 SP1

9ED1 5
CMP

4 SP2

9EE1 4
CMP

3 SP1
9ED2 5

SBC
4 SP2

9EE2 4
SBC

3 SP1
9E63 6

COM
3 SP1

9ED3 5
CPX

4 SP2

9EE3 4
CPX

3 SP1

9EF3 6
CPHX

3 SP1
9E64 6

LSR
3 SP1

9ED4 5
AND

4 SP2

9EE4 4
AND

3 SP1
9ED5 5

BIT
4 SP2

9EE5 4
BIT

3 SP1
9E66 6

ROR
3 SP1

9ED6 5
LDA

4 SP2

9EE6 4
LDA

3 SP1
9E67 6

ASR
3 SP1

9ED7 5
STA

4 SP2

9EE7 4
STA

3 SP1
9E68 6

LSL
3 SP1

9ED8 5
EOR

4 SP2

9EE8 4
EOR

3 SP1
9E69 6

ROL
3 SP1

9ED9 5
ADC

4 SP2

9EE9 4
ADC

3 SP1
9E6A 6

DEC
3 SP1

9EDA 5
ORA

4 SP2

9EEA 4
ORA

3 SP1
9E6B 8

DBNZ
4 SP1

9EDB 5
ADD

4 SP2

9EEB 4
ADD

3 SP1
9E6C 6

INC
3 SP1
9E6D 5

TST
3 SP1

9EAE 5
LDHX

2 IX

9EBE 6
LDHX

4 IX2

9ECE 5
LDHX

3 IX1

9EDE 5
LDX

4 SP2

9EEE 4
LDX

3 SP1

9EFE 5
LDHX

3 SP1
9E6F 6

CLR
3 SP1

9EDF 5
STX

4 SP2

9EEF 4
STX

3 SP1

9EFF 5
STHX

3 SP1

INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset
IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Offset
DIR Direct IX1 Indexed, 8-Bit Offset IX+ Indexed, No Offset with
EXT Extended IX2 Indexed, 16-Bit Offset Post Increment
DD DIR to DIR IMD IMM to DIR IX1+ Indexed, 1-Byte Offset with
IX+D IX+ to DIR DIX+ DIR to IX+ Post Increment

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E) Prebyte (9E) and Opcode in
Hexadecimal

Number of Bytes

9E60 6
NEG

3 SP1

HCS08 Cycles
Instruction Mnemonic
Addressing Mode

Table 6-13. Opcode Map (Sheet 2 of 2)
Reference Manual — Volume I HCS08 — Revision 1

186 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Assembly Language Tutorial

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

programs. In all cases, the user should refer to the documentation that
came with their particular assembler for more detailed information.

Code examples in this book conform to the source forms shown in the
tables at the bottom of each instruction page in
Appendix A. Instruction Set Details. For readability and consistency
with the instruction documentation, all instruction mnemonics use
uppercase. Most assemblers ignore case for mnemonics, and many
programmers prefer to use lowercase to simplify the process of typing
long source files.

6.7.1 Parts of a Listing Line

The fields of the following example line from a Metrowerks CodeWarrior
code listing are numbered and explained in the text that follows. This
explanation is provided as a reference for the code examples used
throughout this manual.

 34 C000 A4 7F upcase: and #$7F ;forces MSB to 0
----- ---- --------- ------------ ----- --------- -----------------------
 1 2 3 4 5 6 7

This second code listing is from the P&E Microcomputer Systems
CASMS08Z assembler. P&E includes the same fields 1–7 as the
previous figure, but they are in slightly different order and there is an
optional field #8 that shows the number of CPU bus cycles for each
instruction.

 C000 [02] A47F 34 upcase: and #$7F ;forces MSB to 0
----- ---- --------- ---- ------------ ------ ------------ ------------------
 2 8 3 1 4 5 6 7

Fields 1, 2, 3, and 8 are generated by the assembler while fields 4, 5, 6,
and 7 are part of the source file provided by the user:

• Field 1 (491) is a line number which the assembler added as a
reference. This line number is not used by the MCU, but it is a
useful reference when people are discussing the program listing.

• Field 2 (C000) is the address where this instruction starts in
memory.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 187
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Field 3 (A4 7F) is the object code for the instruction on this listing
line. $A4 is the opcode for the AND instruction, and $7F is the
immediate data value that will be compared to the accumulator
(A).

• Field 4 (upcase:) is a label which the assembler equates to the
address shown in field 1. Most assemblers require the colon at the
end of a label (where it is defined but not where it is used as an
operand in an instruction). This colon is not considered part of the
label. Some programmers prefer to put labels on a separate line
by themselves so they can use longer, more descriptive names
while keeping the instruction mnemonics in field 6 lined up along
a vertical line that isn’t too far to the right in the listing.

• Field 5 (and) is the instruction mnemonic. Most assemblers ignore
the case of the mnemonic, but labels are usually case sensitive.

• Field 6 (#$7F) is the operand field. In this case, the immediate
value 7F is hexadecimal as indicated by the $ (dollar) symbol. The
(pound) symbol tells the assembler to use immediate addressing
mode.

• Field 7 is a comment. Comments should start with a semicolon
character. Everything else to the end of the line is a comment that
is not used by the assembler or the MCU. It is just for the benefit
of the programmer and others who need to understand the
program.

• Field 8 ([02]) is an optional field which tells how many bus cycles
this instruction takes. Not all assemblers provide this field. The
P&E assembler can provide this field. This field is usually left out
of listings, but it is included here because it can be helpful while a
programmer is learning the instruction set.

6.7.2 Assembler Directives

This section describes a minimum set of assembler directives to allow a
novice user to start writing basic assembly language programs. These
basic directives should be supported by any HCS08 assembler. Typical
assemblers also include other directives, some of which may be specific
to a particular vendor’s assembler (especially in the areas of macros and
Reference Manual — Volume I HCS08 — Revision 1

188 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Assembly Language Tutorial

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

conditional assembly). Always refer to the documentation that came with
the assembler you are using for complete information.

P&E Microcomputer Systems makes a distinction between directives
and pseudo-ops, while some other vendors use the term directives to
describe all of these special operators. Pseudo-ops are reserved
command words which go in the instruction mnemonic field. Pseudo-ops
are used to set the starting location of a program, to equate a label to a
value, to define the location of program variables in memory, or to
reserve space for RAM variables. Directives are more general
commands to control printing and configuration options for the
assembler. In most assemblers, directives are placed in the same field
as the instruction mnemonics.

6.7.2.1 BASE — Set Default Number Base for Assembler

Most assemblers use decimal as the default base but P&E assemblers
default to treating operands with no prefix as hexadecimal numbers. For
all of the examples in this book, we want the default number base to be
decimal, so it is good practice to use the following directive at the
beginning of all of our source files.

 base 10t ;change default to decimal

6.7.2.2 INCLUDE — Specify Additional Source Files

It is often inconvenient to place all source code for a project into a single
file. This directive allows you to split the project into two or more separate
files. The main file would use INCLUDE directives in the main source file
to indicate where the other files should be incorporated into the project.
When the assembler encounters an INCLUDE directive, it switches its
input stream to the included file until an end-of-file is detected. This
effectively replaces the include directive line with the referenced file.

A common use for this directive is to include a chip definition file
(sometimes called an equate file). Motorola provides free equate files for
its MCUs, so you can use register and bit names in your programs rather
than addresses and bit numbers which are not as readable.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 189
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

This example just uses the file name but you can specify an explicit path
for the file if it isn’t located in the main project directory.

 include "9S08GB60_v1.equ"

6.7.2.3 NOLIST/LIST — Turn Off or Turn On Listing

The assembler reads a source file and generates a composite listing file
while it assembles the source file into an object code file for a program.
The listing file is a plain text file which includes the object code and
generated line numbers in addition to the information from the original
source file. The NOLIST and LIST directives allow the programmer to
control the production of the listing file.

The most common use of these directives is to suppress the listing while
the assembler processes the MCU equate file. This is common because
the contents of the equate file are well understood and suppressing this
listing can easily save 15 to 20 pages of listing. The programmer may list
the equate file separately and keep it on hand for reference.

 nolist ;turn off listing
 include "9S08GB60_v1.equ"
 list ;turn listing back on

6.7.2.4 ORG — Set Program Starting Location

During assembly the assembler maintains a “location counter” which
keeps track of the next available memory location where code or
variables could be stored. The ORG directive sets this location counter
to a specific address value. This does not produce any actual code in the
object file. Rather, it tells the assembler where the next byte of code or
data should be located in memory.

Every program needs at least one ORG directive, and programs often
include several ORG directives. A typical program includes one ORG
directive to set the starting location for variables in RAM. After declaring
all RAM variables, a second ORG directive is used to establish the
starting location for the application program in ROM or FLASH memory.
Reference Manual — Volume I HCS08 — Revision 1

190 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Assembly Language Tutorial

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A third ORG directive is often used to set the location counter to the start
of the interrupt vector space.

 org RamStart ;start of RAM variables

; ds.b directive doesn't produce any object code.
; Just reserves uninitialized named locations for future use.
resrvBytes: ds.b 8 ;reserve space for 8 vars
;for move examples setup 2 10-byte blocks that overlap
moveBlk1: ds.b 10 ;reserve 10 bytes for block 1
blk1end: equ * ;* means 'here'

 org RomStart ;set program starting point

Startup: ;ex. label on separate line

; Setup options for COP and STOP in SIMOPT
 lda #initSIMOPT ;settings for COP & STOP
 sta SOPT ;SIM options (write once)
; Set stack pointer to last (highest) RAM location
 ldhx #RamLast+1 ;point one past RAM
 txs ;SP<-(H:X-1)

 org Vrti-2 ;2 before first vector
; leave room for resetISR and defaultISR
resetISR: dc.b illegalOp ;force ilop reset
defaultISR: rti ;just return
; even unused vectors should point at some handler

vecRti: dc.w defaultISR ;handle unused interrupts
vecIic: dc.w defaultISR ;handle unused interrupts
vecAtd: dc.w defaultISR ;handle unused interrupts
vecKeyboard: dc.w defaultISR ;handle unused interrupts
vecSci2tx: dc.w defaultISR ;handle unused interrupts
vecSci2rx: dc.w defaultISR ;handle unused interrupts
vecSci2err: dc.w defaultISR ;handle unused interrupts
vecSci1tx: dc.w defaultISR ;handle unused interrupts
vecSci1rx: dc.w defaultISR ;handle unused interrupts
vecSci1err: dc.w defaultISR ;handle unused interrupts
vecSpi: dc.w defaultISR ;handle unused interrupts
vecTpm2ovf: dc.w defaultISR ;handle unused interrupts
vecTpm2ch4: dc.w defaultISR ;handle unused interrupts
vecTpm2ch3: dc.w defaultISR ;handle unused interrupts
vecTpm2ch2: dc.w defaultISR ;handle unused interrupts
vecTpm2ch1: dc.w defaultISR ;handle unused interrupts
vecTpm2ch0: dc.w defaultISR ;handle unused interrupts
vecTpm1ovf: dc.w defaultISR ;handle unused interrupts
vecTpm1ch2: dc.w defaultISR ;handle unused interrupts
vecTpm1ch1: dc.w defaultISR ;handle unused interrupts
vecTpm1ch0: dc.w defaultISR ;handle unused interrupts
vecIcg: dc.w defaultISR ;handle unused interrupts
vecLvd: dc.w resetISR ;force an ilop reset
vecIrq: dc.w defaultISR ;handle unused interrupts
vecSwi: dc.w defaultISR ;handle unused interrupts
vecReset: dc.w Startup ;reset starting point
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 191
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.7.2.5 EQU — Equate a Label to a Value

This directive tells the assembler what value or address should be
associated with a particular label. For example:

illegalOp: equ $8D ;$8D is an unused opcode

tells the assembler that the label illegalOp is equivalent to the
hexadecimal value $8D. The next example illustrates the more
interesting case where an asterisk (*) in the operand field is interpreted
by the assembler to mean “the current location counter value.”

 52 org RamStart ;start of RAM variables
 53
 54 ; ds.b directive doesn't produce any object code.
 55 ; Just reserves uninitialized named locations for future use.
 56 0080 resrvBytes: ds.b 8 ;reserve space for 8 vars
 57 ;for move examples setup 2 10-byte blocks that overlap
 58 0088 moveBlk1: ds.b 10 ;reserve 10 bytes for block 1
 59 0000 0092 blk1end: equ * ;* means 'here'

In this example, the ds.b directive in line 58 set aside 10 (decimal)
locations from address $0088–$0091 so at the time the assembler read
the “blk1end: EQU *...” line, the location counter was equal to $0092.

6.7.2.6 dc.b — Define Byte-Sized Constants in Memory

dc.b is used to define 8-bit constant values in memory. This directive is
similar to the FCB directive used by some assemblers. In its simplest
form, the dc.b directive sets a single memory location equal to a
specified 8-bit value. The directive can (and usually does) have a label
which associates the address, where the constant is stored, to the label.

 108 **
 109 * Define ROM (flash) constants for use in examples
 110 **
 111
 112 org RomStart ;set program starting point
 113
 114 1080 55 hexByte: dc.b $55 ;$ prefix means hexadecimal
Reference Manual — Volume I HCS08 — Revision 1

192 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Assembly Language Tutorial

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In this example, the dc.b directive defined a constant with the value $55
at location $1080. The ORG directive set the location counter to $1080,
so this is the address that was used for the dc.b directive. Since the dc.b
used one byte of memory, the location counter is automatically
advanced by one, so it points at $1081 after the dc.b directive. The label
hexByte is set equal to the address $1080 which is the address where
the constant ($55) is located in memory.

 115 1081 0C decimalByte: dc.b 12 ;no prefix means decimal
 116 1082 5A binaryByte: dc.b %01011010 ;% prefix means binary
 117 1083 35 asciiByte: dc.b '5' ;' prefix means ASCII
 118 1084 1122 33 multiBytes: dc.b $11,$22,$33 ;commas separate operands
 119 0000 1087 moveBlk3: equ * ;3rd block for move examples
 120 1087 4164 616D stringBytes: dc.b 'Adam apple' ;string makes ASCII bytes
 108B 2061 7070
 108F 6C65
 121 1091 00 dc.b 0 ;null terminator

This example demonstrates various forms of the operand field in dc.b
directives.

• Line 115 shows a decimal constant (12) and the assembler stores
this in memory as $0C which is the hexadecimal equivalent of
decimal 12.

• Line 116 shows the % prefix which indicates a binary value.

• In line 117, the character 5 is surrounded by single quotes to
indicate an ASCII value. The assembler stores $35 which is the
hexadecimal equivalent of the ASCII character for the number 5.

• Line 118 shows that the operand field can consist of a list of
separate constants separated by commas. Notice three bytes
were stored in memory.

• Line 120 shows an ASCII string may be enclosed in single quotes.
The assembler will store the hexadecimal equivalent of each
ASCII character in successive memory locations (one byte per
character in the string). The quotes are not included in the
constants that are stored in memory. In the case of a string or
when more than four bytes of constants are defined on one source
code line, the listing will have multiple lines to allow the object
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 193
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

code field to line-wrap to list all of the constant values stored in
memory. (See the two extra lines between listing lines 140 and
141 which are considered part of line 140.)

6.7.2.7 dc.w — Define 16-Bit (Word) Constants in Memory

dc.w is used to define 16-bit constant values in memory. This directive
is similar to the FDB directive used by some assemblers. In its simplest
form, the dc.w directive sets a pair of memory locations to a specified
16-bit value (with the first high-order 8 bits going to the current address
pointed to by the location counter and the second low-order value going
to the next higher memory address location). The directive can (and
usually does) have a label which associates the address, where the
upper 8-bit half of the constant is stored, to the label.

 123 1092 1234 hexWord: dc.w $1234 ;takes up two bytes
 124 1094 1092 addrWord: dc.w hexWord ;label used as 16-bit addr
 125 1096 5678 9ABC multiWord: dc.w $5678,$9ABC ;dc.w with multiple operands

Line 123 is a simple case where the hexadecimal constant $1234 is
stored in memory, $12 at address $1092 and $34 at $1093. The label
hexWord is set equal to $1092 by the assembler because this is the
memory address where this constant is stored in memory. Line 124 uses
the label hexWord in the operand field of a dc.w directive and the
assembler stores the equivalent hexadecimal value $1092, $10 at
address $1094 and $92 at address $1095. Line 125 demonstrates that
the operand field of an dc.w directive can consist of a list of constants
separated by commas. The constants $5678 and $9ABC are shown in
the object code field of the listing line.

6.7.2.8 ds.b — Define Storage (Reserve) Memory Bytes

ds.b is used to set aside a specified number of 8-bit memory locations
for use as program variables. This directive is similar to the RMB
directive in some older assemblers. There is also a ds.w directive that is
used to set aside a specified number of 16-bit memory locations for use
as program variables. Unlike the dc.b and dc.w directives discussed in
the previous two sections, the ds.b and ds.w directives do not produce
any object code. ds.b tells the assembler to associate a label to the
Reference Manual — Volume I HCS08 — Revision 1

194 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Assembly Language Tutorial

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

current address pointed to by the location counter and then to adjust the
location counter by the number of bytes set aside by the ds.b directive
so the location counter points at the next available memory location. The
ds.b directive can be used without a label to just move the location
counter, but this is rarely done. It is most often used to set aside memory
space for a single named program variable, but it can also be used to set
aside space for a larger data structure or table.

 48 **
 49 * Define RAM variables for use in examples
 50 **
 51
 52 org RamStart ;start of RAM variables
 53
 54 ; ds.b directive doesn't produce any object code.
 55 ; Just reserves uninitialized named locations for future use.
 56 0080 resrvBytes: ds.b 8 ;reserve space for 8 vars
 57 ;for move examples setup 2 10-byte blocks that overlap
 58 0088 moveBlk1: ds.b 10 ;reserve 10 bytes for block 1
 59 0000 0092 blk1end: equ * ;* means 'here'
 60 ; another way to define a RAM block
 61 0000 000A blk2size: equ 10 ;size in bytes
 62 0092 moveBlk2: ds.b blk2size ;reserve bytes for block 2
 63 0000 009C blk2end: equ (moveBlk2+blk2size) ;end tracks size
 64
 65 ; Setup a flag byte with multiple 1-bit flags
 66 ; name prefixed by m is used to define a mask for logical
 67 ; instructions like AND or ORA; the bit name without the m prefix
 68 ; defines a bit number for BCLR, BSET, BRCLR, and BRSET
 69 009C flags: ds.b 1 ;reserves a byte
 70 0000 0007 SCIready: equ 7 ;bit number
 71 0000 0080 mSCIready: equ %10000000 ;bit 7 mask
 72 0000 0006 OneSecond: equ 6 ;bit number
 73 0000 0040 mOneSecond: equ %01000000 ;bit 6 mask
 74
 75 009D directByte: ds.b 1 ;a variable in direct space

In this example, the ORG directive is used to establish the location
counter value for the assembler. Line 56 sets aside eight bytes of
memory (locations $0080 through $0087). The label resrvBytes is set
equal to the starting address for the block or $0080. Line 75 is a much
simpler and more common use of ds.b where memory location $009D is
set aside for a program variable named directByte. Lines 69 through 73
show an ds.b directive used to set aside an 8-bit location for the program
variable named “flags” and then the next four EQU directives are used
to identify specific bits within this flag byte.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 195
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In the HCS08 architecture, the BCLR, BSET, BRCLR, and BRSET
instructions use the bit number (0–7) to choose a specific opcode that is
defined to work with the selected bit within a memory location. Other
instructions such as AND and ORA use bit masks to identify one or more
bit locations to be operated on.

For this reason, bits are defined in two slightly different ways:

• By convention, we use a normal label such as SCIready to define
the bit number

• We use the same label preceded by a lowercase m to define the
bit mask

In a program, we would then use the plain bit name form whenever we
use it in a BCLR, BSET, BRCLR, or BRSET instruction. We use the bit
name with a prefix of lowercase m everywhere else. Following a
convention such as this helps the programmer avoid confusion and
errors. This convention is used in equate files provided by Motorola so it
is suggested that the same convention be followed in defining other bit
labels.

6.7.3 Labels

User-defined labels are used by the assembler to make the code more
readable and to simplify the task of writing programs. For example, it is
easier for a programmer to remember a text label like “Start” than a
4-digit hexadecimal address which may change as instructions are
added or removed from the program. These labels are significant to the
assembler, but not to the actual MCU. The source forms shown on the
instruction pages in Appendix A. Instruction Set Details never include
any labels. In fact, the source forms only show the instruction mnemonic
and a representative operand field. A real source program should
usually also include a comment field and sometimes a label field.

Some assemblers ignore case in labels so something like “RAM” would
be indistinguishable from “ram” or “Ram.” Other assemblers let the
programmer set a control flag to decide whether case matters. Always
check the documentation for the assembler you are using to be sure you
understand how it treats uppercase and lowercase letters.
Reference Manual — Volume I HCS08 — Revision 1

196 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Assembly Language Tutorial

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Older assemblers limited the size of labels to six or eight characters, but
modern assemblers allow much longer labels. A few assemblers allow
very long names but only consider the first several characters as
significant. For example, an assembler that only considered the first
10 characters would not see any difference between the labels
LongLabel37 and LongLabel38 although it might consider
VeryVeryLongLabel to be acceptable. Again, you should consult the
documentation for your assembler. In most assemblers, labels may
contain any letters, numbers, or the symbols, underscore (_), or period
(.), but the label must start with a letter or underscore (_). Some
assemblers allow other characters, but it is safer to limit yourself to these
choices to assure easy portability to other assemblers. Notice that labels
must NOT contain any space characters because the assembler would
not be able to tell this from two separate labels. In this book, underscore
characters are not used because some people think they make
programs less readable. (This is a subjective opinion and other users
think underscore characters improve readability.) Instead, a combination
of uppercase and lowercase is used here to make multiword labels, for
example, RamLast where an underscore proponent might use ram_last.

A label can be defined only once, but it may be used any number of times
within a program. Where a label is defined, the label name must start in
the first column of the source line, and most assemblers require a colon
after the label where it is defined as in:

waitRDRF: brclr RDRF,SCI1S1,waitRDRF ;loop till RDRF set

Notice that where the label is used in the operand field, there is no colon.

Where longer labels are used, some programmers prefer to place the
label on a separate line above the line to which the label refers.

 131 Startup: ;ex. label on separate line
 132
 133 ; Setup options for COP and STOP in SIMOPT
 134 109A A6 00 lda #initSIMOPT ;settings for COP & STOP
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 197
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The label is defined on line 131 and in this case there is an optional
comment on the same line. Line 132 is a blank line which produces no
object code and is simply used to create a visual separation. Line 133 is
a whole-line comment which also does not produce any object code.
Line 134 is the first line after the label in line 131 that has any object
code, so this is the address assigned to the label by the assembler.

6.7.4 Expressions

The operand field of an instruction or directive can contain an explicit
value (using various number bases or conversions), an expression, or a
label. Trivial expressions such as RamStart+1 do not require
parentheses or brackets. In the P&E assembler, complex expressions
must be enclosed in curly braces as in {moveBlk1–RamStart+3}. Most
assemblers use parentheses to enclose complex expressions.

Most assemblers allow complex mathematical and logical expressions
in any operand field, but practical application programs rarely use
complex nested expressions. The most common expressions are small
constant offsets to identify a location within a multibyte variable or data
structure or to identify the next location past some label (label+1).

 137 109F 45 1080 ldhx #RamLast+1 ;point one past RAM
 138 10A2 94 txs ;SP<-(H:X-1)

In this example, RamLast was equated to the address $107F. We know
the TXS instruction is going to automatically subtract one from the
address in H:X, so we compensate for this by loading H:X with the
address after RamLast (that is RamLast+1). This is an example of a
trivial expression that does not need to be enclosed in parentheses.

 297 ; add 8-bit operand to 24-bit sum
 298 1172 B6 A0 lda oprA ;8-bit operand to A
 299 1174 BB A8 add sum24+2 ;LS byte of 24-bit sum
 300 1176 B7 A8 sta sum24+2 ;update LS byte
 301 1178 B6 A7 lda sum24+1 ;middle byte of 24-bit sum
 302 117A A9 00 adc #0 ;propigate any carry
 303 117C B7 A7 sta sum24+1 ;update middle byte
 304 117E B6 A6 lda sum24 ;get MS byte of 24-bit sum
 305 1180 A9 00 adc #0 ;propigate carry into MS byte
 306 1182 B7 A6 sta sum24 ;update MS byte
Reference Manual — Volume I HCS08 — Revision 1

198 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Assembly Language Tutorial

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In this example, the label sum24 identifies a 24-bit variable located in
three successive bytes of memory. The most significant byte is located
at address sum24, the middle byte is at sum24+1 and the least
significant byte is located at sum24+2. This is another example of trivial
expressions not requiring enclosure in parentheses.

 58 0088 moveBlk1: ds.b 10 ;reserve 10 bytes for block 1
 59 0000 0092 blk1end: equ * ;* means 'here'
 " " " " " " " "
 120 1087 4164 616D stringBytes: dc.b 'Adam apple' ;string makes ASCII bytes
 108B 2061 7070
 108F 6C65
 121 1091 00 dc.b 0 ;null terminator
 " " " " " " " "
 288 ; block move example to move a string to a RAM block
 289 1165 45 0088 ldhx #moveBlk1 ;point at destination block
 290 1168 D6 0FFF movLoop1: lda (stringBytes-moveBlk1),x ;get source byte
 291 116B 27 05 beq dunLoop1 ;null terminator ends loop
 292 116D E7 00 sta 0,x ;save to destination block
 293 116F 5C incx ;next location (assumes DIR)
 294 1170 20 F6 bra movLoop1 ;continue loop
 295 dunLoop1:

In line 290 the expression (stringBytes-moveBlk1) is enclosed in
parentheses because it involves two labels and the assembler considers
this a “complex” expression. The assembler computes the difference of
the two 16-bit addresses represented by stringBytes = $1087 and
moveBlk1 = $0088 ($1087 – $0088 = $0FFF). The result of the
assembler’s computation can be seen after the opcode (D6) in the object
code field of the listing in line 290.

 mOR: equ %00001000 ;receiver over run
 mNF: equ %00000100 ;receiver noise flag
 mFE: equ %00000010 ;receiver framing error
 mPF: equ %00000001 ;received parity failed
 " " " "
 415 11F3 A5 0F bit #(mOR+mNF+mFE+mPF) ;mask of all error flags

In this example, we added the separate bit masks with the arithmetic
addition operator. Because each of the four bit masks is an 8-bit value
with a different single bit set to 1, this is equivalent to combining the
masks with logical OR operators, but the + (plus) is more universal
among different assemblers than the OR operator.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 199
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.7.5 Equate File Conventions

Most code for this book was assembled along with an included equate
file which defines all MCU registers and control bits by the names used
in the data sheet for a specific HCS08 derivative. In that equate file,
which is described in greater detail in Appendix B. Equate File
Conventions, register names use all uppercase letters to match the
data sheets. Program labels use a combination of uppercase and
lowercase letters. This is not a requirement of the assembler, but rather
a convention chosen to make these code listings more consistent with
chip documentation.

Bit names are defined in two ways:

• The bit name with no prefix is equated to the bit number (0–7).

• The name preceded by a lower-case m is equated to a bit position
mask.

This excerpt from the equate file for the MC9S08GB60 shows the SCI
status register with its bits defined according to this convention.

SCI1S1: equ $1C ;SCI1 status register 1
SCI2S1: equ $24 ;SCI2 status register 1
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
TDRE: equ 7 ;(bit #7) Tx data register empty
TC: equ 6 ;(bit #6) transmit complete
RDRF: equ 5 ;(bit #5) Rx data register full
IDLE: equ 4 ;(bit #4) idle line detected
OR: equ 3 ;(bit #3) Rx over run
NF: equ 2 ;(bit #2) Rx noise flag
FE: equ 1 ;(bit #1) Rx framing error
PF: equ 0 ;(bit #0) Rx parity failed
; bit position masks
mTDRE: equ %10000000 ;transmit data register empty
mTC: equ %01000000 ;transmit complete
mRDRF: equ %00100000 ;receive data register full
mIDLE: equ %00010000 ;idle line detected
mOR: equ %00001000 ;receiver over run
mNF: equ %00000100 ;receiver noise flag
mFE: equ %00000010 ;receiver framing error
mPF: equ %00000001 ;received parity failed
Reference Manual — Volume I HCS08 — Revision 1

200 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Assembly Language Tutorial

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The next example shows the use of the bit number variation of a bit
definition. The operand field of the BRCLR instruction includes three
items separated by commas. RDRF is converted to the number 5 which
tells the assembler to use the bit-5 variation of the BRCLR instruction
(opcode = $0B). The next item, SCI1S1 tells the assembler the operand
to be tested is located at the direct addressing mode address $001C
(just 1C in the object code). The last item, waitRDRF, tells the assembler
to branch back to the same BRCLR instruction if the RDRF status bit is
found to be still clear (0).

 450 120A 0B 1C FD waitRDRF: brclr RDRF,SCI1S1,waitRDRF ;loop till RDRF set

The next example shows an expression combining the bit masks for the
OR, NF, FE, and PF status bits. In this example, we used the bit names
with a preceding m to get the bit position mask rather than the bit
number. We used a simple addition operator (+) to combine the bit
masks. Although a logical OR might have been more correct in this case,
not all assemblers use the same character to indicate the logical OR
operation, so the + is more portable among assemblers. We can use the
+ because we know the individual bit masks do not overlap.

 413 ; BIT example to check several error flags in SCI status reg
 414 11F1 B6 1C lda SCI1S1 ;read SCI status register
 415 11F3 A5 0F bit #(mOR+mNF+mFE+mPF) ;mask of all error flags
 416 11F5 26 00 bne sciError ;branch if any flags set
 417 ; A still contains undisturbed status register

6.7.6 Object Code (S19) Files

The ultimate goal of an assembler is to convert a source code file into
the object code that the MCU needs to execute a program. The
assembler optionally produces a listing file which acts as a form of
primary documentation for the program. In this section we briefly
describe the source and listing files and provide a more detailed
description of the object code file, which is sometimes called a
“dot S 1 9 file.” This name comes from the .s19 filename extension and
the internal format of the file.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 201
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The whole programming process starts with a planning effort which may
involve flowcharts or other forms of documentation which describe what
is to be done and roughly how the programmer plans to do it. The first
item directly related to the final program is the source file which the
programmer types into a text file. The source file uses instruction
mnemonics and special syntax rules that are understood by the
assembler.

The source file should also include generous comments to help humans
who must understand and maintain the program. The following is an
example of a short source program.
Reference Manual — Volume I HCS08 — Revision 1

202 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Assembly Language Tutorial

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

**
* Title: s19example.asm Copyright (c) Motorola 2003
**
* Author: Jim Sibigtroth - Motorola
*
* Description: This is not a complete program, rather it is just
* enough code to demonstrate the relationship between the various
* files in a typical MCU programming project (especially .s19
* files).
*
**
 org $C000
**
* upcase - convert ASCII character in A to upper case
* on entry A contains an unknown character
* first strip MSB (AND with $7F) to get 7-bit ASCII
* if A > or = "a" and < or = "z", subtract $20 (A=$41, a=$61)
* other values unchanged except MSB stripped off (forced to 0)
**
upcase: and #$7F ;forces MSB to 0
 cmp #'a' ;check for < "a"
 blt xupcase ;done if too small
 cmp #'z' ;check for > "z"
 bgt xupcase ;done if too big
 sub #$20 ;convert a-z to A-Z
xupcase: rts ;done

**
* ishex - check character for valid hexadecimal (0-9 or A-F)
* on entry A contains an unknown upper-case character
* returns with original character in A and Z set or cleared
* if A was valid hexadecimal then Z=1, otherwise Z=0
**
ishex: psha ;save original character
 cmp #'0' ;check for < ASCII zero
 blo nothex ;branches if C=0 (Z also 0)
 cmp #'9' ;check for 0-9
 bls okhex ;branches if ASCII 0-9
 cmp #'A' ;check for < ASCII A
 blo nothex ;branches if C=0 (Z also 0)
 cmp #'F' ;check for A-F
 bhi nothex ;branches if > ASCII F
okhex: clra ;forces Z bit to 1
nothex: pula ;restore original character
 rts ;return Z=1 if char was hex

Figure 6-6. Demonstration Code
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 203
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The assembler is a third-party development tool which is a computer
program that runs on a personal computer or workstation and translates
source code files into the hexadecimal numbers to be stored into the
memory of the target MCU. The assembler can be requested to produce
a listing file which includes both the original source program and a
representation of the machine code meaning of each source line. This
listing file is intended to act as documentation for the application
program. The listing includes more information than the source file, such
as the addresses of labels and the opcodes that each instruction
mnemonic translates to.

The following code example is the listing file generated by assembling
the source file shown in the previous example.
Reference Manual — Volume I HCS08 — Revision 1

204 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Assembly Language Tutorial

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 1 **
 2 * Title: s19example.asm Copyright (c) Motorola 2003
 3 **
 4 * Author: Jim Sibigtroth - Motorola
 5 *
 6 * Description: This is not a complete program, rather it is just
 7 * enough code to demonstrate the relationship between the various
 8 * files in a typical MCU programming project (especially .s19
 9 * files).
 10 *
 25 **
 26 org $C000
 27 **
 28 * upcase - convert ASCII character in A to upper case
 29 * on entry A contains an unknown character
 30 * first strip MSB (AND with $7F) to get 7-bit ASCII
 31 * if A > or = "a" and < or = "z", subtract $20 (A=$41, a=$61)
 32 * other values unchanged except MSB stripped off (forced to 0)
 33 **
 34 C000 A4 7F upcase: and #$7F ;forces MSB to 0
 35 C002 A1 61 cmp #'a' ;check for < "a"
 36 C004 91 06 blt xupcase ;done if too small
 37 C006 A1 7A cmp #'z' ;check for > "z"
 38 C008 92 02 bgt xupcase ;done if too big
 39 C00A A0 20 sub #$20 ;convert a-z to A-Z
 40 C00C 81 xupcase: rts ;done
 41 *********************
 42
 43 **
 44 * ishex - check character for valid hexadecimal (0-9 or A-F)
 45 * on entry A contains an unknown upper-case character
 46 * returns with original character in A and Z set or cleared
 47 * if A was valid hexadecimal then Z=1, otherwise Z=0
 48 **
 49 C00D 87 ishex: psha ;save original character
 50 C00E A1 30 cmp #'0' ;check for < ASCII zero
 51 C010 25 0D blo nothex ;branches if C=0 (Z also 0)
 52 C012 A1 39 cmp #'9' ;check for 0-9
 53 C014 23 08 bls okhex ;branches if ASCII 0-9
 54 C016 A1 41 cmp #'A' ;check for < ASCII A
 55 C018 25 05 blo nothex ;branches if C=0 (Z also 0)
 56 C01A A1 46 cmp #'F' ;check for A-F
 57 C01C 22 01 bhi nothex ;branches if > ASCII F
 58 C01E 4F okhex: clra ;forces Z bit to 1
 59 C01F 86 nothex: pula ;restore original character
 60 C020 81 rts ;return Z=1 if char was hex
 61 *********************

Figure 6-7. Listing File

The fields of this listing are explained in 6.7.1 Parts of a Listing Line.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 205
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The MCU expects the program to be a series of 8-bit values in memory.
So far, our program still looks as if it was written for people. The version
the computer needs to load into its memory is called an object code file.
For Motorola microcontrollers, the most common form of object code file
is the .s19 or S-record file. The assembler can be directed to optionally
produce a listing file and/or an object code file.

An S-record file is an ASCII text file that can be viewed by a text editor
or word processor. Do not edit these files because the structure and
content of the files are critical to their proper operation.

Each line of an S-record file is a record. Each record begins with a capital
letter S followed by a code number from 0 to 9. The only code numbers
that are important in this application are S0, S1, and S9 because other
S-number codes apply only to larger systems.

• S0 is an optional header record that may contain the name of the
file for the benefit of humans that need to maintain these files.

• S1 records are the main data records.

• An S9 record is used to mark the end of the S-record file.

For the work we are doing with 8-bit microcontrollers, the information in
the S9 record is not important, but an S9 record is required at the end of
the S-record file. Figure 6-8 shows the syntax of an S1 record.

Figure 6-8. Syntax of an S1 Record

00S1 13 C0 A4 7F A1 61 91 06 A1 7A 92 02 A0 20 81 87 A1 30 28

CHECKSUM = ONE’S COMPLEMENT OF THE SUM OF ALL OF THESE BYTES

TYPE

LENGTH

ADDRESS OBJECT CODE DATA CHECKSUM
Reference Manual — Volume I HCS08 — Revision 1

206 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)
Assembly Language Tutorial

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

All of the numbers in an S-record file are in hexadecimal. The type field
is S0, S1, or S9 for the S-record files used here. The length field is the
number of pairs of hexadecimal digits in the record excluding the type
and length fields. The address field is the 16-bit address where the first
data byte will be stored in memory. Each pair of hexadecimal digits in the
machine code data field represents an 8-bit data value to be stored in
successive locations in memory. The checksum field is an 8-bit value
that represents the one’s complement of the sum of all bytes in the
S-record except the type and checksum fields. This checksum is used
during loading of the S-record file to verify that the data is complete and
correct for each record.

S123C000A47FA1619106A17A9202A0208187A130250DA1392308A1412505A14622014F
86F6
S104C020819A
S9030000FC

Figure 6-9. S19 Example

You can compare the values in the S-record file with those in the object
code field of the listing in Figure 6-9. The ORG directive in line 49 of
Figure 6-7 established the starting address at $C000.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Central Processor Unit (CPU) 207
For More Information On This Product,

 Go to: www.freescale.com

Central Processor Unit (CPU)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Reference Manual — Volume I HCS08 — Revision 1

208 Central Processor Unit (CPU) MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

HCS08 Family Reference Manual

Section 7. Development Support

7.1 Introduction

Development support systems in the HCS08 Family include the
background debug controller (BDC) and the on-chip debug module
(DBG). This architecture marks a major change in the way MCU systems
are developed due to advances in the processing technology used to
make these devices.

In the past, most development was based on an external tool having
access to the address and data buses of the target MCU. This allowed
the external tool to monitor cycle-by-cycle activity and intervene at
critical points to stop normal execution of the application program. This
style of debug has become increasingly difficult to support due to the
higher speeds and smaller packages of more modern MCUs. At the
same time, the cost of logic circuitry within the MCU has decreased as
process improvements and shrinks have allowed more circuitry per unit
of die area. Due to mechanical constraints, pads for wire-bond
connections have not shrunk as quickly as other circuitry. In today’s
technology, a few extra pins cost more than a few thousand logic
transistors worth of internal circuitry. Moving the development circuitry
inside the MCU to avoid the need for external pins for the address and
data buses is now the most cost-effective method.

The BDC provides a single-wire debug interface to the target MCU. This
interface provides a convenient means for programming the on-chip
FLASH and other non-volatile memories. Also, the BDC is the primary
debug interface for development and allows non-intrusive access to
memory data and traditional debug features such as CPU register
modify, breakpoints, and single instruction trace commands.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 209
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In the HCS08 Family, address and data bus signals are not available on
external pins (not even in test modes). Debug is done through
commands fed into the target MCU via the single-wire background
debug interface. The debug module provides a means to selectively
trigger and capture bus information so an external development system
can reconstruct what happened inside the MCU on a cycle-by-cycle
basis without having external access to the address and data signals.

Most HCS08 devices provide two other features related to development.
The BDFR control bit in the SBDFR register (usually located at $1801)
is a write-only bit that allows a host development system to reset the
target MCU with a serial memory modify command through the
background debug interface. BDFR cannot be written by user software,
so the target MCU cannot be reset accidentally even if user code runs
away due to some programming bug. The second development feature
is a part identification number in the SDIDH:SDIDL register pair (usually
located at $1806, $1807). The upper four bits of SDIDH hold the silicon
mask set revision number (0–F), and the remaining 12 bits of the
SDIDH:SDIDL register pair hold a 12-bit code number that identifies the
device derivative. For example, the first revision of the MC9S08GB60
version of the HSC08 Family has a code number of
SDIDH:SDIDL = $0 002). This identification code allows an external
development host to associate a register definition file to a particular
target MCU so the debugger understands where registers and control
bits are located in the target MCU.

7.2 Features

Features of the background debug controller (BDC) include:

• Single dedicated pin for mode selection and background
communications

• BDC registers not located in memory map

• SYNC command to determine target communications rate

• Non-intrusive commands for memory access

• Active background mode commands for CPU register access

• GO and TRACE1 commands
Reference Manual — Volume I HCS08 — Revision 1

210 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Features

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• BACKGROUND command can wake CPU from stop or wait
modes

• One hardware address breakpoint built into BDC

• Oscillator runs in stop mode, if BDM enabled

Features of the debug module (DBG) include:

• Two trigger comparators:

– Two address + read/write (R/W) or

– One full address + data + R/W

• Flexible 8-word by 16-bit FIFO (first-in, first-out) for capture
information:

– Change-of-flow addresses or

– Event-only data

• Two types of breakpoints:

– Tag breakpoints for instruction opcodes

– Force breakpoints for any address access

• Nine trigger modes:

– A-only

– A OR B

– A then B

– A AND B data (full mode)

– A AND NOT B data (full mode)

– Event-only B (store data)

– A then event-only B (store data)

– Inside range (A ≤ address ≤ B)

– Outside range (address < A or address > B)
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 211
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3 Background Debug Controller (BDC)

All MCUs in the HCS08 Family contain a single-wire background debug
interface which supports in-circuit programming of on-chip non-volatile
memory and sophisticated non-intrusive debug capabilities. Unlike
debug interfaces on earlier 8-bit MCUs, this system does not interfere
with normal application resources. It does not use any user memory or
locations in the memory map and does not share any on-chip
peripherals. The single BKGD interface pin is a separate dedicated pin
which is not accessible to user programs.

BDM commands are divided into two groups:

• Active background mode commands require that the target MCU
is in active background mode (the user program is not running).
The BACKGROUND command causes the target MCU to enter
active background mode. Active background mode commands
allow the CPU registers to be read or written and allow the user to
trace one user instruction at a time or GO to the user program from
active background mode.

• Non-intrusive commands can be executed at any time even while
the user’s program is running. Non-intrusive commands allow a
user to read or write MCU memory locations or access status and
control registers within the background debug controller (BDC).

Typically, a relatively simple interface pod is used to translate
commands from a host computer into commands for the custom serial
interface to the single-wire background debug system. Depending on
the development tool vendor, this interface pod may use a standard
RS232 serial port, a parallel printer port, or some other type of
communications such as Ethernet or a universal serial bus (USB) to
communicate between the host PC and the pod. The pod typically
connects to the target system with ground, the BKGD pin, RESET (if
there is a reset pin), and sometimes a VDD signal. An open-drain
connection to reset allows the host to force a target system reset which
is useful to regain control of a lost target system or to control startup of
a target system before the on-chip non-volatile memory has been
programmed. VDD can sometimes be used to allow the pod to take
power from the target system to avoid the need for a separate power
supply.
Reference Manual — Volume I HCS08 — Revision 1

212 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.1 BKGD Pin Description

All commands and bidirectional data for the background debug system
are communicated through the BKGD pin.

BKGD is the single-wire background debug interface pin. The primary
function of this pin is for bidirectional serial communication of
background debug commands and data. During reset, this pin selects
between starting in active background mode and starting the user’s
application program. This pin is also used to request a timed sync
response pulse to allow a host development tool to determine the correct
clock frequency for background debug serial communications.

Figure 7-1 shows the standard header for connection of a BDM pod. A
pod is a small interface device that connects a host computer such as a
personal computer to a target HCS08 system. BKGD and GND are the
minimum connections required to communicate with a target MCU. The
open-drain RESET signal is included in the connector to allow a direct
way for the host to force a target system reset. By controlling both BKGD
and RESET, the host also can force the target system to reset into active
background mode rather than start the user application program. (This
is useful to gain control of a target MCU whose FLASH program memory
has not been programmed yet with a user application program.) The VDD
connection can sometimes allow a host debugger pod to take power
from the target system rather than using a separate power source for the
pod. However, if the pod is powered separately, it can be connected to
a running target system without forcing a target system reset or
otherwise disturbing the running application program.

Figure 7-1. Standard BDM Tool Connector

2

4

65

3

1

RESET

BKGD GND

VDD

NO CONNECT

NO CONNECT
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 213
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In cases where there is no RESET pin on the MCU or no RESET
connection from the debug pod to the target MCU, there are other ways
to force a target system reset:

• Write a logic 1 to the BDM force reset (BDFR) bit in the SBDFR
register. This bit can only be written using a serial WRITE_BYTE
or WRITE_BYTE_WS command.

• Turn power off and back on to force a power-on reset.

• Point the PC at an illegal opcode and use GO or TRACE1 to force
an illegal opcode reset.

BKGD is a pseudo-open-drain pin with an on-chip pullup so no external
pullup resistor is required (although some users still use an external
pullup resistor to improve noise immunity). Unlike typical open-drain
pins, the external resistor capacitor (RC) time constant on this pin, which
is influenced by external capacitance, plays almost no role in signal rise
time. The custom protocol provides for brief, actively driven speedup
pulses to force rapid rise times on this pin without risking harmful drive
level conflicts. Refer to 7.3.2 Communication Details for more detail.

When no debugger pod is connected to the 6-pin BDM interface
connector, the internal pullup on BKGD chooses the normal operating
mode. When a pod is connected, it can pull both BKGD and RESET low,
release RESET to select active background mode rather than normal
operating mode, then release BKGD. Of course, it is not necessary to
force a reset to communicate with the target MCU through the
background debug interface. In fact, you can even connect a powered
debug pod onto a running target system without disturbing the running
application program.

Background debug controller (BDC) serial communications use a
custom serial protocol that was first introduced on the M68HC12 Family
of microcontrollers. This protocol assumes that the host knows the
communication clock rate which is determined by the target BDC clock
rate. The BDC clock rate may be the system bus clock frequency or an
alternate frequency source depending on the state of the CLKSW control
bit in the BDCSCR register. On the MC9S08GB60, the alternate
frequency source is a self-clocked local oscillator (ICGLCLK) in the BDC
that runs about 8 MHz independent of the bus frequency. On some other
Reference Manual — Volume I HCS08 — Revision 1

214 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

HCS08 derivatives, the alternate frequency source could be the
undivided crystal frequency. All communication is initiated and
controlled by the host which drives a high-to-low edge to signal the
beginning of each bit time. Commands and data are sent most
significant bit first (MSB-first).

If a host is attempting to communicate with a target MCU which has an
unknown BDC clock rate, a SYNC command may be sent to the target
MCU to request a timed sync response signal from which the host can
determine the correct communication speed. After establishing
communications, the host can read the BDC status and control register
and write to the clock switch (CLKSW) control bit to change the source
of the BDC clock for further BDC communications if necessary.

7.3.2 Communication Details

The BDC serial interface requires the external controller to generate a
falling edge on the BKGD pin to indicate the start of each bit time. The
external controller provides this falling edge whether data is transmitted
or received.

BKGD is a pseudo-open-drain pin that can be driven either by an
external controller or by the MCU. Data is transferred MSB first at
16 BDC clock cycles per bit (nominal speed). The interface times out if
512 BDC clock cycles occur between falling edges from the host. Any
BDC command that was in progress when this timeout occurs is aborted
without affecting the memory or operating mode of the target MCU
system. Refer to 7.3.2.1 BDC Communication Speed Considerations
for more detailed information about the source of the BDC
communications clock.

7.3.2.1 BDC Communication Speed Considerations

The custom serial protocol requires the debug pod to know the target
BDC communication clock speed. There are two possible sources for
this clock frequency (as selected by the CLKSW bit in the BDCSCR
register), the bus rate clock or a fixed-frequency alternate clock source
that may be different for different HCS08 derivatives. In an
MC9S08GB60, this alternate clock source is a self-clocked local
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 215
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

oscillator in the BDC module that runs about 8 MHz (independent of the
CPU bus frequency). In other HCS08 devices this alternate clock source
is the undivided crystal frequency. Future derivatives may use some
other source for this alternate clock. Refer to the data sheet for each
HCS08 derivative for information about the alternate clock source in the
device you are using.

When the MCU is reset in normal user mode, CLKSW is reset to 0 which
selects the alternate clock source. This clock source is a fixed frequency
that is independent of the bus frequency so it will not change if a user
program modifies clock generator settings. This is the preferred clock
source for general debugging.

When the MCU is reset in active background mode, CLKSW is reset to
1 which selects the bus clock as the source of the BDC clock. This
CLKSW setting is most commonly used during FLASH memory
programming because the bus clock can usually be configured to
operate at the highest allowed bus frequency which will ensure the
fastest possible FLASH programming times. Since the host system is in
control of changes to clock generator settings, it can know when a
different BDC communication speed should be used. The host
programmer also knows that no unexpected change in bus frequency
could occur to disrupt BDC communications.

Normally, the CLKSW = 1 option should not be used for general
debugging because there is no way to be sure the user’s application
program with not change the clock generator settings. This is especially
true in the case of application programs that are not yet fully debugged.

After any reset (or at any other time), the host system can issue a SYNC
command to determine the speed of the BDC clock. CLKSW may be
written using a serial WRITE_CONTROL command through the BDC
interface. CLKSW is located in the BDCSCR register in the BDC module
and it is not accessible in the normal memory map of the MCU. This
means that no user program can modify this register (intentionally or
unintentionally).
Reference Manual — Volume I HCS08 — Revision 1

216 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.2.2 Bit Timing Details

The BKGD pin can receive a high or low level or transmit a high or low
logic level. The following diagrams show timing for each of these cases.
Interface timing is synchronous to clocks in the target BDC, but
asynchronous to the external host. The internal BDC clock signal is
shown for reference in counting cycles.

Figure 7-2 shows an external host transmitting a logic 1 or 0 to the
BKGD pin of a target HCS08 MCU. The host is asynchronous to the
target so there is a 0-to-1 cycle delay from the host-generated falling
edge to where the target perceives the beginning of the bit time. Ten
target BDC clock cycles later, the target senses the bit level on the
BKGD pin. Typically, the host actively drives the pseudo-open-drain
BKGD pin during host-to-target transmissions to speed up rising edges.
Since the target does not drive the BKGD pin during this period, there is
no need to treat the line as an open-drain signal during host-to-target
transmissions.

Figure 7-2. BDC Host-to-Target Serial Bit Timing

EARLIEST START

TARGET SENSES BIT LEVEL

10 CYCLES

SYNCHRONIZATION
UNCERTAINTY

BDC CLOCK
(TARGET MCU)

HOST
TRANSMIT 1

HOST
TRANSMIT 0

PERCEIVED START
OF BIT TIME

OF NEXT BIT
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 217
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7-3 shows the host receiving a logic 1 from the target MCU. Since
the host is asynchronous to the target MCU, there is a 0-to-1 cycle delay
from the host-generated falling edge on BKGD to the perceived start of
the bit time in the target MCU. The host holds the BKGD pin low long
enough for the target to recognize it (at least two target BDC cycles). The
host must release the low drive before the target MCU drives a brief
active-high speedup pulse seven cycles after the perceived start of the
bit time. The host should sample the bit level about 10 cycles after it
started the bit time.

Figure 7-3. BDC Target-to-Host Serial Bit Timing (Logic 1)

HOST SAMPLES BKGD PIN

10 CYCLES

BDC CLOCK
(TARGET MCU)

HOST DRIVE
TO BKGD PIN

TARGET MCU
SPEEDUP PULSE

PERCEIVED START
OF BIT TIME

HIGH IMPEDANCE

HIGH IMPEDANCE HIGH IMPEDANCE

BKGD PIN
R-C RISE

10 CYCLES

EARLIEST START
OF NEXT BIT
Reference Manual — Volume I HCS08 — Revision 1

218 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7-4 shows the host receiving a logic 0 from the target MCU. Since
the host is asynchronous to the target MCU, there is a 0-to-1 cycle delay
from the host-generated falling edge on BKGD to the start of the bit time
as perceived by the target MCU. The host initiates the bit time but the
target HCS08 finishes it. Since the target wants the host to receive a
logic 0, it drives the BKGD pin low for 13 BDC clock cycles, then briefly
drives it high to speed up the rising edge. The host samples the bit level
about 10 cycles after starting the bit time.

Figure 7-4. BDM Target-to-Host Serial Bit Timing (Logic 0)

10 CYCLES

BDC CLOCK
(TARGET MCU)

HOST DRIVE
TO BKGD PIN

TARGET MCU
DRIVE AND

PERCEIVED START
OF BIT TIME

HIGH IMPEDANCE

BKGD PIN

10 CYCLES

SPEEDUP PULSE

SPEEDUP
PULSE

EARLIEST START
OF NEXT BIT

HOST SAMPLES BKGD PIN
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 219
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.3 BDC Registers and Control Bits

The BDC has two registers:

• The BDC status and control register (BDCSCR) is an 8-bit register
containing control and status bits for the background debug
controller.

• The BDC breakpoint register (BDCBKPT) holds a 16-bit
breakpoint match address.

These registers are accessed with dedicated serial BDC commands and
are not located in the memory space of the target MCU (so they do not
have addresses and cannot be accessed by user programs).

Some of the bits in the BDCSCR have write limitations; otherwise, these
registers may be read or written at any time. For example, the ENBDM
control bit may not be written while the MCU is in active background
mode. (This prevents the ambiguous condition of the control bit
forbidding active background mode while the MCU is already in active
background mode.) Also, the four status bits (BDMACT, WS, WSF, and
DVF) are read-only status indicators and can never be written by the
WRITE_CONTROL serial BDC command. The clock switch (CLKSW)
control bit may be read or written at any time; however, this bit should
not be written to 1 if the target MCU has an FLL or PLL and user software
might change the FLL/PLL settings while debugging is taking place.
Changing FLL/PLL settings while CLKSW = 1 causes BDC
communications to fail because the host cannot predict the correct
communications speed.

7.3.3.1 BDC Status and Control Register

This register can be read or written by serial BDC commands but is not
accessible to user programs because it is not located in the normal
memory map of the MCU.
Reference Manual — Volume I HCS08 — Revision 1

220 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 ENBDM — Enable BDM (permit active background debug mode)

Typically, this bit is written to 1 by the debug host shortly after the
beginning of a debug session or whenever the debug host resets the
target and remains 1 until a normal reset clears it.

1 = BDM can be made active to allow active background mode
commands.

0 = BDM cannot be made active (non-intrusive commands still
allowed).

BDMACT — Background Mode Active Status

This is a read-only status bit.
1 = BDM active and waiting for serial commands
0 = BDM not active

BKPTEN — BDC Breakpoint Enable

If this bit is clear, the BDC breakpoint is disabled and the FTS control
bit and BDCBKPT match register are ignored.

1 = BDC breakpoint enabled
0 = BDC breakpoint disabled

FTS — Force/Tag Select

When FTS = 1, a breakpoint is requested whenever the CPU address
bus matches the BDCBKPT match register. When FTS = 0, a match
between the CPU address bus and the BDCBKPT register causes the
fetched opcode to be tagged. If this tagged opcode ever reaches the
end of the instruction queue, the CPU enters active background mode
rather than executing the tagged opcode.

1 = Breakpoint match forces active background mode at the next
instruction boundary (address need not be an opcode).

0 = Tag opcode at breakpoint address and enter active background
mode if CPU attempts to execute that instruction.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
ENBDM

BDMACT
BKPTEN FTS CLKSW

WS WSF DVF

Write:

Normal Reset: 0 0 0 0 0 0 0 0

Reset in active background
mode:

1 0 0 0 1 0 0 0

Figure 7-5. BDC Status and Control Register (BDCSCR)
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 221
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLKSW — Select Source for BDC Communications Clock
When the MCU is reset in normal user mode, CLKSW is forced to 0
which selects the fixed alternate frequency source as the BDC clock.
In the MC9S08GB60, the alternate frequency source is a local
oscillator in the BDC module that runs about 8 MHz. When the MCU
is reset in active background mode, CLKSW is forced to 1 which
selects the bus clock at the BDC clock. You should avoid using the
CLKSW = 1 option while running a user program that might change
the bus frequency unexpectedly because this could result in loss of
BDC communications.

1 = CPU bus clock
0 = Derivative-specific fixed alternate frequency source

WS — Wait or Stop Status
When the target CPU is in wait or stop mode, most BDC commands
cannot function. However, the BACKGROUND command can be
used to force the target CPU out of wait or stop mode and into active
background mode where all BDC commands work. Whenever the
host forces the target MCU into active background mode, the host
should issue a READ_STATUS command to check that BDMACT = 1
before attempting other BDC commands.

1 = Target CPU is in wait or stop mode, or a BACKGROUND
command was used to change from wait or stop mode to active
background mode.

0 = Target CPU is running user application code or is in active
background mode (was not in wait or stop mode when
background became active).

WSF — Wait or Stop Failure Status
This status bit is set if a memory access command failed due to the
target CPU executing a WAIT or STOP instruction at or about the
same time. The usual recovery strategy is to issue a BACKGROUND
command to get out of wait or stop mode and into active background
mode, repeat the command that failed, then return to the user
program. (If desired, the host can restore CPU registers and stack
values and re-execute the WAIT or STOP instruction.)

1 = Memory access command failed because the CPU entered
wait or stop mode.

0 = Memory access did not conflict with a WAIT or STOP
instruction.
Reference Manual — Volume I HCS08 — Revision 1

222 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DVF — Data Valid Failure Status

This status bit is set if a memory access command failed due to the
target CPU executing a slow memory access at or about the same
time. The usual recovery strategy is to issue READ_LAST commands
until the returned status information indicated the original access
completed successfully. Since no current HCS08 devices have
memory modules that support slow accesses, this bit should always
read 0. Consult the data sheet for a specific HCS08 device if you are
uncertain about whether it includes any slow memory modules.

1 = Memory access command failed because the CPU was not
finished with a slow memory access.

0 = Memory access did not conflict with a slow memory access.

7.3.3.2 BDC Breakpoint Match Register

This 16-bit register holds the address for the hardware breakpoint in the
BDC. The BKPTEN and FTS control bits in BDCSCR are used to enable
and configure the breakpoint logic. Dedicated serial BDC commands
(READ_BKPT and WRITE_BKPT) are used to read and write the
BDCBKPT register. Breakpoints are normally set while the target MCU
is in active background mode before running the user application
program. However, since READ_BKPT and WRITE_BKPT are
non-intrusive commands, they could be executed even while the user
program is running. For additional information about setup and use of
the hardware breakpoint logic in the BDC, refer to 7.3.7 BDC Hardware
Breakpoint.

7.3.4 BDC Commands

BDC commands are sent serially from a host computer to the BKGD pin
of the target HCS08 MCU. All commands and data are sent MSB-first
using a custom BDC communications protocol. Active background mode
commands require that the target MCU is currently in the active
background mode while non-intrusive commands may be issued at any
time whether the target MCU is in active background mode or running a
user application program.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 223
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 7-1 shows all HCS08 BDC commands, a shorthand description of
their coding structure, and the meaning of each command. Subsequent
paragraphs describe each command in greater detail.

Table 7-1. BDC Command Summary

Command
Mnemonic

Active
Background

Mode/
Non-Intrusive

Coding
Structure(1) Description

SYNC Non-intrusive n/a(2)
Request a timed reference pulse to
determine target BDC communication
speed

ACK_ENABLE Non-intrusive D5/d
Enable handshake. Issues an ACK pulse
after the command is executed.

ACK_DISABLE Non-intrusive D6/d
Disable handshake. This command does
not issue an ACK pulse.

BACKGROUND Non-intrusive 90/d
Enter active background mode if enabled
(ignore if ENBDM bit equals 0)

READ_STATUS Non-intrusive E4/SS Read BDC status from BDCSCR

WRITE_CONTROL Non-intrusive C4/CC Write BDC controls in BDCSCR

READ_BYTE Non-intrusive E0/AAAA/d/RD Read a byte from target memory

READ_BYTE_WS Non-intrusive E1/AAAA/d/SS/RD Read a byte and report status

READ_LAST Non-intrusive E8/SS/RD
Re-read byte from address just read and
report status

WRITE_BYTE Non-intrusive C0/AAAA/WD/d Write a byte to target memory

WRITE_BYTE_WS Non-intrusive C1/AAAA/WD/d/SS Write a byte and report status

READ_BKPT Non-intrusive E2/RBKP Read BDCBKPT breakpoint register

WRITE_BKPT Non-intrusive C2/WBKP Write BDCBKPT breakpoint register

GO
Active
Background Mode

08/d
Go to execute the user application
program starting at the address currently
in the PC

TRACE1
Active
Background Mode

10/d
Trace 1 user instruction at the address in
the PC, then return to active background
mode

TAGGO
Active
Background Mode

18/d

Same as GO but enable external tagging
(HCS08 devices have no external tagging
pin, so TAGGO is just like GO in an
HCS08)

READ_A
Active
Background Mode

68/d/RD Read accumulator (A)
Reference Manual — Volume I HCS08 — Revision 1

224 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

READ_CCR
Active
Background Mode

69/d/RD Read condition code register (CCR)

READ_PC
Active
Background Mode

6B/d/RD16 Read program counter (PC)

READ_HX
Active
Background Mode

6C/d/RD16 Read H and X register pair (H:X)

READ_SP
Active
Background Mode

6F/d/RD16 Read stack pointer (SP)

READ_NEXT
Active
Background Mode

70/d/RD
Increment H:X by one, then read memory
byte located at H:X

READ_NEXT_WS
Active
Background Mode

71/d/SS/RD
Increment H:X by one, then read memory
byte located at H:X. Report status and
data.

WRITE_A
Active
Background Mode

48/WD/d Write accumulator (A)

WRITE_CCR
Active
Background Mode

49/WD/d Write condition code register (CCR)

WRITE_PC
Active
Background Mode

4B/WD16/d Write program counter (PC)

WRITE_HX
Active
Background Mode

4C/WD16/d Write H and X register pair (H:X)

WRITE_SP
Active
Background Mode

4F/WD16/d Write stack pointer (SP)

WRITE_NEXT
Active
Background Mode

50/WD/d
Increment H:X by one, then write memory
byte located at H:X

WRITE_NEXT_WS
Active
Background Mode

51/WD/d/SS
Increment H:X by one, then write memory
byte located at H:X. Also report status.

1. Key:
Commands begin with an 8-bit hexadecimal command code in the host-to-target direction (MSB first)
/ — separates parts of the command
d — delay 16 target BDC clock cycles (the CLKSW bit in BDCSCR controls the source of the BDC clock)
AAAA — a 16-bit address in the host-to-target direction
RD — 8 bits of read data in the target-to-host direction
WD — 8 bits of write data in the host-to-target direction
RD16 — 16 bits of read data in the target-to-host direction
WD16 — 16 bits of write data in the host-to-target direction
SS — contents of BDCSCR in the target-to-host direction (STATUS)
CC — 8 bits of write data for BDCSCR in the host-to-target direction (CONTROL)
RBKP — 16 bits of read data in the target-to-host direction (from BDCBKPT breakpoint register)
WBKP — 16 bits of write data in the host-to-target direction (for BDCBKPT breakpoint register)

2. The SYNC command is a special operation which does not have a command code.

Table 7-1. BDC Command Summary (Continued)

Command
Mnemonic

Active
Background

Mode/
Non-Intrusive

Coding
Structure(1) Description
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 225
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.1 SYNC — Request Timed Reference Pulse

The SYNC command is unlike other BDC commands because the host
does not necessarily know the correct communications speed to use for
BDC communications until after it has analyzed the response to the
SYNC command.

To issue a SYNC command, the host:

• Drives the BKGD pin low for at least 128 cycles of the slowest
possible BDC clock (Bus rate clock or derivative-specific alternate
clock source)

• Drives BKGD high for a brief speedup pulse to get a fast rise time
(This speedup pulse is typically one cycle of the host clock which
is as fast as the fastest possible target BDC clock.)

• Removes all drive to the BKGD pin so it reverts to high impedance

• Listens to the BKGD pin for the sync response pulse

Upon detecting the sync request from the host (which is a much longer
low time than would ever occur during normal BDC communications),
the target:

• Waits for BKGD to return to a logic high

• Delays 16 cycles to allow the host to stop driving the high speedup
pulse

• Drives BKGD low for 128 BDC clock cycles

• Drives a 1-cycle high speedup pulse to force a fast rise time on
BKGD

• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse
and determines the correct speed for subsequent BDC communications.
Typically, the host can determine the correct communication speed
within a few percent of the actual target speed and the communication
protocol can easily tolerate speed errors of several percent.
Reference Manual — Volume I HCS08 — Revision 1

226 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.2 ACK_ENABLE

Enables the hardware handshake protocol in the serial communication.
The hardware handshake is implemented by an acknowledge (ACK)
pulse issued by the target MCU in response to a host command. The
ACK_ENABLE command is interpreted and executed in the BDC block
without the need to interface with the CPU. However, an acknowledge
(ACK) pulse will be issued by the target device after this command is
executed. This feature could be used by the host in order to evaluate if
the target supports the hardware handshake protocol. If the target
supports the hardware handshake protocol the subsequent commands
are enabled to execute the hardware handshake protocol, otherwise this
command is ignored by the target.

For additional information about the hardware handshake protocol, refer
to 7.3.5 Serial Interface Hardware Handshake Protocol and 7.3.6
Hardware Handshake Abort Procedure.

7.3.4.3 ACK_DISABLE

Disables the serial communication handshake protocol. The subsequent
commands, issued after the ACK_DISABLE command, will not execute
the hardware handshake protocol. This command will not be followed by
an ACK pulse.

Enable Host/Target handshake protocol Non-intrusive

$D5

host -> target D
L
Y

Disable Host/Target handshake protocol Non-intrusive

$D6

host -> target D
L
Y

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 227
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.4 BACKGROUND

Provided the ENBDM control bit in the BDCSCR is 1 (BDM enabled), the
BACKGROUND command causes the target MCU to enter active
background mode as soon as the current CPU instruction finishes. If
ENBDM is 0 (its default value), the BACKGROUND command is
ignored.

A delay of 16 BDC clock cycles is required after the BACKGROUND
command to allow the target MCU to finish its current CPU instruction
and enter active background mode before a new BDC command can be
accepted.

After the target MCU is reset into a normal operating mode, the host
debugger would send a WRITE_CONTROL command to enable the
active background mode before attempting to send the BACKGROUND
command the first time. Normally, the development host would set
ENBDM once at the beginning of a debug session or after a target
system reset, and then leave the ENBDM bit set during debugging
operations. During debugging, the host would use GO and TRACE1
commands to move from active background mode to normal user
program execution and would use BACKGROUND commands or
breakpoints to return to active background mode.

7.3.4.5 READ_STATUS

This command allows a host to read the contents of the BDC status and
control register (BDCSCR). This register is not in the memory map of the
target MCU, rather it is built into the BDC logic and is accessible only

Enter Active Background Mode (if Enabled) Non-intrusive

$90

pod → target D
L
Y

Read Status from BDCSCR Non-intrusive

$E4 Read BDCSCR

pod → target target → pod
Reference Manual — Volume I HCS08 — Revision 1

228 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

through READ_STATUS and WRITE_CONTROL serial BDC
commands.

The most common use for this command is to allow the host to
determine whether the target MCU is executing normal user program
instructions or if it is in active background mode. For example, during a
typical debug session, the host might set breakpoints in the user’s
program and then use a GO command to begin normal user program
execution. The host would then periodically execute READ_STATUS
commands to tell when a breakpoint has been encountered and the
target processor has gone into active background mode. Once the target
has entered active background mode, the host would read the contents
of target CPU registers.

READ_STATUS is also used to tell when a BDC memory write
command completes after a DVF failure due to a slow memory access.
If a WRITE_BYTE_WS or WRITE_NEXT_WS command indicates a
failure due to a slow memory access (DVF = 1), the host should execute
READ_STATUS commands until the status response indicates the write
access has completed. The write request is latched during the
WRITE_BYTE_WS or WRITE_NEXT_WS so there is no need to repeat
the write command; just wait for status to indicate the latched request
has completed.

READ_STATUS might also be used to check whether the target MCU
has gone into wait or stop mode. During a debug session, the host or
user may decide it has taken too long to reach a breakpoint in the user
program. The host could then issue a READ_STATUS command and
check the WS status bit to see if the target MCU is still running user code
or if it has entered wait or stop mode. If WS = 0 and BDMACT = 0,
meaning it is running user code and is not in wait or stop, the host might
choose to issue a BACKGROUND command to stop the user program
and enter active background mode where the host can check the CPU
registers and find out what the target program is doing.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 229
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.6 WRITE_CONTROL

This command is used to enable active background mode, choose the
clock source for BDC communications, and control the hardware
breakpoint logic in the BDC by writing to control bits in the BDC status
and control register (BDCSCR). This register is not in the memory map
of the target MCU, rather it is built into the BDC logic and is only
accessible through READ_STATUS and WRITE_CONTROL serial BDC
commands. Some bits in BDCSCR have write restrictions such as the
status bits BDMACT, WS, WSF, and DVF which are read-only status
indicators, and ENBDM which cannot be cleared while BDM is active.

The ENBDM control bit defaults to 0 (active background mode not
allowed) when the target MCU is reset in normal operating mode.
WRITE_CONTROL is used to enable the active background mode. This
is normally done once and ENBDM is left on throughout the debug
session. However, the debug system may want to change ENBDM to 0
measure true stop current in the target system (because ENBDM = 1
prevents the clock generation circuitry from disabling the internal clock
oscillator or crystal oscillator when the CPU executes a STOP
instruction).

The breakpoint enable (BKPTEN) and force/tag select (FTS) control bits
are used to control the hardware breakpoint logic in the BDC. This is a
single breakpoint that compares the current 16-bit CPU address against
the value in the BDCBKPT register. A WRITE_CONTROL command is
used to change BKPTEN and FTS, and a WRITE_BKPT command is
used to write the 16-bit BDCBKPT address match register.

The CLKSW bit in BDCSCR determines the source of the clock used for
BDC communications. If CLKSW = 0 (user mode default), the clock that
drives the BDC is the alternate fixed-frequency source. The details of the
exact clock source for the BDC in these cases depends on what clock
generation circuitry is present in the particular HCS08 derivative MCU.
For the MC9S08GB60, when CLKSW = 0, the BDC clock source is a
local oscillator in the BDC module (about 8 MHz).

Write Control Bits in BDCSCR Non-intrusive

$C4 Write BDCSCR
pod → target pod → target
Reference Manual — Volume I HCS08 — Revision 1

230 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When CLKSW = 1, the CPU bus frequency is used as the clock source
to drive BDC communications logic. The CPU bus frequency may be a
crystal or an FLL or derived from a PLL. CLKSW should not be set to 1
if the application is using an FLL or PLL and is changing the bus
frequency in user programs, because BDC communications require that
the host knows the target BDC communications speed and the host has
no way to know if/when a user program might change the clock
generator settings.

7.3.4.7 READ_BYTE

This command is used to read the contents of a memory location in the
target MCU without checking the BDC status to be sure the data is valid.
In systems which have no slow memory accesses, and the target is
currently in active background mode or is known to be executing a
program which has no STOP or WAIT instructions, READ_BYTE is
faster than the more general READ_BYTE_WS which reports status in
addition to returning the requested read data. The most significant use
of the READ_BYTE command is during in-circuit FLASH programming
where the host downloads data to be programmed at the same time the
target CPU is executing the code that actually programs the FLASH
memory. Since the host provides the FLASH programming code, it can
guarantee that there are no STOP or WAIT instructions.

In general-purpose user programs and especially in programs that have
not been debugged, STOP or WAIT instructions and slow memory
accesses can occur at any time. To avoid the possibility of invalid read
operations, the host should use the READ_BYTE_WS command
instead of READ_BYTE to check the status to be sure the read has
returned valid data. If the status indicates the read was not valid, the host
can execute READ_LAST commands until the status indicates the
returned data is valid.

Read Data from Target Memory Location Non-intrusive

$E0 ADDRESS(16) Read DATA(8)

pod → target pod → target D
L
Y

target → pod
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 231
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.8 READ_BYTE_WS

This is the command normally used by a host debug system to perform
general-purpose memory read operations. In addition to returning the
data from the requested target memory location, this command returns
the contents of the BDC status and control register. The status
information can be used to determine whether the data that was returned
is valid or not. If a slow memory access was in progress at the time of
the read, the data valid failure (DVF) status bit will be 1. If the target MCU
was just entering wait or stop mode at the time of the read, the wait/stop
failure (WSF) status bit will be 1. If DVF and WSF are both 0, the data
that was returned is valid.

In the case of a DVF error, execute READ_LAST commands until the
status response indicates the data is correct. In the case of a WSF error,
first issue a BACKGROUND command to wake the target CPU from wait
or stop and enter active background mode. From there, issue a new
READ_BYTE or READ_BYTE_WS command, and if desired adjust the
program counter (PC) and stack and re-execute the WAIT or STOP
instruction to return the target to wait or stop mode.

If you are sure that the target system has no slow accesses and will not
execute a WAIT or STOP instruction during the memory access, use the
faster READ_BYTE command instead of READ_BYTE_WS. In user
programs that have not been debugged, there is no guarantee that the
CPU will not run away and execute an unintended WAIT or STOP
instruction.

Read Data from Target and Report Status Non-intrusive

$E1 ADDRESS(16) Read BDCSCR Read DATA(8)

pod → target pod → target D
L
Y

target → pod target → pod
Reference Manual — Volume I HCS08 — Revision 1

232 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.9 READ_LAST

This command is used only after a READ_BYTE_WS command where
the DVF status bit indicated an error. In that case, issue READ_LAST
commands until the status bits indicate a valid response. The
READ_LAST command uses the memory address from the previous
READ_BYTE_WS command so the command is shorter and faster than
other read commands.

7.3.4.10 WRITE_BYTE

This command is used to write the contents of a memory location in the
target MCU without checking the BDC status to be sure the write was
completed successfully. In systems which have no slow memory
accesses, and the target is currently in active background mode or is
known to be executing a program which has no STOP or WAIT
instructions, WRITE_BYTE is faster than the more general
WRITE_BYTE_WS which reports status in addition to performing the
requested write operation. The most significant use of the WRITE_BYTE
command is during in-circuit FLASH programming where the host
downloads data to be programmed at the same time the target CPU is
executing the code that actually programs the FLASH memory. Since
the host provides the FLASH programming code, it can guarantee that
there are no STOP or WAIT instructions.

In general-purpose user programs and especially in programs that have
not been debugged, STOP or WAIT instructions and slow memory
accesses can occur at any time. To avoid the possibility of invalid write
operations, the host should use the WRITE_BYTE_WS command
instead of WRITE_BYTE to check the status to be sure the write was
completed successfully.

Re-Read from Last Address with Status Non-intrusive

$E8 Read BDCSCR Read DATA(8)

pod → target target → pod target → pod

Write Data to Target Memory Location Non-intrusive

$C0 ADDRESS(16) Write DATA(8)
pod → target pod → target pod → target D

L
Y

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 233
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.11 WRITE_BYTE_WS

This is the command normally used by a host debug system to perform
general-purpose memory write operations. In addition to performing the
requested write to a target memory location, this command returns the
contents of the BDC status and control register. The status information
can be used to tell if the write operation was completed successfully. If
a slow memory access was in progress at the time of the write, the data
valid failure (DVF) status bit will be 1. If the target MCU was just entering
wait or stop mode at the time of the read, the wait/stop failure (WSF)
status bit will be 1 and the write command is cancelled. If DVF and WSF
are both 0, the write operation was completed successfully.

If DVF is set in the returned status value, the write was not completed
(although the address and data for the operation are latched). Do
READ_STATUS commands until DVF is returned as a 1 to indicate that
the write operation was completed successfully. If the WSF bit indicated
a WAIT or STOP instruction caused the write operation to fail, do a
BACKGROUND command to force the target system out of wait or stop
mode and into active background mode. From there, repeat the failed
write operation, and if desired adjust the PC and stack and re-execute
the WAIT or STOP instruction to return the target to wait or stop mode.

If you are sure that the target system has no slow accesses and will not
execute a WAIT or STOP instruction during the memory access, you can
use the faster WRITE_BYTE command instead of WRITE_BYTE_WS.
In user programs that have not been debugged, there is no guarantee
that the CPU will not run away and execute an unintended WAIT or
STOP instruction.

Write Data to Target and Report Status Non-intrusive

$C1 ADDRESS(16) Write DATA(8) Read BDCSCR

pod → target pod → target pod → target D
L
Y

target → pod
Reference Manual — Volume I HCS08 — Revision 1

234 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.12 READ_BKPT

This command is used to read the 16-bit BDCBKPT address match
register in the hardware breakpoint logic in the BDC.

7.3.4.13 WRITE_BKPT

This command is used to write a 16-bit address value into the BDCBKPT
register in the BDC. This establishes the address of a breakpoint. The
BKPTEN bit in the BDCSCR determines whether the breakpoint is
enabled. If BKPTEN = 1 and the FTS control bit in the BDCSCR is set
(force), a successful match between the CPU address and the value in
the BDCBKPT register will force a transition to active background mode
at the next instruction boundary. If BKPTEN = 1 and FTS = 0, the
opcode at the address specified in the BDCBKPT register will be tagged
as it is fetched into the instruction queue. If and when a tagged opcode
reaches the top of the instruction queue and is about to be executed, the
MCU will enter active background mode rather than execute the tagged
instruction.

In normal debugging environments, breakpoints are established while
the target MCU is in active background mode before going to the user’s
program. However, since this is a non-intrusive command, it could be
executed even when the MCU is running a user application program.
BDC serial communications are essentially asynchronous to a running
user program, so it is impractical to predict the exact time of a BDCBKPT
register value change relative to a particular bus cycle of the user’s
program when the WRITE_BKPT instruction is executed while the user
application program is running.

Read 16-Bit BDC Breakpoint Register (BDCBKPT) Non-intrusive

$E2 Read data from BDCBKPT register

pod → target target → pod

Write 16-Bit BDC Breakpoint Register (BDCBKPT) Non-intrusive

$C2 Write data to BDCBKPT register

pod → target pod → target
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 235
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.14 GO

This command is used to exit the active background mode and begin
execution of user program instructions starting at the address in the PC.
Typically, the host debug monitor program modifies the PC value (using
a WRITE_PC command) before issuing a GO command to go to an
arbitrary point in the user program. This WRITE_PC command is not
needed if the host simply wants to continue the user program where it
left off when it entered active background mode.

7.3.4.15 TRACE1

This command is used to run one user instruction and return to active
background mode. The address in the PC determines what user
instruction will be executed, and the PC value after TRACE1 is
completed will reflect the results of the executed instruction.

7.3.4.16 TAGGO

This instruction enables the external tagging function and goes to the
user program starting at the address currently in the PC. However, since
HCS08 devices do not have an external pin connected to the tagging
input of the BDC module, this command is essentially the same as the
GO command, so there is no need to use TAGGO commands in an
HCS08 system.

Start Execution of User Program Starting at Current PC
Active Background

Mode

$08
pod → target D

L
Y

Run One User Instruction Starting at the Current PC
Active Background

Mode

$10
pod → target D

L
Y

Enable External Tagging and Start Execution of User Program
Active Background

Mode

$18
pod → target D

L
Y

Reference Manual — Volume I HCS08 — Revision 1

236 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.17 READ_A

Read the contents of the accumulator (A) of the target CPU. Since the
CPU in the target MCU is effectively halted while the target is in active
background mode, there is no need to save the target CPU registers on
entry into active background mode and no need to restore them on exit
from active background to a user program.

7.3.4.18 READ_CCR

Read the contents of the condition code register (CCR) of the target
CPU. Since the CPU in the target MCU is effectively halted while the
target is in active background mode, there is no need to save the target
CPU registers on entry into active background mode and no need to
restore them on exit from active background mode to a user program.
The CCR value is not affected by BDC commands (except, of course,
the WRITE_CCR command).

Read Accumulator A of the Target CPU
Active Background

Mode

$68 Accum. data(8)
pod → target D

L
Y

target → pod

Read the Condition Code Register of the Target CPU
Active Background

Mode

$69 CCR data(8)
pod → target D

L
Y

target → pod
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 237
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.19 READ_PC

Read the contents of the program counter (PC) of the target CPU. Since
the CPU in the target MCU is effectively halted while the target is in
active background mode, there is no need to save the target CPU
registers on entry into active background mode and no need to restore
them on exit from active background mode to a user program.

The value in the PC when the target MCU enters active background
mode is the address of the instruction that would have executed next if
the MCU had not entered active background mode. If the target CPU
was in wait or stop mode when a BACKGROUND command caused it to
go to active background mode, the PC will hold the address of the
instruction after the WAIT or STOP instruction that was responsible for
the target CPU being in wait or stop, and the WS bit will be set. In the
boundary case (where an interrupt and a BACKGROUND command
arrived at about the same time and the interrupt was responsible for the
target CPU leaving wait or stop and then the BACKGROUND command
took effect), the WS bit will be clear and the PC will be pointing at the first
instruction in the interrupt service routine. In the case of a software
breakpoint (where the host placed a BGND opcode at the desired
breakpoint address), the PC will be pointing at the address immediately
following the inserted BGND opcode, and the host monitor will adjust the
PC backward by one after removing the software breakpoint.

Read the Program Counter of the Target CPU
Active Background

Mode

$6B Program Counter data(16)
pod → target D

L
Y

target → pod
Reference Manual — Volume I HCS08 — Revision 1

238 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.20 READ_HX

Read the contents of the H:X register pair (H:X) of the target CPU. Since
the CPU in the target MCU is effectively halted while the target is in
active background mode, there is no need to save the target CPU
registers on entry into active background mode and no need to restore
them on exit from active background mode to a user program. H and X
can be read only as a 16-bit register pair. (There are no BDC commands
to read H and X separately.)

7.3.4.21 READ_SP

Read the contents of the stack pointer (SP) of the target CPU. Since the
CPU in the target MCU is effectively halted while the target is in active
background mode, there is no need to save the target CPU registers on
entry into active background mode and no need to restore them on exit
from active background mode to a user program.

Read the H:X Register Pair of the Target CPU
Active Background

Mode

$6C H:X register pair data(16)

pod → target D
L
Y

target -> pod

Read the Stack Pointer of the Target CPU
Active Background

Mode

$6F Stack Pointer data(16)

pod → target D
L
Y

target → pod
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 239
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.22 READ_NEXT

READ_NEXT increments the H:X register pair by one, then reads the
memory location pointed to by the incremented 16-bit H:X register pair.
This command is similar to the READ_BYTE command except that it
uses the value in the H:X index register pair as the address for the
operation. There is no address included in this command, so it is more
efficient than the READ_BYTE command. Since READ_NEXT uses the
H:X register pair of the CPU, it is an active background mode command
while READ_BYTE is a non-intrusive command.

Typically, the host debug system would save the contents of H:X, set
H:X to one less than the address of the first byte of a block to be read,
execute READ_NEXT commands to read a block of memory, then
restore the original contents of H:X (if necessary).

Since READ_NEXT is an active background mode command, there is
no concern about errors due to WAIT or STOP instructions and no
concern about unexpected slow memory accesses from user code.
There could still be slow memory accesses due to the READ_NEXT
command itself attempting to access a slow memory location; however,
this is completely predictable by the host debug system. In the unusual
case of a system that has slow memory and the READ_NEXT operation
needs to access memory locations that are slow, use the
READ_NEXT_WS command rather than READ_NEXT.

Increment H:X, Then Read Memory Pointed to by H:X
Active Background

Mode

$70 Memory data(8)

pod → target D
L
Y

target → pod
Reference Manual — Volume I HCS08 — Revision 1

240 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.23 READ_NEXT_WS

READ_NEXT_WS increments the H:X register pair by one, reads the
memory location pointed to by the incremented 16-bit H:X register pair,
and returns both the contents of the BDC status and control register
(BDCSCR) and the 8-bit data. This command is similar to the
READ_NEXT command except that it returns the status from BDCSCR
in addition to performing the requested read operation. This status
information can be used to tell if the requested read operation returned
valid data (DVF = 0). If the status indicates an access failed because it
is a slow memory location, execute READ_LAST_WS commands until
the status indicates the read data is valid. (Normally, this would require
only one READ_LAST_WS command since the BDC serial commands
are much slower than the target bus speed.)

7.3.4.24 WRITE_A

Write new data to the accumulator (A) of the target CPU. This command
can be used to change the value in the accumulator before returning to
the user application program via a GO or TRACE1 command.

Increment H:X, Then Read Memory @ H:X and Report Status
Active Background

Mode

$71 Read BDCSCR Read DATA(8)

pod → target D
L
Y

target → pod target → pod

Write Accumulator A of the Target CPU
Active Background

Mode

$48 Accum. data(8)

pod → target pod → target D
L
Y

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 241
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.25 WRITE_CCR

Write new data to the condition code register (CCR) of the target CPU.
This command can be used to change the condition codes before
returning to the user application program via a GO or TRACE1
command. Other BDC commands do not alter the states of any condition
code bits.

7.3.4.26 WRITE_PC

This command is used to change the contents of the program counter
(PC) of the target CPU before returning to the user application program
via a GO or TRACE1 command.

7.3.4.27 WRITE_HX

Write new data to the H:X index register pair (H:X) of the target CPU.
This command can be used to change the value in the 16-bit index
register pair (H:X) before returning to the user application program via a
GO or TRACE1 command.

Write the Condition Code Register of the Target CPU
Active Background

Mode

$49 CCR data(8)
pod → target pod → target D

L
Y

Write the Program Counter of the Target CPU
Active Background

Mode

$4B Program Counter data(16)
pod → target pod → target D

L
Y

Write the H:X Register Pair of the Target CPU
Active Background

Mode

$4C H:X register pair data(16)
pod → target pod → target D

L
Y

Reference Manual — Volume I HCS08 — Revision 1

242 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.4.28 WRITE_SP

Write new data to the stack pointer (SP) of the target CPU. This
command can be used to change the value in the stack pointer before
returning to the user application program via a GO or TRACE1
command.

7.3.4.29 WRITE_NEXT

WRITE_NEXT increments the H:X register pair by one, then writes to the
memory location pointed to by the incremented 16-bit H:X register pair.
This command is similar to the WRITE_BYTE command except that it
uses the value in the H:X index register pair as the address for the
operation. Because no address is included in this command, it is more
efficient than the WRITE_BYTE command. Since WRITE_NEXT uses
the H:X register pair of the CPU, it is an active background mode
command while WRITE_BYTE is a non-intrusive command.

Typically, the host debug system would save the contents of H:X, set
H:X to one less than the address of the first byte of a block to be written,
execute WRITE_NEXT commands to write a block of memory, then
restore the original contents of H:X, if necessary.

Since WRITE_NEXT is an active background mode command, there is
no concern about errors due to WAIT or STOP instructions and no
concern about unexpected slow memory accesses from user code.

Write the Stack Pointer of the Target CPU
Active Background

Mode

$4F Stack Pointer data(16)

pod → target pod → target D
L
Y

Increment H:X, Then Write Memory Pointed to by H:X
Active Background

Mode

$50 Memory data(8)

pod → target pod → target D
L
Y

HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 243
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

There could still be slow memory accesses due to the WRITE_NEXT
command itself attempting to access a slow memory location; however,
this is completely predictable by the host debug system. In the unusual
case of a system that has slow memory and the WRITE_NEXT
operation needs to access memory locations that are slow, use the
WRITE_NEXT_WS command rather than WRITE_NEXT.

7.3.4.30 WRITE_NEXT_WS

WRITE_NEXT_WS increments the H:X register pair by one, writes to the
memory location pointed to by the incremented 16-bit H:X register pair,
attempts to perform the requested write operation, and returns the
contents of the BDC status and control register (BDCSCR). This
command is similar to the WRITE_NEXT command except that it returns
the status from BDCSCR in addition to performing the requested write
operation. This status information can be used to tell if the requested
write operation was completed successfully (DVF=0). If the status
indicates an access failed because it is a slow memory location, the
address and data for the operation are latched and you should execute
READ_STATUS commands until the status indicates the write was
completed successfully. (This would normally only require one
READ_STATUS command since the BDC serial commands are much
slower than the target bus speed.)

Increment H:X, Then Write Memory @ H:X and Report Status
Active Background

Mode

$51 Memory data(8) Read BDCSCR

pod → target pod → target D
L
Y

target → pod
Reference Manual — Volume I HCS08 — Revision 1

244 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.5 Serial Interface Hardware Handshake Protocol

BDC commands that require CPU execution are ultimately treated at the
MCU bus rate. Since the BDC clock source can be asynchronous
relative to the bus frequency, when CLKSW = 0, it is necessary to
provide a handshake protocol in which the host could determine when
an issued command is executed by the CPU. This sub-section will
describe the hardware handshake protocol.

The hardware handshake protocol signals to the host controller when an
issued command was successfully executed by the target. This protocol
is implemented by a low pulse (16 BDC clock cycles) followed by a brief
speedup pulse on the BKGD pin, generated by the target MCU when a
command, issued by the host, has been successfully executed. See
Figure 7-6. This pulse is referred to as the ACK pulse. After the ACK
pulse is finished, the host can start the data-read portion of the
command if the last issued command was a read command, or start a
new command if the last command was a write command or a control
command (BACKGROUND, GO, GO_UNTIL or TRACE1). The ACK
pulse is not issued earlier than 32 BDC clock cycles after the BDC
command was issued. The end of the BDC command is assumed to be
the 16th BDC clock cycle of the last bit. This minimum delay assures
enough time for the host to recognize the ACK pulse. Note also that
there is no upper limit for the delay between the command and the
related ACK pulse, since the command execution depends on the CPU
bus frequency, which in some cases could be very slow compared to the
serial communication rate. This protocol allows great flexibility for pod
designers, since it does not rely on any accurate time measurement or
short response time to any event in the serial communication.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 245
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7-6. Target Acknowledge Pulse (ACK)

NOTE: If the ACK pulse was issued by the target, the host assumes the
previous command was executed. If the CPU enters WAIT or STOP
prior to executing a non-intrusive command, the ACK pulse will not be
issued, meaning that the BDC command was not executed. After
entering WAIT or STOP mode, the BDC command is no longer pending
and the DVF status bit is kept one until the next command is successfully
executed.

Figure 7-7 shows the ACK handshake protocol in a command level
timing diagram. The READ_BYTE command is used as an example.
First, the 8-bit command code is sent by the host, followed by the
address of the memory location to be read. The target BDC decodes the
command and sends it to the CPU. Upon receiving the BDC command
request, the CPU completes the current instruction being executed, the
CPU is temporarily halted, the BDC executes the READ_BYTE
command and then the CPU continues. This process is referred to as
cycle stealing. The READ_BYTE command takes two bus cycles in
order to be executed by the CPU. After that, the CPU notifies to the BDC
that the requested command was done and then resumes the normal
flow of the application program. After detecting the READ_BYTE
command is done, the BDC issues an ACK pulse to the host controller,
indicating that the addressed byte is ready to be retrieved. After

16 CYCLES

BDC CLOCK
(TARGET MCU)

TARGET
TRANSMITS

PULSEACK

HIGH-IMPEDANCE

BKGD PIN

HIGH-IMPEDANCE

MINIMUM DELAY
FROM THE BDC COMMAND

32 CYCLES

EARLIEST
START OF
NEXT BIT

SPEED UP PULSE

16th CYCLE OF THE
LAST COMMAD BIT
Reference Manual — Volume I HCS08 — Revision 1

246 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

detecting the ACK pulse, the host initiates the data-read portion of the
command.

Figure 7-7. Handshake Protocol at Command Level

Unlike a normal bit transfer, where the host initiates the transmission by
issuing a negative edge in the BKGD pin, the serial interface ACK
handshake pulse is initiated by the target MCU. The hardware
handshake protocol in Figure 7-6 specifies the timing when the BKGD
pin is being driven, so the host should follow these timing constraints in
order to avoid the risks of an electrical conflict at the BKGD pin.

The ACK handshake protocol does not support nested ACK pulses. If a
BDC command is not acknowledged by an ACK pulse, the host first
needs to abort the pending command before issuing a new BDC
command. When the CPU enters WAIT or STOP mode at about the
same time the host issues a command (such as WRITE_BYTE) that
requires CPU execution, the target discards the incoming command.
Therefore, the command is not acknowledged by the target, which
means that the ACK pulse will not be issued in this case. After a certain
time the host could decide to abort the ACK protocol in order allow a new
command. Therefore, the protocol provides a mechanism in which a
command, and therefore a pending ACK, could be aborted. Note that,
unlike a regular BDC command, the ACK pulse does not provide a
timeout. In the case of a WAIT or STOP instruction where the ACK is
prevented from being issued, the ACK would remain pending indefinitely
if not aborted. See the handshake abort procedure described in section
7.3.6 Hardware Handshake Abort Procedure below.

READ_BYTE

BDC ISSUES THE

BYTE IS NEW BDC COMMANDBKGD PIN BYTE ADDRESS

CPU EXECUTES THE
READ_BYTE
COMMAND

RETRIEVED

HOST TARGET

HOSTTARGET

HOST TARGET

BDC DECODES
THE COMMAND

ACK PULSE (NOT TO SCALE)
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 247
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.6 Hardware Handshake Abort Procedure

The abort procedure is based on the SYNC command. In order to abort
a command that has not responded with an ACK pulse, the host
controller should generate a sync request (by driving BKGD low for at
least 128 serial clock cycles and then driving it high for one serial clock
cycle as a speedup pulse). By detecting this long low pulse on the BKGD
pin, the target executes the sync protocol (see 7.3.4.1 SYNC —
Request Timed Reference Pulse), and assumes that the pending
command and therefore the related ACK pulse, are being aborted.
Therefore, after the sync protocol completes, the host is free to issue
new BDC commands.

Although it is not recommended, the host could abort a pending BDC
command by issuing a low pulse on the BKGD pin that is shorter than
128 BDC clock cycles, which will not be interpreted as the SYNC
command. The ACK is actually aborted when a negative edge is
perceived by the target on the BKGD pin. The short abort pulse should
be at least four BDC clock cycles long to allow the negative edge to be
detected by the target. In this case the target will not execute the sync
protocol but the pending command will be aborted along with the ACK
pulse. The potential problem with this abort procedure is when there is a
conflict between the ACK pulse and the short abort pulse. In this case
the target would not recognize the abort pulse. The worst case is when
the pending command is a read command, as for instance the
READ_BYTE. If the abort pulse is not perceived by the target, the host
will attempt to send a new command after the abort pulse was issued,
while the target expects the host to retrieve the accessed memory byte.
Host and target will run out of synchronization in this case. However, if
the command to be aborted is not a read command, the short abort pulse
could be used. After a command is aborted, the target assumes that the
next negative edge, after the abort pulse, is the first bit of a new BDC
command.

NOTE: The details about the short abort pulse are being provided only as a
reference for the reader to better understand the BDC internal behavior.
It is not recommended that this procedure be used in a real application.
Reference Manual — Volume I HCS08 — Revision 1

248 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Note that, since the host knows the target BDC clock frequency, the
SYNC command does not need to consider the lowest possible target
frequency. In this case, the host could issue a SYNC very close to the
128 serial clock cycles length, just providing a small overhead on the
pulse length in order to assure the sync pulse will not be misinterpreted
by the target. See 7.3.4.1 SYNC — Request Timed Reference Pulse.

It is important to notice that any issued BDC command that requires
CPU execution will be executed at the next instruction boundary,
provided the CPU does not enter WAIT or STOP modes. If the host
aborts a command by sending the sync pulse, it should then read the
BDCSCR after the sync response is issued by the target, checking for
DVF = 0, before attempting to send any new command that requires
CPU execution. This prevents the new command from being discarded
at the BDC-CPU interface, due to the pending command being executed
by the CPU. Any new command should be issued only after DVF = 0.

There are two reasons that could cause a command to take too long to
be executed, measured in terms of the serial communication rate. Either
the BDC clock frequency is much faster than the CPU bus clock
frequency, or the CPU is accessing a slow memory, which would cause
suspend cycles to occur. The hardware handshake protocol is
appropriate for both situations, but the host could also decide to use the
software handshake protocol instead. In this case, if the DVF bit is at
logic 1, there is a BDC command pending at the BDC-CPU interface.
The host controller should monitor the DVF bit and wait until it is at logic
0 in order to be able to issue a new command that requires CPU
execution. Note that the WSF bit in the BDCSCR register should be at
logic 0 in this case. However, if the WSF bit was at logic 1, the host
should assume the last command failed due to a WAIT or STOP
instruction being executed by the CPU. In this case, the host controller
should enable background mode, using a WRITE_CONTROL
command, and then issue a BACKGROUND command in order to put
the CPU into active background mode. After that, new commands could
be issued, including those that require CPU execution.

Figure 7-8 shows a SYNC command aborting a READ_BYTE. Note that
after the command is aborted, a new command could be issued by the
host computer.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 249
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE: Figure 7-8 signal timing is not drawn to scale.

Figure 7-8. ACK Abort Procedure at the Command Level

Figure 7-9 shows a conflict between the ACK pulse and the sync
request pulse. This conflict could occur if a pod device is connected to
the target BKGD pin and the target is already executing a BDC
command. Consider that the target CPU is executing a pending BDC
command at the exact moment the pod is being connected to the BKGD
pin. In this case an ACK pulse is issued at the same time as the SYNC
command. In this case there is an electrical conflict between the ACK
speedup pulse and the sync pulse. Since this is not a probable situation,
the protocol does not prevent this conflict from happening.

READ_BYTE READ_STATUSBKGD PIN MEMORY ADDRESS

HOST TARGET

BDC DECODES

READ_BYTE CMD

IS ABORTED BY THE SYNC REQUEST

NEW BDC COMMAND

AND STARTS TO EXECUTE
THE READ_BYTE CMD

HOST TARGET HOST TARGET

SYNC RESPONSE
FROM THE TARGET

NEW BDC COMMAND

(NOT TO SCALE) (NOT TO SCALE)
Reference Manual — Volume I HCS08 — Revision 1

250 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 7-9. ACK Pulse and SYNC Request Conflict

The hardware handshake protocol is enabled by the ACK_ENABLE
command and disabled by the ACK_DISABLE command. It also allows
for pod devices to choose between the hardware handshake protocol or
the software protocol that monitors the BDC status register. The
ACK_ENABLE and ACK_DISABLE commands are:

• ACK_ENABLE — Enables the hardware handshake protocol. The
target will issue the ACK pulse when a CPU command is executed
by the CPU. The ACK_ENABLE command itself also has the ACK
pulse as a response.

• ACK_DISABLE — Disables the ACK pulse protocol. In this case
the host should verify the state of the DVF bit in the BDC Status
and Control register in order to evaluate if there are pending
commands and to check if the CPU changed to or from active
background mode.

The default state of the protocol, after reset, is hardware handshake
protocol disabled.

The commands that do not require CPU execution, or that have the
status register included in the retrieved bit stream, do not perform the

BDC CLOCK
(TARGET MCU)

TARGET MCU
DRIVES TO

BKGD PIN

BKGD PIN

16 CYCLES

SPEEDUP PULSE

HIGH-IMPEDANCE

HOST
DRIVES SYNC
TO BKGD PIN

HOST AND TARGET

ACK PULSE

HOST SYNC REQUEST PULSE

AT LEAST 128 CYCLES

ELECTRICAL CONFLICT

 DRIVE TO BKGD PIN
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 251
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

hardware handshake protocol. Therefore, the target will not respond
with an ACK pulse for those commands even if the hardware protocol is
enabled. The commands are: READ_STATUS, WRITE_CONTROL,
WRITE_BYTE_WS, READ_BYTE_WS, READ_NEXT_WS,
WRITE_NEXT_WS, WRITE_BKPT, READ_BKPT, READ_LAST and
ACK_DISABLE. See 7.3.4 BDC Commands for more information on the
BDC commands.

NOTE: The TAGGO command does not have the ACK pulse as a response.
Except for no ACK pulse, this command is equivalent to the GO
command. It was implemented for compatibility with previous BDC
versions. The HCS08 core does not provide support for external tag
using the BKGD pin.

Only commands that require CPU execution perform the hardware
handshake protocol. These commands are: WRITE_BYTE,
READ_BYTE, WRITE_NEXT, READ_NEXT, WRITE_A, READ_A,
WRITE_CCR, READ_CCR, WRITE_SP, READ_SP, WRITE_HX,
READ_HX, WRITE_PC, READ_PC. An exception is the ACK_ENABLE
command, which does not require CPU execution but responds with the
ACK pulse. This feature could be used by the host to evaluate if the
target supports the hardware handshake protocol. If an ACK pulse is
issued in response to this command, the host knows that the target
supports the hardware handshake protocol. If the target does not
support the hardware handshake protocol the ACK pulse is not issued.
In this case the ACK_ENABLE command is ignored by the target, since
it is not recognized as a valid command.

The BACKGROUND command will issue an ACK pulse when the CPU
changes from running user code to active background mode. The ACK
pulse related to this command could be aborted using the SYNC
command.

The GO command will issue an ACK pulse when the CPU exits from
active background mode. The ACK pulse related to this command could
be aborted using the SYNC command.

The TRACE1 command has the related ACK pulse issued when the
CPU enters active background mode after one instruction of the
Reference Manual — Volume I HCS08 — Revision 1

252 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

application program is executed. The ACK pulse related to this
command could be aborted using the SYNC command.

The GO_UNTIL command is equivalent to a GO command with
exception that the ACK pulse, in this case, is issued when the CPU
enters into active background mode. This command is an alternative to
the GO command and should be used if the host wants to trace if a
breakpoint match had occurred which caused the CPU to enter active
background mode. Note that the ACK is issued whenever the CPU
enters BDM, which could be caused by a BDC breakpoint match, or an
external force/tag, or by a BGND instruction being executed. The ACK
pulse related to this command could be aborted using the SYNC
command.

The TAGGO command is equivalent to the GO command, but will not
have an ACK pulse as a response. This command is being kept for
backwards compatibility reasons. The GO command should be used
instead.

7.3.7 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint which
compares the CPU address bus to a 16-bit match value in the BDCBKPT
register. This breakpoint can generate a forced breakpoint or a tagged
breakpoint. A forced breakpoint causes the CPU to enter active
background mode at the first instruction boundary following any access
to the breakpoint address. The tagged breakpoint causes the instruction
opcode at the breakpoint address to be tagged so that the CPU will enter
active background mode rather than executing that instruction if and
when it reaches the end of the instruction queue. This implies that
tagged breakpoints can be placed only at the address of an instruction
opcode while forced breakpoints can be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and
control register (BDCSCR) is used to enable the breakpoint logic
(BKPTEN = 1). When BKPTEN = 0, its default value after reset, the
breakpoint logic is disabled and no BDC breakpoints are requested
regardless of the values in other BDC breakpoint registers and control
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 253
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

bits. The force/tag select (FTS) control bit in BDCSCR is used to select
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The 8-bit BDCSCR and the 16-bit BDCBKPT address match register are
built directly into the BDC and are not accessible in the normal MCU
memory map. This means that the user application program cannot
access these registers. Dedicated BDC serial commands are the only
way to access these registers. READ_STATUS and WRITE_CONTROL
are used to read or write BDCSCR, respectively. READ_BKPT and
WRITE_BKPT are used to read or write the 16-bit BDCBKPT address
match register. A host debug pod can read or write these registers at any
time even while a user application program is running. However, it is
more common to adjust breakpoint settings while the MCU is in active
background mode.

The BDC provides access to control and status signals, which allows
more complex breakpoints to be built outside the BDC logic but still on
the MCU chip. Some HCS08 derivatives may have additional, more
complex, hardware breakpoints. These additional breakpoints need any
associated registers and control bits to be accessible through reads and
writes to addresses in the normal MCU memory map.

7.3.8 Differences from M68HC12 BDM

Although the bit-level communication protocol is the same as the
background debug mode (BDM) interface in the M68HC12 Family, the
HCS08 has implemented the background debug controller (BDC)
differently than the M68HC12 to reduce the silicon area and to provide
new capabilities.

In the M68HC12, the BDM is implemented separately from the CPU and
uses a small firmware ROM to control active background mode
operations. The HCS08, on the other hand, incorporates background
functions directly into the logic of the core CPU, thus eliminating the
firmware ROM.
Reference Manual — Volume I HCS08 — Revision 1

254 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In the HCS08, BDC registers are never in the memory map of the target
MCU, so there is no need for the READ_BD_BYTE, READ_BD_WORD,
WRITE_BD_BYTE, and WRITE_BD_WORD commands of the
M68HC12.

Since the HCS08 CPU has a different CPU register model, the BDC
commands that read and write CPU registers are different than those for
the M68HC12. In the M68HC12 BDM, the condition codes were stored
in a register in the BDM memory map so reading and writing the CCR
were done with READ_BD_BYTE and WRITE_BD_BYTE commands.
READ_BD_BYTE and WRITE_BD_BYTE were also used to read and
write the BDM status register. In the HCS08, however, there are
separate commands for reading and writing the status/control register
which is not in the memory map of the MCU.

7.3.8.1 8-Bit Architecture

Unlike the 16-bit M68HC12, the HCS08 is an 8-bit architecture. Because
of this, the HCS08 BDC does not have word-sized read and write
commands. Also, the READ_NEXT and WRITE_NEXT commands
operate on byte-sized data rather than word-sized data.

7.3.8.2 Command Formats

All data fields in the M68HC12 BDM are 16 bits even if the command
only requires eight bits of data. In contrast, in the HCS08, data fields
match the size of the data needed so a command like READ_BYTE will
have an 8-bit data field while RD_BYTE_WS has a 16-bit data field to
hold the BDC system STATUS byte followed by the data byte.

In the M68HC12 Family, the BDM can wait up to 128 cycles for a free
bus cycle to appear to allow the BDM access without disturbing the
running user application program. If no free cycle is found, the BDM
temporarily freezes the CPU to allow the BDM to complete the requested
operation. In the HCS08, this has been simplified such that the BDC
always steals a cycle as soon as it can. This has little impact on real-time
operation of the user’s code because a memory access command takes
8 bits for the command, 16 bits for the address, at least eight bits for the
data, and a 16-cycle delay within the command. Each bit time is at least
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 255
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

16 BDC clock cycles so (32 x 16) +16 = 528 cycles, thus the worst case
impact is no more than 1/528 cycles, even if there are continuous
back-to-back memory access commands through the BDM (which
would be very unlikely).

Since the HCS08 BDC doesn’t wait for free cycles, the delays between
address and data in read commands and the delay after the data portion
of a write command can be much shorter than the 150 cycles
recommended for the M68HC12 BDM. In the HCS08, the delay within a
memory access command is 16 target bus cycles. For accesses to
registers within the BDC (STATUS, and BDCBKPT address match
registers), no delay is needed.

7.3.8.3 Read and Write with Status

Because the memory access commands in the HCS08 BDC are actually
performed by the CPU circuitry, it is possible for a memory access to fail
to complete within the BDC command. The two cases where this can
occur are: When the memory access command coincides with the CPU
entering stop or wait, or if the CPU was performing a slow memory
access when the BDC command arrived. (In HCS08 versions that do not
include slow memory devices, this case cannot occur.)

Since there is normally no way to predict when the target CPU might
perform a slow access or a STOP or WAIT instruction, the DVF status
bit was added to indicate an access error due to a slow access, and the
WSF status bit was added to indicate an access failed because the CPU
was just entering wait or stop mode. Alternate variations of the
READ_BYTE, WRITE_BYTE, READ_NEXT, and WRITE_NEXT
commands have been added which automatically return the contents of
the BDC status register along with the data portion of the command. In
the case of the READ_BYTE and READ_NEXT commands, the
READ_BYTE_WS and READ_NEXT_WS commands can be thought of
as returning 16 bits of data. In the case of the WRITE_BYTE and
WRITE_NEXT commands, the WRITE_BYTE_WS and
WRITE_NEXT_WS commands include the byte of status information in
the target-to-host direction after the write data byte (which is in the
host-to-target direction).
Reference Manual — Volume I HCS08 — Revision 1

256 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Background Debug Controller (BDC)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.8.4 BDM Versus Stop and Wait Modes

In the M68HC12 Family, the BDM system is implemented independently
from the CPU so memory access commands can still be performed while
the target MCU is in wait mode. Stop mode in the M68HC12 causes the
oscillator, from which all system clocks are derived, to be stopped. The
BDM ceases to function because it has no clocks.

However, the clock architecture of the HCS08 permits the BDC to
prevent the oscillator from stopping during stop mode if the ENBDM
control bit is set. In such a system, the debug host can use
READ_STATUS commands to tell if the target is in wait or stop mode. If
the target is in wait or stop (WS bit equals 1), the BACKGROUND
command may be used to awaken the target and place it in active
background mode.

From active background mode, the debug host can read or write
memory or registers. The debug host can then choose to adjust the
stack and PC such that a GO command will return the target MCU to wait
or stop mode.

7.3.8.5 SYNC Command

The HCS08 has added a SYNC command to allow the host interface pod
to determine the correct speed for optimum communications with the
target MCU. This is especially useful when the BDC clock in the target
MCU is operating from an internal self-clocked local oscillator rather than
the CPU bus clock.

To use the SYNC command, the host drives the BKGD pin low for at
least 128 target BDC clock cycles then releases the low drive and drives
a brief speedup pulse to snap the BKGD pin back to a good logic high
level before reverting to high impedance. After a delay to allow the
BKGD pin to reach a good high level and to avoid possible interference
with the high-driven speedup pulse from the host, the target will drive the
BKGD pin low for 128 target BDC clock cycles followed by a 1-cycle
driven-high speedup pulse and then reverts to high impedance. The host
can measure the duration of this sync pulse to accurately determine the
speed of the target’s BDC clock.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 257
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.3.8.6 Hardware Breakpoint

The BDC in the HCS08 includes one 16-bit hardware breakpoint which
triggers on a match against the 16-bit address bus. Specific HCS08
derivatives may include additional on-chip hardware breakpoints outside
the BDC. The READ_BKPT and WRITE_BKPT commands allow
reading or writing the BDCBKPT (address match) register which is built
into the BDC logic.

There are also two control bits for the breakpoint in the BDCSCR:

• The BKPTEN bit enables the breakpoint to generate a trigger
event in response to a match between the BDCBKPT register and
the CPU address bus.

• The force/tag select (FTS) bit determines what a breakpoint
trigger event does.

If FTS = 1 (force), the trigger event causes the target MCU to enter
active background mode at the next instruction boundary. If FTS = 0
(tag), the trigger event causes the fetched data value to be tagged as it
enters the instruction queue. If and when this tagged opcode reaches
the top of the queue, the target MCU enters active background mode
rather than executing the tagged instruction. The address in the
BDCBKPT register must point to an instruction opcode for the tag type
breakpoints, but it can be set to any address for a force type breakpoint.

7.4 Part Identification and BDC Force Reset

HCS08 devices include two additional development support features
that are not part of the background debug controller (BDC) or debug
(DBG) modules. These registers are described in this section.

A 16-bit register pair in the system integration module (SDIDH:SDIDL)
provides a way for a development host to determine the derivative type
and mask set revision of a target MCU. This allows the development
system to associate a register definition file with the target MCU so
debug software in the host can know where various memory blocks start
and end in the target and the locations for registers and control bits.
Reference Manual — Volume I HCS08 — Revision 1

258 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
Part Identification and BDC Force Reset

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

An 8-bit control register includes a BDM force reset (BDFR) control bit
that allows a host development system to reset the target MCU via a
serial command through the background debug communication
interface. The BDFR bit is not accessible by user application programs
in the target MCU so there is no possibility that a runaway program could
accidentally trigger this reset function.

7.4.1 System Device Identification Registers (SDIDH:SDIDL)

This 16-bit read-only register pair is hard-coded with the mask set
revision number and derivative identification code.

Figure 7-10. System Device Identification Register

REV[3:0] — Mask set Revision Number

This 4-bit field is hard coded to reflect the mask set revision number
(0–F) for the MCU die. The initial release of a part is revision number
0:0:0:0.

ID[11:0] — Part Identification Code

This 12-bit field is hard coded with an identification number that
identifies the HSC08 derivative type. For example the code for the
MC9S08GB60 is $002. Refer to the technical data sheet for other
derivatives to find their codes.

Bit 7 6 5 4 3 2 1 Bit 0

Read: REV3 REV2 REV1 REV0 ID11 ID10 ID9 ID8

Reset: The value of these bits depends on the device type and mask set revision.

Read: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0

Reset: The value of these bits depends on the device type and mask set revision.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 259
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.4.2 System Background Debug Force Reset Register

This register is located in the system integration module, not in the BDC.
The system background debug force reset register (SBDFR) is an 8-bit
register containing a single control bit which is accessible only from the
background debug controller. A serial background command such as
WRITE_BYTE must be used to write to SBDFR and attempts to write
this register from a user program are ignored. Unlike the other registers
in the BDC, SBDFR is located in the normal address space of the MCU
(normally located at $1801).

BDFR — Background Debug Force Reset

This write-only control bit provides a means for the background debug
host to reset the target MCU without having access to a reset pin.

1 = Force a target system reset.
0 = Writing 0 has no meaning or effect.

7.5 On-Chip Debug System (DBG)

Since HCS08 devices do not have external address and data buses, the
most important functions of an in-circuit emulator have been built onto
the chip with the MCU. The debug system consists of an 8-stage FIFO
which can store address or data bus information, and a flexible trigger
system to decide when to capture bus information and what information
to capture. This is a little like having a logic analyzer or bus state
analyzer built inside the MCU. The system does not use any MCU pins.
Rather, it relies on the background debug system (or the CPU) to access
debug control registers and to read results out of the 8-stage FIFO.

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0 0 0 0 0

Write: BDFR

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 7-11. System Background Debug Force Reset Register (SBDFR)
Reference Manual — Volume I HCS08 — Revision 1

260 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Unlike the background debug controller, the debug module does include
control and status registers that are accessible in the user’s memory
map. These registers are located in the high register space to avoid
using valuable direct page memory space.

Most of the debug module’s functions are used during development, and
user programs rarely access any of the control and status registers for
the debug module. The two exceptions are a ROM-based debug monitor
program and ROM patching, a serial monitor program is discussed in
application note AN2140/D. ROM patching is discussed in greater detail
in 7.5.9 Hardware Breakpoints and ROM Patching.

7.5.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the
R/W signal and an opcode tracking circuit. R/W can be used to detect
matches on only read cycles or only write cycles. Separate control bits
allow R/W to be ignored for each comparator. The opcode tracking
circuitry optionally allows you to specify that a trigger will occur only if the
opcode at the specified address is actually executed as opposed to just
being read from memory into the instruction queue. This feature allows
you to ignore fetches of instructions where a change of flow from a jump,
branch, or interrupt causes the CPU to re-fill the instruction queue rather
than execute the unused instructions in the queue. The comparators
also are capable of magnitude comparisons to support the inside range
and outside range trigger modes. Comparators are disabled temporarily
during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address.
The B comparator compares to the 16-bit CPU address or the 8-bit CPU
data bus, depending on the trigger mode selected. Since the CPU data
bus is separated into a read data bus and a write data bus, the RWAEN
and RWA control bits are used to decide which of these buses to use in
comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU’s
write data bus is used. Otherwise, the CPU’s read data bus is used.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 261
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The currently selected trigger mode determines what the debugger logic
does when a comparator detects a qualified match condition. A match
can cause:

• Generation of a breakpoint to the CPU

• Storage of data bus values into the FIFO

• Starting to store change-of-flow addresses into the FIFO (begin
type trace)

• Stopping the storage of change-of-flow addresses into the FIFO
(end type trace)

7.5.2 Bus Capture Information and FIFO Operation

Although processing technology has made on-chip logic less expensive,
it still isn’t free. Because of this, the number of words of bus capture
information that can be stored at a time is limited (eight words in the first
HCS08 devices).

To compensate for this limitation, the debugger uses two strategies:

• For tracking the sequence of program instructions, the FIFO only
captures addresses related to changes of flow. This allows an
external host development tool to reconstruct the flow through
dozens or even hundreds of instructions from the eight
change-of-flow events before or after a selected trigger point.

• The second strategy is to selectively capture event information.
This technique is used to capture only the data associated with
read and/or write accesses to a specific address or register.

The usual way to use the FIFO is to set up the trigger mode and other
control options, then arm the debugger. When the FIFO has filled or the
debugger has stopped storing data into the FIFO, read the information
out of it in the order it was stored into the FIFO. Status bits indicate the
number of words of valid information that are in the FIFO as data is
stored into it.

In most trigger modes, the information stored in the FIFO consists of
change-of-flow addresses (16-bit values). In these cases, read DBGFH
then DBGFL to get one word of information out of the FIFO. Reading
Reference Manual — Volume I HCS08 — Revision 1

262 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DBGFL (the low-order half of the FIFO data port) causes the FIFO to
shift so the next word of information is available at the FIFO data port. In
the event-only trigger modes, 8-bit data information is stored into the
FIFO. In these cases, the high-order half of the FIFO (DBGFH) is not
used (always stores and reads 0s) and data is read out of the FIFO by
simply reading DBGFL. Each time DBGFL is read, the FIFO is shifted so
the next data value is available through the FIFO data port at DBGFL.

In trigger modes where the FIFO is storing change-of-flow addresses,
there is a delay between CPU addresses and the input side of the FIFO.
One consequence of this delay is that if the trigger event itself is a
change-of-flow address or if a change-of-flow address appears during
the next two bus cycles after a trigger event starts the FIFO, it will not be
saved into the FIFO. In the case of an end-trace, if the trigger event is a
change-of-flow, it will be saved as the last change-of-flow entry for that
debug run.

In event-only trigger modes where the FIFO is storing data, the BEGIN
control bit is ignored and all event-only trigger modes are begin-type
traces. The event which triggers the start of FIFO data storage is
captured as the first data word in the FIFO.

The FIFO can also be used to generate a profile of executed instruction
addresses when the debugger is not armed. When ARM = 0, reading
DBGFL causes the address of the currently executing instruction to be
saved in the FIFO. To use the profiling feature, a host debugger would
read addresses out of the FIFO by reading DBGFH then DBGFL at
regular periodic intervals. The first eight values would be discarded
because they correspond to the eight DBGFL reads needed to initially fill
the FIFO. Additional periodic reads of DBGFH and DBGFL return
delayed information about executed instructions so the host debugger
can develop a profile of executed instruction addresses.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 263
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.3 Change-of-Flow information

To minimize the amount of information stored in the FIFO, only
information related to instructions that cause a change to the normal
sequential execution of instructions is stored. With knowledge of the
source and object code program stored in the target system, an external
debugger system can reconstruct the path of execution through many
instructions from the change-of-flow information stored in the FIFO.

For conditional branch instructions where the branch is taken (branch
condition was true), the source address is stored (the address of the
conditional branch instruction). If the external debugger finds such an
address in the FIFO, it may assume that the branch was taken. Because
BRA and BRN instructions are predictable, these events do not cause
change-of-flow information to be stored in the FIFO.

Indirect JMP and JSR instructions use the current contents of the H:X
index register pair to determine the destination address, so the external
debugger cannot predict the destination address from only information
in the source and object code. For this reason, the debug system stores
the run-time destination address for any indirect JMP or JSR. However,
for other JMP and JSR instructions, the external debugger can
determine the destination from known source and object code, so no
information is stored in the debug FIFO.

For interrupts, return from interrupt (RTI), or return from subroutine
(RTS), the destination address is stored in the FIFO as change-of-flow
information. In the case of interrupts, the external debugger could tell
where the interrupt vector would take program execution, but the debug
module needs to store this destination address (address of the interrupt
service routine) so the external debugger knows that an interrupt has
taken place and execution continued at this address. The destination of
an RTI tells the external debugger where the interrupt was recognized in
the normal program sequence. RTI and RTS get their destination
address from the current values on the stack. The external debugger
cannot reliably predict this return address from only the information in
the source and object code. Program errors that cause stack problems
can be detected by analysis of the change-of-flow information.
Reference Manual — Volume I HCS08 — Revision 1

264 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Since the FIFO in this debug module is only eight words deep, some
care is required when setting up debug runs. For example, if the FIFO is
set up to start capturing change-of-flow addresses just before a small
loop or a DBNZ instruction that branches to itself, the FIFO will fill very
quickly and the information captured will be of little help in debugging a
program. Instead, a debug run could be set for an end-trace to show the
execution leading to the first iteration of the loop. Another end-trace
could be set up to stop at an instruction just after the loop to monitor the
behavior of the program for the last iteration of the loop.

7.5.4 Tag vs. Force Breakpoints and Triggers

Tagging is a term that refers to identifying an instruction opcode as it is
fetched into the instruction queue, but not taking any other action until
and unless that instruction is actually executed by the CPU. This
distinction is important because any change-of-flow from a jump, branch,
subroutine call, or interrupt causes some instructions that have been
fetched into the instruction queue to be thrown away without being
executed. Usually, you are only interested in instructions if they are
actually executed so the tag mechanism allows you to selectively ignore
fetches that do not lead to execution.

A force-type breakpoint waits for the current instruction to finish and then
acts upon the breakpoint request. The usual action in response to a
breakpoint is to go to active background mode rather than continuing to
the next instruction in the user application program.

The tag vs. force terminology is used in two contexts within the debug
module. The first context refers to breakpoint requests from the debug
module to the CPU. The second refers to match signals from the
comparators to the debugger control logic. When a tag-type break
request is sent to the CPU, a signal is entered into the instruction queue
along with the opcode so that if/when this opcode ever executes, the
CPU will effectively replace the tagged opcode with a BGND opcode so
the CPU goes to active background mode rather than executing the
tagged instruction (or SWI if background mode is disabled
(ENBDM = 0)).

The second context is when the TRGSEL control bit in the DBGT
register is set to select tag-type operation. In this case, the output from
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 265
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

comparator A or B is qualified by a block of logic in the debug module
that tracks opcodes and the debugger only produces a trigger if the
opcode at the compare address is actually executed. There is separate
opcode tracking logic for each comparator so more than one compare
event can be tracked through the rebuilt instruction queue at a time.
TRGSEL has no effect on breakpoint requests to the CPU.

7.5.5 CPU Breakpoint Requests

In end-trace debug runs (BEGIN = 0), for all trigger modes except
event-only modes, CPU breakpoint requests are generated when the
trigger event occurs. In begin-trace debug runs (BEGIN = 1), CPU
breakpoint requests are generated when the FIFO has been filled.
Event-only trigger modes are always begin trace debug runs, so CPU
breakpoint requests are generated when the FIFO has been filled.

BRKEN = TAG = 1 while TRGSEL = BEGIN = 0 is a special case that
should be avoided because the results could be confusing. When the
address match occurs, a tag-type breakpoint request is issued to the
CPU. If an exception occurs before this tag reaches the end of the pipe,
the intended opcode will be flushed from the pipe, but the tag request
from the DBG module remains active waiting for the CPU to
acknowledge that it has entered active background mode. The first
opcode for the interrupt service routine will end up getting tagged and
this is where the CPU will stop rather than at the intended opcode at the
match address. To avoid this case, TRGSEL should have been set to 1.

7.5.6 Trigger Modes

The trigger mode controls the overall behavior of a debug run. The 4-bit
TRG field in the DBGT register selects one of nine trigger modes. The
TRGSEL control bit in the DBGT register modifies the chosen mode by
setting whether comparator signals are qualified by opcode tracking
logic. The BEGIN bit in DBGT chooses whether the FIFO begins storing
data when the qualified trigger is detected (begin trace) or the FIFO
stores data in a circular fashion until the qualified trigger is detected (end
trigger).
Reference Manual — Volume I HCS08 — Revision 1

266 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In all trigger modes except the two event-only modes, the FIFO stores
change-of-flow addresses. In event-only trigger modes, the FIFO stores
8-bit data values.

In all trigger modes, a match condition for comparator A and/or B is
optionally qualified by read/write (R/W) and pipe rebuild logic. R/W
comparison is enabled by the associated RWxEN control bit and can be
considered an additional input to the associated comparator. In full
trigger modes, RWAEN and RWA can be used to enable comparison of
R/W and to control whether data comparisons use the CPU read or write
data bus and RWBEN and RWB are ignored. When TRGSEL = 1, the
R/W qualified match condition is entered into instruction pipe rebuild
logic so the trigger is not produced until/unless the tagged opcode
reaches the end of the pipe rebuild logic. In event-only trigger modes,
TRGSEL is ignored and match signals are never qualified through the
pipe rebuild logic.

Begin-trace debug runs start filling the FIFO when the trigger conditions
are met and end when the FIFO becomes full (CNT[3:0] = 1:0:0:0).
End-trace debug runs start filling the FIFO in circular fashion when the
ARM bit is set to 1, and end when the trigger conditions are met.
End-trace debug runs can end before the FIFO is full. If more than eight
entries are stored into the FIFO during an end-trace debug run, new
entries overwrite the oldest entry in the FIFO so that when the debug run
ends, the information in the FIFO will be the eight most recent
change-of-flow addresses.

A debug run is started by setting up the DBGT register and then writing
a 1 to the ARM bit in the DBGC register which sets the ARMF flag and
clears the A and B flags and the CNT bits in DBGS. A begin-trace debug
run ends when the FIFO gets full. An end-trace run ends when the
selected trigger event occurs. Any debug run can be stopped manually
by writing a 0 to the ARM bit or the DBGEN bit in DBGC.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 267
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.6.1 A-Only Trigger

In the A-only trigger mode, a qualified match on comparator A sets the
AF status flag and generates a trigger event. DBGCAH:DBGCAL is
compared against the 16-bit CPU address and triggers may be qualified
with R/W (by setting RWAEN = 1) and/or by pipe rebuild logic (by setting
TRGSEL = 1).

7.5.6.2 A OR B Trigger

In the A OR B trigger mode, a qualified match on comparator A or on
comparator B sets the corresponding AF or BF status flag and generates
a trigger event. DBGCAH:DBGCAL and DBGCBH:DBGCBL are
compared against the 16-bit CPU address and triggers may be qualified
with R/W (by setting RWAEN and/or RWBEN to 1) and/or by pipe rebuild
logic (by setting TRGSEL=1).

7.5.6.3 A Then B Trigger

In the A Then B trigger mode, a qualified match on comparator A
followed by a qualified match on comparator B generates a trigger event.
The AF status flag gets set when a qualified match occurs on
comparator A. After AF is set, a qualified match on comparator B sets
the BF status flag and generates the trigger. DBGCAH:DBGCAL and
DBGCBH:DBGCBL are compared against the 16-bit CPU address and
triggers may be qualified with R/W (by setting RWAEN and/or RWBEN
to 1) and/or by pipe rebuild logic (by setting TRGSEL = 1).

7.5.6.4 Event-Only B Trigger (Store Data)

In event-only trigger modes, data values are stored in the FIFO rather
than change-of-flow addresses. In the event-only B trigger mode, a
qualified match on comparator B sets the BF status flag and generates
a trigger event. DBGCBH:DBGCBL is compared to the 16-bit CPU
address. Triggers may be qualified with R/W by setting RWBEN to 1. Do
not use TRGSEL = 1 in an event-only trigger mode. DBGCAH:DBGCAL,
RWAEN, and RWA are not used in this mode.
Reference Manual — Volume I HCS08 — Revision 1

268 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.6.5 A Then Event-Only B Trigger (Store Data)

In event-only trigger modes, data values are stored in the FIFO rather
than change-of-flow addresses. In the A then event-only B trigger mode,
a qualified match on comparator A sets the AF status flag. After AF is
set, a qualified match on comparator B sets the BF status flag and
generates a trigger event. DBGCAH:DBGCAL and DBGCBH:DBGCBL
are compared to the 16-bit CPU address. Triggers may be qualified with
R/W by setting RWAEN and/or RWBEN to 1. Do not use TRGSEL = 1 in
an event-only trigger mode.

7.5.6.6 A AND B Data Trigger (Full Mode)

This is called a full mode because address, data, and optionally R/W
must all match within the same bus cycle to cause a trigger. In the A AND
B data trigger mode, a qualified match on comparator A and on
comparator B within the same bus cycle generates a trigger event. The
AF and BF status flags get set when a qualified match occurs on
comparator A and on comparator B in the same bus cycle.
DBGCAH:DBGCAL is compared to the 16-bit CPU address and
DBGCBL is compared against the 8-bit CPU data bus. If RWAEN = 1
and RWA = 0, DBGCBL is compared to the CPU write data bus;
otherwise, DBGCBL is compared to the CPU read data bus. Triggers
may be qualified with R/W (by setting RWAEN to 1) and/or by pipe
rebuild logic (by setting TRGSEL = 1). DBGCBH, RWBEN, and RWB
are not used in this mode.

7.5.6.7 A AND NOT B Data Trigger (Full Mode)

This is called a full mode because address, data, and optionally R/W are
all tested within the same bus cycle to cause a trigger. In the A AND NOT
B data trigger mode, a qualified match on comparator A, within a bus
cycle where data does not match comparator B, generates a trigger
event. The AF and BF status flags get set when a qualified match occurs
on comparator A and not on comparator B in the same bus cycle.
DBGCAH:DBGCAL is compared to the 16-bit CPU address and
DBGCBL is compared against the 8-bit CPU data bus. If RWAEN=1 and
RWA=0, DBGCBL is compared to the CPU write data bus, otherwise
DBGCBL is compared to the CPU read data bus. Triggers may be
qualified with R/W (by setting RWAEN to 1) and/or by pipe rebuild logic
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 269
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

(by setting TRGSEL=1). DBGCBH, RWBEN, and RWB are not used in
this mode.

7.5.6.8 Inside Range Trigger: A ≤ Address ≤ B

In this trigger mode, the comparators are used in a magnitude
comparator mode. If the address is greater than or equal to the address
in comparator A in the same cycle when the address is less than or equal
to the address in comparator B, the AF and BF status flags are set and
a trigger event is generated. DBGCAH:DBGCAL and
DBGCBH:DBGCBL are compared against the 16-bit CPU address and
triggers may be qualified with R/W (by setting RWAEN and/or RWBEN
to 1) and/or by pipe rebuild logic (by setting TRGSEL = 1). Obviously,
the address in DBGCAH:DBGCAL should be less than the address in
DBGCBH:DBGCBL and if RWAEN = RWBEN = 1, RWA should be the
same as RWB.

7.5.6.9 Outside Range Trigger: Address < A or Address > B

In this trigger mode, the comparators are used in a magnitude
comparator mode. If the address is less than the address in comparator
A or greater than the address in comparator B, a trigger event is
generated. The AF status flag is set if the address is less than the
address in comparator A and the BF status flag is set if the address is
greater than the address in comparator B. DBGCAH:DBGCAL and
DBGCBH:DBGCBL are compared against the 16-bit CPU address and
triggers may be qualified with R/W (by setting RWAEN and/or RWBEN
to 1) and/or by pipe rebuild logic (by setting TRGSEL = 1). Obviously,
the address in DBGCAH:DBGCAL should be less than the address in
DBGCBH:DBGCBL.

7.5.7 DBG Registers and Control Bits

The debug module includes nine bytes of register space for three 16-bit
registers and three 8-bit control and status registers. These registers are
located in the high register space of the normal memory map so they are
accessible to normal application programs. These registers are rarely, if
ever, accessed by normal user application programs with the possible
Reference Manual — Volume I HCS08 — Revision 1

270 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

exception of a ROM-based debug monitor or a ROM patching
mechanism that uses the breakpoint logic.

The modular methodology that is used for HCS08 MCUs implements the
fine address decode within each module, but decode logic at the chip
level is used to determine the base location for each module. For this
reason, always check the documentation for each derivative to
determine absolute address locations for registers. Generally, the user
will access registers by name and an equate or header file provided by
Motorola will translate the register name into the appropriate absolute
address for the specific HCS08 derivative. Since registers may not be
located at the same address for every derivative MCU, this book only
refers to registers and control bits by their names.

7.5.7.1 Debug Comparator A High Register (DBGCAH)

Compare value bits for the high-order eight bits of comparator A. This
register is forced to $00 at reset and can be read any time and written
only when the ARM bit in the DBGC register is not set.

7.5.7.2 Debug Comparator A Low Register (DBGCAL)

Compare value bits for the low-order eight bits of comparator A. This
register is forced to $00 at reset and can be read any time and written
only when the ARM bit in the DBGC register is not set.

7.5.7.3 Debug Comparator B High Register (DBGCBH)

Compare value bits for the high-order eight bits of comparator B. This
register is forced to $00 at reset and can be read any time and written
only when the ARM bit in the DBGC register is not set.

7.5.7.4 Debug Comparator B Low Register (DBGCBL)

Compare value bits for the low-order eight bits of comparator B. This
register is forced to $00 at reset and can be read any time and written
only when the ARM bit in the DBGC register is not set.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 271
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.7.5 Debug FIFO High Register (DBGFH)

This register provides read-only access to the high-order eight bits of the
FIFO. Writes to this register have no meaning or effect. In the event-only
modes of operation, the FIFO only stores information into the low-order
half of each FIFO word, so this register is not used and will read $00.

Reading DBGFH does not cause the FIFO to shift to the next word.
When reading 16-bit words out of the FIFO, read DBGFH before reading
DBGFL because reading DBGFL causes the FIFO to advance to the
next word of information.

7.5.7.6 Debug FIFO Low Register (DBGFL)

This register provides read-only access to the low-order eight bits of the
FIFO. Writes to this register have no meaning or effect.

Reading DBGFL causes the FIFO to shift to the next available word of
information. When the debug module is operating in an event-only
mode, only 8-bit data is stored into the FIFO (high-order half of each
FIFO word is unused). When reading 8-bit words out of the FIFO, simply
read DBGFL repeatedly to get successive bytes of data from the FIFO.
It isn’t necessary to read DBGFH in this case.

Do not attempt to read data from the FIFO while it is still armed (after
arming but before the FIFO is filled or ARMF is cleared) because the
FIFO is prevented from advancing during reads of DBGFL. This can
result in improper sequencing of information in the FIFO.

Reading DBGFL while the FIFO is not armed causes the current opcode
address to be stored to the last location in the FIFO. By reading DBGFH
then DBGFL periodically, external host software can develop a profile of
program execution. After eight reads from the FIFO, the ninth read will
return the information that was stored as a result of the first read. To use
the profiling feature, read the FIFO eight times without using the data to
prime the sequence and then begin using the data to get a delayed
picture of what addresses were executed.

The information stored into the FIFO on reads of DBGFL (while the FIFO
is not armed) is the address of the most recently executed opcode.
Storing instantaneous address bus values would be much less useful
since you wouldn’t know whether these were data, operand, or
instruction accesses.
Reference Manual — Volume I HCS08 — Revision 1

272 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.7.7 Debug Control Register

This register can be read at any time. The DBGEN and ARM bits can be
written at any time. The remaining bits in the register can be written only
while ARM = 0.

Figure 7-12. Debug Control Register (DBGC)

DBGEN — Debug Module Enable Bit

Used to enable the debug module. DBGEN cannot be set to 1 if the
MCU is secure.

1 = DBG enabled
0 = DBG disabled

ARM — Arm Control Bit

Controls whether the debugger is comparing and storing information
in the FIFO. A write is used to set this bit (and the ARMF bit) and
completion of a debug run automatically clears it. Any debug run can
be stopped manually by writing 0 to ARM or to DBGEN.

1 = Debugger armed
0 = Debugger not armed

TAG — Tag/Force Select Bit

Controls whether break requests to the CPU will be tag or force type
requests. If BRKEN = 0, this bit has no meaning or effect.

1 = CPU breaks requested as tag type requests
0 = CPU breaks requested as force type requests

Bit 7 6 5 4 3 2 1 Bit 0

Read:
DBGEN ARM TAG BRKEN RWA RWAEN RWB RWBEN

Write:

Reset: 0 0 0 0 0 0 0 0
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 273
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRKEN — Break Enable Bit

Controls whether a trigger event will generate a break request to the
CPU. Trigger events can cause information to be stored in the FIFO
without generating a break request to the CPU. CPU break requests
are issued to the CPU when the comparator(s) and R/W meet the
trigger requirements. CPU tag requests must coincide with an opcode
fetch so TRGSEL never affects when CPU break requests are issued.

1 = Triggers (before TRGSEL qualification) cause a break request
to the CPU

0 = Break requests not enabled

RWA — R/W Comparison Value for Comparator A Bit

When RWAEN = 1, this bit determines whether a read or a write
access qualifies comparator A. When RWAEN = 0, RWA and the
R/W signal do not affect comparator A.

1 = Comparator A can match only on a read cycle.
0 = Comparator A can match only on a write cycle.

RWAEN — Enable R/W for Comparator A Bit

Controls whether the level of R/W is considered for a comparator A
match

1 = R/W is used in comparison A.
0 = R/W is not used in comparison A.

RWB — R/W Comparison Value for Comparator B Bit

When RWBEN = 1, this bit determines whether a read or a write
access qualifies comparator B. When RWBEN = 0, RWB and the
R/W signal do not affect comparator B.

1 = Comparator B can match only on a read cycle.
0 = Comparator B can match only on a write cycle.

RWBEN — Enable R/W for Comparator B Bit

Controls whether the level of R/W is considered for a comparator B
match

1 = R/W is used in comparison B.
0 = R/W is not used in comparison B.
Reference Manual — Volume I HCS08 — Revision 1

274 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.7.8 Debug Trigger Register

This register can be read at any time, but it can be written only while
ARM = 0. Bits 4 and 5 are hardwired to 0s.

Figure 7-13. Debug Trigger Register (DBGT)

TRGSEL — Trigger Type Bit

Controls whether the match outputs from comparators A and B are
qualified with the opcode tracking logic in the debug module. A
separate control bit (TAG) in DBGC controls whether CPU break
requests are qualified with separate opcode tracking logic in the CPU.

If TRGSEL is set, a match signal from comparator A or B must
propagate through the opcode tracking logic and a trigger event is
only signalled if the opcode at the match address is actually executed.
This trigger event stops (BEGIN = 0) or starts (BEGIN = 1) the
capture of information into the FIFO.

1 = Trigger if opcode at compare address is executed (tag)
0 = Trigger on access to compare address (force)

BEGIN — Begin/End Trigger Select Bit

Controls whether the FIFO starts filling at a trigger or fills in a circular
manner until a trigger ends the capture of information. In event-only
trigger modes, this bit is ignored and all debug runs are assumed to
be begin-type traces.

1 = Trigger initiates data storage (begin trace)
0 = Data stored in FIFO until trigger (end trace)

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TRGSEL BEGIN

0 0
TRG

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 275
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TRG3:TRG2:TRG1:TRG0 — Select Trigger Mode Bits

Selects one of nine triggering modes

7.5.7.9 Debug Status Register

This is a read-only status register.

AF — Trigger Match A Flag

AF is cleared at the start of a debug run and indicates whether a
trigger match A condition was met since arming.

1 = Comparator A match
0 = Comparator A has not matched.

Table 7-2. Trigger Mode Selection

TRG[3:0] Triggering Mode

0000 A-only

0001 A OR B

0010 A then B

0011 Event-only B (store data)

0100 A then event-only B (store data)

0101 A AND B data (full mode)

0110 A AND NOT B data (full mode)

0111 Inside range: A ≤ address ≤ B

1000 Outside range: address < A or address > B

1001–1111 No trigger

Bit 7 6 5 4 3 2 1 Bit 0

Read: AF BF ARMF 0 CNT

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 7-14. Debug Status Register (DBGS)
Reference Manual — Volume I HCS08 — Revision 1

276 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BF — Trigger Match B Flag

BF is cleared at the start of a debug run and indicates whether a
trigger match B condition was met since arming.

1 = Comparator B match
0 = Comparator B has not matched.

ARMF — Arm Flag

While DBGEN = 1, this status bit is a read-only image of the ARM bit
in DBGC. This bit is set by writing 1 to the ARM control bit in DBGC
(while DBGEN = 1) and is automatically cleared at the end of a debug
run. A debug run is completed when the FIFO is full (begin trace) or
when a trigger event is detected (end trace). A debug run can also be
ended manually by writing 0 to the ARM or DBGEN bits in DBGC.

1 = Debugger armed
0 = Debugger not armed

CNT3:CNT2:CNT1:CNT0 — FIFO Valid Count

These bits are cleared at the start of a debug run and indicate the
number of words of valid data in the FIFO at the end of a debug run.
The value in CNT does not decrement as data is read out of the FIFO.
The external debug host is responsible for keeping track of the count
as information is read out of the FIFO.

Table 7-3. CNT Status Bits

CNT[3:0] Valid Words in FIFO

0000 No valid data

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 277
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8 Application Information and Examples

Assuming no debug run is already in progress (ARMF = 0), the usual
sequence used to setup a new debug run is:

1. Write address or address and data match values to
DBGCAH:DBGCAL and/or DBGCBH:DBGCBL.

2. Write to DBGT to:

– Select a begin/end type trace run (BEGIN = 1/0)

– Select address/opcode qualification (TRGSEL = 0/1)

– Select 1 of 9 basic trigger modes (TRG[3:0])

3. Write to DBGC to:

– Enable the DBG module (DBGEN = 1)

– Decide whether to request a CPU breakpoint (BRKEN = 1)

– If so, select a force/tag CPU breakpoint type (TAG = 0/1)

– Arm the debug run (ARM = 1)

– Setup and enable optional R/W qualifiers

4. Start the user application program with a GO command through
the background debug interface. Although it is technically possible
to setup a debug run while the application program is running, it is
much more common to stop the user application program so it is
in active background mode while the debug run is set up.

Depending on the type of debug run that was set up, the target MCU will
finish the debug run and enter active background mode, or the host
debugger can monitor the ARMF flag through active background mode
commands to determine when the run is finished. After the debug run is
finished, the host would:

1. Optionally read DBGS to see how many words of information were
captured into the debug FIFO. If the host was reading DBGS to
determine when the debug run was finished, it may not be
necessary to re-read DBGS to get the CNT[3:0] information. For
many debug runs, it is safe to assume the FIFO is full, so it is not
always necessary to check the CNT[3:0] bits to determine how
much information is in the FIFO.
Reference Manual — Volume I HCS08 — Revision 1

278 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2. Read the FIFO information by repeatedly reading DBGFH then
DBGFL. For some debug runs, the information in the FIFO is not
important so it is not necessary to read it out. For event type debug
runs (TRG[3:0] = 0:0:1:1 or 0:1:0:0, the upper-half each of FIFO
word is unused so it is not necessary to read DBGFH.

The four control bits BEGIN and TRGSEL in DBGT, and BRKEN and
TAG in DBGC, determine the basic type of debug run as shown in
Table 7-4. Some of the 16 possible combinations are not used (refer to
the notes at the end of the table).

Table 7-4. Basic Types of Debug Runs

BEGIN TRGSEL BRKEN TAG Type of Debug Run

0 0 0 x(1) Fill FIFO until trigger address (No CPU breakpoint — keep
running)

0 0 1 0 Fill FIFO until trigger address, then force CPU breakpoint

0 0 1 1 Don’t use(2)

0 1 0 x(1) Fill FIFO until trigger opcode about to execute (No CPU
breakpoint — keep running)

0 1 1 0 Don’t use(3)

0 1 1 1
Fill FIFO until trigger opcode about to execute (trigger causes

CPU breakpoint)(4)

1 0 0 x(1) Start FIFO at trigger address (No CPU breakpoint — keep
running)

1 0 1 0
Start FIFO at trigger address, force CPU breakpoint when
FIFO full

1 0 1 1 Don’t use(4)

1 1 0 x(1) Start FIFO at trigger opcode, (No CPU breakpoint — keep
running)

1 1 1 0
Start FIFO at trigger opcode, force CPU breakpoint when FIFO
full

1 1 1 1 Don’t use(5)

1. When DBGEN = 0, TAG is don’t care (x in the table).
2. In end trace configurations (BEGIN = 0) where a CPU breakpoint is enabled (BRKEN = 1), TRGSEL should agree with

TAG. In this case, where TRGSEL = 0 to select no opcode tracking qualification and TAG = 1 to specify a tag-type CPU
breakpoint, the CPU breakpoint would not take effect until sometime after the FIFO stopped storing values. Depending on
program loops or interrupts, the delay could be very long.

3. In end trace configurations (BEGIN = 0) where a CPU breakpoint is enabled (BRKEN = 1), TRGSEL should agree with
TAG. In this case, where TRGSEL = 1 to select opcode tracking qualification and TAG = 0 to specify a force-type CPU
breakpoint, the CPU breakpoint would erroneously take effect before the FIFO stopped storing values and the debug run
would not complete normally.

4. In begin trace configurations (BEGIN = 1) where a CPU breakpoint is enabled (BRKEN = 1), TAG should not be set to 1.
In begin trace debug runs, the CPU breakpoint corresponds to the FIFO full condition which does not correspond to a
taggable instruction fetch.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 279
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8.1 Orientation to the Debugger Examples

The following sections describe how to setup debug runs for several
common situations. Each of these examples starts with a table similar to
the one shown here:

To set up and use a debug run like that described in each example, write
the values in the table to the registers named in the heading for each
column. The registers should be written in left-to-right order. The
RWAEN, RWA, RWBEN, and RWB values are shown in separate
columns of the table for convenience, but these are actually control bits
in the DBGC register. These bit values are already reflected in the value
for DBGC at the right end of the table and these bits get written when
DBGC is written.

Just below this table in each example section, the trigger mode is shown
and a description of the contents of the FIFO after the debug run is
shown. The trigger mode can be derived from the low-order four bits of
the DBGT value shown near the right of the table, but it is listed
separately for easier reference. After explaining the details and purpose
of each example case, variations are discussed.

DBGCAH:DBGCAL RWAEN(1) RWA(1) DBGCBH:DBGCBL RWBEN(1) RWB(1) DBGT DBGC

Opcode address 0 x Not used x x $00 $D0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.
Reference Manual — Volume I HCS08 — Revision 1

280 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8.2 Example 1: Stop Execution at Address A

Trigger mode: A-only
FIFO contents: Not used in this example

This is a simple hardware breakpoint where the CPU will stop executing
the application program and enter active background mode as soon as
the application program makes any access to the selected address. It
generates a force-type breakpoint to the CPU on the first access (R/W
is don’t care) to the address stored in comparator A
(DBGCAH:DBGCAL). The FIFO, comparator B, and DBGS are not used
for this example.

An end trace is used because begin-type traces cause the breakpoint to
the CPU to be related to the FIFO full condition rather than the selected
trigger conditions.

Variation: To consider only read accesses or only write accesses,
change the DBGC value so RWAEN = 1 and use RWA to select reads
(1) or writes (0).

DBGCAH:DBGCAL RWAEN(1) RWA(1) DBGCBH:DBGCBL RWBEN(1) RWB(1) DBGT DBGC

Trigger address A 0 x Not used x x $00 $D0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 281
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8.3 Example 2: Stop Execution at the Instruction at Address A

Trigger mode: A-only
FIFO contents: Not used in this example

This example uses a tag-type breakpoint to the CPU to set a single
instruction breakpoint at address A. The address stored to comparator A
(DBGCAH:DBGCAL) must be the address of an instruction opcode.
When the selected instruction is about to execute, the CPU will go to
active background mode rather than execute the tagged instruction. 0 is
written to RWAEN because in order for the instruction to be entered into
the CPU’s instruction queue it has to be a read access, so there is no
need to check R/W. The FIFO, comparator B, and DBGS are not used
for this example.

An end trace is used because begin-type traces cause the breakpoint to
the CPU to be related to the FIFO full condition rather than the selected
trigger conditions. Since this is an end-type trace and we want a tag-type
breakpoint to the CPU, we must also specify a tag-type trigger
(TRGSEL = 1). If the specified address is not the address of an
instruction opcode, no breakpoint will occur.

DBGCAH:DBGCAL RWAEN(1) RWA(1) DBGCBH:DBGCBL RWBEN(1) RWB(1) DBGT DBGC

Trigger opcode A 0 x Not used x x $80 $F0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.
Reference Manual — Volume I HCS08 — Revision 1

282 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8.4 Example 3: Stop Execution at the Instruction at Address A or Address B

Trigger mode: A or B
FIFO contents: Not used in this example

This example uses tag-type breakpoints to the CPU to set two instruction
breakpoints, one at address A and the other at address B. The
addresses stored to comparator A (DBGCAH:DBGCAL) and comparator
B (DBGCBH:DBGCBL) must be the addresses of instruction opcodes.
When either of the selected instructions is about to execute, the CPU will
go to active background mode rather than execute the tagged
instruction. 0 is written to RWAEN and RWBEN because in order for the
instruction to be entered into the CPU’s instruction queue it has to be a
read access, so there is no need to check R/W. The FIFO and DBGS are
not used for this example.

An end trace is used because begin-type traces cause the breakpoint to
the CPU to be related to the FIFO full condition rather than the selected
trigger conditions. Since this is an end-type trace and we want a tag-type
breakpoint to the CPU, we must also specify a tag-type trigger
(TRGSEL = 1). If the specified addresses are not the addresses of
instruction opcodes, no breakpoint will occur.

DBGCAH:DBGCAL RWAEN(1) RWA(1) DBGCBH:DBGCBL RWBEN(1) RWB(1) DBGT DBGC

Trigger opcode A 0 x Trigger opcode B 0 x $81 $F0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 283
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8.5 Example 4: Begin Trace at the Instruction at Address A

Trigger mode: A-only
FIFO contents: Information from the next eight changes of flow starting
from the third bus cycle after the instruction at address A began to
execute.

This is an example of a begin-trace debug run that starts filling the FIFO
when the instruction at address A is executed and ends when the FIFO
is full (has stored eight change-of-flow addresses). Because of a delay
in the debug logic, the first possible change-of-flow address that will be
captured into the FIFO is the third bus cycle after the trigger event that
starts the debug run. If the address when the instruction that caused the
trigger, or either of the next two bus cycles is a change-of-flow address,
it will not be captured as one of the eight change-of-flow addresses in
the FIFO for this debug run.

A force-type CPU breakpoint is specified because this breakpoint is
associated with the FIFO full condition and not a taggable opcode. The
CPU breakpoint causes the target MCU to go to active background
mode as soon as the FIFO is full. Typically, a host development system
would then read the contents of the FIFO in order to reconstruct what
happened during the debug run.

DBGCAH:DBGCAL RWAEN(1) RWA(1) DBGCBH:DBGCBL RWBEN(1) RWB(1) DBGT DBGC

Trigger opcode A 0 x Not used x x $C0 $D0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.
Reference Manual — Volume I HCS08 — Revision 1

284 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8.6 Example 5: End Trace to Stop After A-Then-B Sequence

Trigger mode: A Then B
FIFO contents: Information from the last eight changes of flow ending
when the instruction at address B begins to execute.

This is an example of an end-trace debug run that ends when the
instruction at B executes, but only after the instruction at A has executed
at least once. The sequential nature of the trigger ensures that the
trigger will occur only when you have followed a certain path through
your program. In the previous begin trace example, we may have missed
a change-of-flow address (counting the trigger event itself). This
example suggests a way to use the first two change-of-flow events from
that debug run to specify the A-then-B sequence that ends this debug
run. Any change-of-flow event missed during the earlier debug run
should be in the FIFO for this debug run.

Since change-of-flow addresses represent addresses where the CPU is
going to try to start executing instructions, they should always be the
address of an executable instruction. In the case of program runaway, if
a change-of-flow address points at an illegal opcode, the CPU will still
fetch it into its instruction pipe and try to execute it even though the illegal
opcode detect logic will intervene to force an exception.

An end trace is used because begin-type traces cause the breakpoint to
the CPU to be related to the FIFO full condition rather than the selected
trigger conditions. Since this is an end-type trace and we want a tag-type
breakpoint to the CPU, we must also specify a tag-type trigger
(TRGSEL = 1). In an end trace, if the instruction at the trigger address is
a change of flow, it will be captured as the last FIFO entry for that debug
run.

DBGCAH:DBGCAL RWAEN(1) RWA(1) DBGCBH:DBGCBL RWBEN(1) RWB(1) DBGT DBGC

Trigger opcode A 0 x Trigger opcode B 0 x $82 $F0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 285
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8.7 Example 6: Begin Trace On Write of Data B to Address A

Trigger mode: A AND B Data (Full Mode)
FIFO contents: Information from the next eight changes of flow starting
three cycles after the trigger.

This example shows a begin trace debug run that starts when the
address in comparator A and the data in the low half of comparator B
both match in the same bus cycle. This is a force-type trigger so
address A can be the address of a control register or a program variable.
When the FIFO has captured the next eight change-of-flow addresses,
the debug run ends, but since no CPU breakpoint is specified
(BRKEN = 0), the MCU continues to execute the application program.
Typically, in this type of debug run, the host development system would
monitor the debug status register (DBGS) to determine when the debug
run was finished. The host would then read the results of the debug run
from the FIFO.

This demonstrates that debugging can be done without disturbing
real-time operation of an application program. The background debug
commands have a very small impact since the active background mode
commands steal a bus cycle whenever they need to access target
memory. This impact is never greater than one bus cycle per active
background mode command and background memory access
commands take at least 528 BDC clock cycles and usually have
significant gaps between adjacent commands.

Variation: The A AND NOT B Data trigger mode can be used for a
useful variation of this example. Suppose you are debugging a program
and you suspect some control register is being overwritten with an
unexpected value by some erroneous code. You can setup an end trace
where the comparator A is set to the address of the suspicious register
and comparator B is setup with the correct data you expect in the
register. When the debug run ends, the FIFO will show the last eight
changes of flow leading to the offending instruction.

DBGCAH:DBGCAL RWAEN(1) RWA(1) DBGCBH:DBGCBL RWBEN(1) RWB(1) DBGT DBGC

Trigger address A 1 0 xx:Trigger data B 0 x $45 $C4

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.
Reference Manual — Volume I HCS08 — Revision 1

286 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8.8 Example 7: Capture the First Eight Values Read From Address B

Trigger mode: Event-Only B (Store Data)
FIFO contents: The first eight data values read from address B are
stored into the low half of the FIFO data words. The high-order eight bits
of each FIFO word are unused and read as logic 0s.

This is an event-only trigger mode so the BEGIN control bit is ignored
and all debug runs are treated as begin-type traces. This mode is used
to capture the data involved in a read or write access to a specific
address such as the address of a particular control register or program
variable.

It would be inappropriate to set TRGSEL = 1 with this trigger mode
because the trigger address is normally not the address of an executable
instruction.

DBGCAH:DBGCAL RWAEN(1) RWA(1) DBGCBH:DBGCBL RWBEN(1) RWB(1) DBGT DBGC

Not used x x Trigger address B 1 1 $43 $C3

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 287
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8.9 Example 8: Capture Values Written to Address B After Address A Read

Trigger mode: A Then Event-Only B Data (Store Data)
FIFO contents: The first eight data values written to address B after
address A was read. The high-order eight bits of each FIFO word are
unused and read as logic 0s.

As in the previous example, this is an event-only trigger mode so the
BEGIN control bit is ignored and all debug runs are treated as
BEGIN-type traces. In this example, address A must be detected as a
qualifying condition before the FIFO begins to capture data values for
each write access to trigger address B.

Variation: If TRGSEL = 1, comparator A is qualified by opcode tracking
logic so that the A trigger will not occur until the instruction at address A
is about to execute. This debug example could be used to detect
erroneous writes to a control register after the reset initialization routine
was finished. To set up such a run, store the address of one of the last
instructions of the reset initialization routine in comparator A and store
the address of a selected control register in the low-order half of
comparator B. After running the application program, the host debug
system can read the DBGS status register to determine whether any
values have been written to the selected control register address.

DBGCAH:DBGCAL RWAEN(1) RWA(1) DBGCBH:DBGCBL RWBEN(1) RWB(1) DBGT DBGC

Qualifier address A 1 1 Trigger address B 1 0 $44 $CD

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.
Reference Manual — Volume I HCS08 — Revision 1

288 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8.10 Example 9: Trigger On Any Execution Within a Routine

Trigger mode: Inside Range (A ≤ Address ≤ B)
FIFO contents: The last eight change of flow addresses before the CPU
executed an instruction between address A and address B (inclusive).

This debug run is an end trace that stops if the CPU attempts to execute
any instruction within the range specified by address A and address B.
Comparator A would be set to the address of the first instruction in the
routine to be monitored, and comparator B would be set to the address
of the last instruction in the routine. TRGSEL = 1, so comparisons are
qualified by opcode tracking logic. R/W is not used to qualify either
comparator. When the debug run ends, the CPU will breakpoint to active
background mode. An external debug host system can read out the
contents of the FIFO to reconstruct instructions leading to the trigger
condition.

DBGCAH:DBGCAL RWAEN(1) RWA(1) DBGCBH:DBGCBL RWBEN(1) RWB(1) DBGT DBGC

Opcode address A 0 x Opcode address B 0 x $87 $F0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 289
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.8.11 Example 10: Trigger On Any Attempt To Execute Outside FLASH

Trigger mode: Outside Range (Address < A or Address > B)
FIFO contents: The last eight change of flow addresses before the CPU
executed an instruction that was not between address A and address B.

This example can be used to detect when a program goes outside the
expected range. For example, in a program runaway case, you could set
comparator A to the address of the first instruction in the FLASH memory
and comparator B to the address of the last instruction in the FLASH
memory. The debug run will end when the CPU attempts to execute an
instruction from any address outside the range of the user program in
FLASH memory. After the debug run, the FIFO can be read to
reconstruct the last eight changes of flow prior to the erroneous attempt
to execute from an address outside the FLASH.

DBGCAH:DBGCAL RWAEN(1) RWA(1) DBGCBH:DBGCBL RWBEN(1) RWB(1) DBGT DBGC

Opcode address A 0 x Opcode address B 0 x $88 $F0

1. RWAEN, RWA, RWBEN, and RWB are actually bits in DBGC. They are broken out in this table for reference.
Reference Manual — Volume I HCS08 — Revision 1

290 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Development Support
On-Chip Debug System (DBG)

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

7.5.9 Hardware Breakpoints and ROM Patching

The BRKEN control bit in the DBGC register may be set to 1 to allow any
of the trigger conditions described in 7.5.6 Trigger Modes to be used to
generate a hardware breakpoint request to the CPU. In the case of ROM
patching, you would never use the FIFO and you should always specify
an end trace so the CPU break request coincides with the selected
trigger conditions rather than the FIFO full condition. The TAG bit in
DBGC controls whether the breakpoint request will be treated as a
tag-type breakpoint or a force-type breakpoint. A tag breakpoint causes
the current opcode to be marked as it enters the instruction queue. If a
tagged opcode reaches the end of the pipe, the CPU executes a BGND
instruction to go to active background mode rather than executing the
tagged opcode. A force-type breakpoint causes the CPU to finish the
current instruction and then go to active background mode.

If the background mode has not been enabled (ENBDM = 1) by a serial
WRITE_CONTROL command through the BKGD pin, the CPU will
execute an SWI instruction instead of going to active background mode.
If the user has taken appropriate steps to prepare for this case, it can be
used to implement a form of ROM patching.

ROM patching is a technique that allows program bugs in ROM or other
non-volatile memory to be replaced by different program instructions to
repair the bug. The mechanism is based on the MCU detecting it is about
to execute an instruction at the location of a bug. Instead of executing
that instruction, hardware breakpoint logic generates a breakpoint
request to the CPU. The CPU knows it is not connected to a
development system because the ENBDM control bit in BDCSCR
equals 0. So instead of going to active background mode, the CPU
executes an SWI instruction. The SWI service routine fetches the
address of the repair code from some non-volatile memory location and
executes that instead of the bug code. At the end of the repair code, the
stack pointer can be adjusted and an ordinary jump instruction can
return execution to a location past the original bug.

Alternatively, the repair code could alter the return address of the stack
and execute an RTI to return to a point after the original bug.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Development Support 291
For More Information On This Product,

 Go to: www.freescale.com

Development Support

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Reference Manual — Volume I HCS08 — Revision 1

292 Development Support MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

HCS08 Family Reference Manual

Appendix A. Instruction Set Details

A.1 Introduction

This section contains detailed information for all HCS08 Family
instructions. The instructions are arranged in alphabetical order with the
instruction mnemonic set in larger type for easy reference.

A.2 Nomenclature

This nomenclature is used in the instruction descriptions throughout this
section.

Operators

() = Contents of register or memory location shown inside
parentheses

← = Is loaded with (read: “gets”)
& = Boolean AND
| = Boolean OR

⊕ = Boolean exclusive-OR
× = Multiply
÷ = Divide
: = Concatenate

+ = Add
– = Negate (two’s complement)
« = Sign extend

CPU registers

A = Accumulator
CCR = Condition code register

H = Index register, higher order (most significant) eight bits
X = Index register, lower order (least significant) eight bits

PC = Program counter
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 293
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PCH = Program counter, higher order (most significant) eight
bits

PCL = Program counter, lower order (least significant) eight
bits

SP = Stack pointer

Memory and addressing

M = A memory location or absolute data, depending on
addressing mode

M:M + $0001= A 16-bit value in two consecutive memory locations.
The higher-order (most significant) eight bits are
located at the address of M, and the lower-order (least
significant) eight bits are located at the next higher
sequential address.

rel = The relative offset, which is the two’s complement
number stored in the last byte of machine code
corresponding to a branch instruction

Condition code register (CCR) bits

V = Two’s complement overflow indicator, bit 7
H = Half carry, bit 4
I = Interrupt mask, bit 3

N = Negative indicator, bit 2
Z = Zero indicator, bit 1
C = Carry/borrow, bit 0 (carry out of bit 7)

Bit status BEFORE execution of an instruction (n = 7, 6, 5, ... 0)

For 2-byte operations such as LDHX, STHX, and CPHX, n = 15 refers
to bit 15 of the 2-byte word or bit 7 of the most significant (first) byte.

Mn = Bit n of memory location used in operation
An = Bit n of accumulator
Hn = Bit n of index register H
Xn = Bit n of index register X
bn = Bit n of the source operand (M, A, or X)

Bit status AFTER execution of an instruction

For 2-byte operations such as LDHX, STHX, and CPHX, n = 15 refers
to bit 15 of the 2-byte word or bit 7 of the most significant (first) byte.

Rn = Bit n of the result of an operation (n = 7, 6, 5, … 0)
Reference Manual — Volume I HCS08 — Revision 1

294 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Nomenclature

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CCR activity figure notation

– = Bit not affected
0 = Bit forced to 0
1 = Bit forced to 1
↕ = Bit set or cleared according to results of operation
U = Undefined after the operation

Machine coding notation

dd = Low-order eight bits of a direct address $0000–$00FF
(high byte assumed to be $00)

ee = Upper eight bits of 16-bit offset
ff = Lower eight bits of 16-bit offset or 8-bit offset
ii = One byte of immediate data
jj = High-order byte of a 16-bit immediate data value

kk = Low-order byte of a 16-bit immediate data value
hh = High-order byte of 16-bit extended address

ll = Low-order byte of 16-bit extended address
rr = Relative offset

Source forms

The instruction detail pages provide only essential information about
assembler source forms. Assemblers generally support a number of
assembler directives, allow definition of program labels, and have
special conventions for comments. For complete information about
writing source files for a particular assembler, refer to the documentation
provided by the assembler vendor.

Typically, assemblers are flexible about the use of spaces and tabs.
Often, any number of spaces or tabs can be used where a single space
is shown on the glossary pages. Spaces and tabs are also normally
allowed before and after commas. When program labels are used, there
must also be at least one tab or space before all instruction mnemonics.
This required space is not apparent in the source forms.

Everything in the source forms columns, except expressions in italic
characters, is literal information which must appear in the assembly
source file exactly as shown. The initial 3- to 5-letter mnemonic is always
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 295
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

a literal expression. All commas, pound signs (#), parentheses, and plus
signs (+) are literal characters.

The definition of a legal label or expression varies from assembler to
assembler. Assemblers also vary in the way CPU registers are specified.
Refer to assembler documentation for detailed information.
Recommended register designators are a, A, h, H, x, X, sp, and SP.

n — Any label or expression that evaluates to a single
integer in the range 0–7

opr8i — Any label or expression that evaluates to an 8-bit
immediate value

opr16i — Any label or expression that evaluates to a 16-bit
immediate value

opr8a — Any label or expression that evaluates to an 8-bit
value. The instruction treats this 8-bit value as the low
order eight bits of an address in the direct page of the
64-Kbyte address space ($00xx).

opr16a — Any label or expression that evaluates to a 16-bit
value. The instruction treats this value as an address
in the 64-Kbyte address space.

oprx8 — Any label or expression that evaluates to an unsigned
8-bit value; used for indexed addressing

oprx16 — Any label or expression that evaluates to a 16-bit
value. Since the HCS08 has a 16-bit address bus, this
can be either a signed or an unsigned value.

rel — Any label or expression that refers to an address that
is within –128 to +127 locations from the next address
after the last byte of object code for the current
instruction. The assembler will calculate the 8-bit
signed offset and include it in the object code for this
instruction.
Reference Manual — Volume I HCS08 — Revision 1

296 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Nomenclature

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Cycle-by-cycle execution

This information is found in the tables at the bottom of each instruction
glossary page. Entries show how many bytes of information are
accessed from different areas of memory during the course of instruction
execution. With this information and knowledge of the bus frequency, a
user can determine the execution time for any instruction in any system.

A single letter code in the column represents a single CPU cycle. There
are cycle codes for each addressing mode variation of each instruction.
Simply count code letters to determine the execution time of an
instruction.

This list explains the cycle-by-cycle code letters:

f — Free cycle. This indicates a cycle where the CPU does
not require use of the system buses. An f cycle is
always one cycle of the system bus clock.

p — Program byte access
r — 8-bit data read
s — Stack 8-bit data (push)
w — 8-bit data write
u — Unstack 8-bit data (pull)
v — Vector fetch. Vectors are always fetched as two

consecutive 8-bit accesses (v v) with the high byte
first.

Address modes

INH = Inherent (no operands)
IMM = 8-bit or 16-bit immediate
DIR = 8-bit direct
EXT = 16-bit extended

IX = 16-bit indexed no offset
IX+ = 16-bit indexed no offset, post increment (CBEQ and

MOV only)
IX1 = 16-bit indexed with 8-bit offset from H:X

IX1+ = 16-bit indexed with 8-bit offset, post increment
(CBEQ only)

IX2 = 16-bit indexed with 16-bit offset from H:X
REL = 8-bit relative offset
SP1 = Stack pointer relative with 8-bit offset
SP2 = Stack pointer relative with 16-bit offset
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 297
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

A.3 Convention Definitions

Set refers specifically to establishing logic level 1 on a bit or bits.

Cleared refers specifically to establishing logic level 0 on a bit or bits.

A specific bit is referred to by mnemonic and bit number. A7 is bit 7 of
accumulator A. A range of bits is referred to by mnemonic and the bit
numbers that define the range. A [7:4] are bits 7 to 4 of the accumulator.

Parentheses indicate the contents of a register or memory location,
rather than the register or memory location itself. (A) is the contents of
the accumulator. In Boolean expressions, parentheses have the
traditional mathematical meaning.

A.4 Instruction Set

The following pages summarize each instruction, including operation
and description, condition codes and Boolean formulae, and a table with
source forms, addressing modes, machine code, and cycles.
Reference Manual — Volume I HCS08 — Revision 1

298 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADC Add with Carry ADC
Operation A ← (A) + (M) + (C)

Description Adds the contents of the C bit to the sum of the contents of A and M and
places the result in A. This operation is useful for addition of operands
that are larger than eight bits.

Condition Codes
and Boolean
Formulae

V: A7&M7&R7 | A7&M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

H: A3&M3 | M3&R3 | R3&A3
Set if there was a carry from bit 3; cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if there was a carry from the most significant bit (MSB) of the
result; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 ↕ — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

ADC #opr8i IMM A9 ii 2 pp

ADC opr8a DIR B9 dd 3 rpp

ADC opr16a EXT C9 hh ll 4 prpp

ADC oprx16,X IX2 D9 ee ff 4 prpp

ADC oprx8,X IX1 E9 ff 3 rpp

ADC ,X IX F9 3 rfp

ADC oprx16,SP SP2 9ED9 ee ff 5 pprpp

ADC oprx8,SP SP1 9EE9 ff 4 prpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 299
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ADD Add without Carry ADD
Operation A ← (A) + (M)

Description Adds the contents of M to the contents of A and places the result in A

Condition Codes
and Boolean
Formulae

:

V: A7&M7&R7 | A7&M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

H: A3&M3 | M3&R3 | R3&A3
Set if there was a carry from bit 3; cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 ↕ — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

ADD #opr8i IMM AB ii 2 pp

ADD opr8a DIR BB dd 3 rpp

ADD opr16a EXT CB hh ll 4 prpp

ADD oprx16,X IX2 DB ee ff 4 prpp

ADD oprx8,X IX1 EB ff 3 rpp

ADD ,X IX FB 3 rfp

ADD oprx16,SP SP2 9EDB ee ff 5 pprpp

ADD oprx8,SP SP1 9EEB ff 4 prpp
Reference Manual — Volume I HCS08 — Revision 1

300 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AIS Add Immediate Value (Signed) to Stack Pointer AIS
Operation SP ← (SP) + (16 « M)

Description Adds the immediate operand to the stack pointer (SP). The immediate
value is an 8-bit two’s complement signed operand. The 8-bit operand is
sign-extended to 16 bits prior to the addition. The AIS instruction can be
used to create and remove a stack frame buffer that is used to store
temporary variables.

This instruction does not affect any condition code bits so status
information can be passed to or from a subroutine or C function and
allocation or deallocation of space for local variables will not disturb that
status information.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycle, and Access
Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

AIS #opr8i IMM A7 ii 2 pp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 301
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AIX Add Immediate Value (Signed) to Index Register AIX
Operation H:X ← (H:X) + (16 « M)

Description Adds an immediate operand to the 16-bit index register, formed by the
concatenation of the H and X registers. The immediate operand is an
8-bit two’s complement signed offset. The 8-bit operand is sign-
extended to 16 bits prior to the addition.

This instruction does not affect any condition code bits so index register
pointer calculations do not disturb the surrounding code which may rely
on the state of CCR status bits.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

AIX #opr8i IMM AF ii 2 pp
Reference Manual — Volume I HCS08 — Revision 1

302 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AND Logical AND AND
Operation A ← (A) & (M)

Description Performs the logical AND between the contents of A and the contents of
M and places the result in A. Each bit of A after the operation will be the
logical AND of the corresponding bits of M and of A before the operation.

Condition Codes
and Boolean
Formulae

:

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

AND #opr8i IMM A4 ii 2 pp

AND opr8a DIR B4 dd 3 rpp

AND opr16a EXT C4 hh ll 4 prpp

AND oprx16,X IX2 D4 ee ff 4 prpp

AND oprx8,X IX1 E4 ff 3 rpp

AND ,X IX F4 3 rfp

AND oprx16,SP SP2 9ED4 ee ff 5 pprpp

AND oprx8,SP SP1 9EE4 ff 4 prpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 303
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASL Arithmetic Shift Left ASL
(Same as LSL)

Operation

Description Shifts all bits of A, X, or M one place to the left. Bit 0 is loaded with a 0.
The C bit in the CCR is loaded from the most significant bit of A, X, or M.
This is mathematically equivalent to multiplication by two. The V bit
indicates whether the sign of the result has changed.

Condition Codes
and Boolean
Formulae

V: R7⊕ b7
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b7
Set if, before the shift, the MSB of A, X, or M was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

C b7 — — — — — — b0 0

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

ASL opr8a DIR 38 dd 5 rfwpp

ASLA INH (A) 48 1 p

ASLX INH (X) 58 1 p

ASL oprx8,X IX1 68 ff 5 rfwpp

ASL ,X IX 78 4 rfwp

ASL oprx8,SP SP1 9E68 ff 6 prfwpp
Reference Manual — Volume I HCS08 — Revision 1

304 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ASR Arithmetic Shift Right ASR
Operation

Description Shifts all bits of A, X, or M one place to the right. Bit 7 is held constant.
Bit 0 is loaded into the C bit of the CCR. This operation effectively divides
a two’s complement value by 2 without changing its sign. The carry bit
can be used to round the result.

Condition Codes
and Boolean
Formulae

:

V: R7⊕ b0
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b0
Set if, before the shift, the LSB of A, X, or M was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

b7 — — — — — — — b0 C

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

ASR opr8a DIR 37 dd 5 rfwpp

ASRA INH (A) 47 1 p

ASRX INH (X) 57 1 p

ASR oprx8,X IX1 67 ff 5 rfwpp

ASR ,X IX 77 4 rfwp

ASR oprx8,SP SP1 9E67 ff 6 prfwpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 305
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCC Branch if Carry Bit Clear BCC
(Same as BHS)

Operation If (C) = 0, PC ← (PC) + $0002 + rel

Simple branch

Description Tests state of C bit in CCR and causes a branch if C is clear. BCC can
be used after shift or rotate instructions or to check for overflow after
operations on unsigned numbers. See the BRA instruction for further
details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BCC rel REL 24 rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

306 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCLR n Clear Bit n in Memory BCLR n
Operation Mn ← 0

Description Clear bit n (n = 7, 6, 5, … 0) in location M. All other bits in M are
unaffected. In other words, M can be any random-access memory
(RAM) or input/output (I/O) register address in the $0000 to $00FF area
of memory. (Direct addressing mode is used to specify the address of
the operand.) This instruction reads the specified 8-bit location, modifies
the specified bit, and then writes the modified 8-bit value back to the
memory location.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BCLR 0,opr8a DIR (b0) 11 dd 5 rfwpp

BCLR 1,opr8a DIR (b1) 13 dd 5 rfwpp

BCLR 2,opr8a DIR (b2) 15 dd 5 rfwpp

BCLR 3,opr8a DIR (b3) 17 dd 5 rfwpp

BCLR 4,opr8a DIR (b4) 19 dd 5 rfwpp

BCLR 5,opr8a DIR (b5) 1B dd 5 rfwpp

BCLR 6,opr8a DIR (b6) 1D dd 5 rfwpp

BCLR 7,opr8a DIR (b7) 1F dd 5 rfwpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 307
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BCS Branch if Carry Bit Set BCS
(Same as BLO)

Operation If (C) = 1, PC ← (PC) + $0002 + rel

Simple branch

Description Tests the state of the C bit in the CCR and causes a branch if C is set.
BCS can be used after shift or rotate instructions or to check for overflow
after operations on unsigned numbers. See the BRA instruction for
further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BCS rel REL 25 rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

308 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BEQ Branch if Equal BEQ
Operation If (Z) = 1, PC ← (PC) + $0002 + rel

Simple branch; may be used with signed or unsigned operations

Description Tests the state of the Z bit in the CCR and causes a branch if Z is set.
Compare instructions perform a subtraction with two operands and
produce an internal result without changing the original operands. If the
two operands were equal, the internal result of the subtraction for the
compare will be zero so the Z bit will be equal to one and the BEQ will
cause a branch.

This instruction can also be used after a load or store without having to
do a separate test or compare on the loaded value. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BEQ rel REL 27 rr 3 ppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 309
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BGE Branch if Greater Than or Equal To BGE
Operation If (N ⊕ V) = 0, PC ← (PC) + $0002 + rel

For signed two’s complement values
if (Accumulator) ≥ (Memory), then branch

Description If the BGE instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch occurs if and only if
the two’s complement number in the A, X, or H:X register was greater
than or equal to the two’s complement number in memory.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BGE rel REL 90 rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

310 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BGND Background BGND
Operation Enter active background debug mode (if allowed by ENBDM = 1)

Description This instruction is used to establish software breakpoints during debug
by replacing a user opcode with this opcode. BGND causes the user
program to stop and the CPU enters active background mode (provided
it has been enabled previously by a serial WRITE_CONTROL command
from a host debug pod). The CPU remains in active background mode
until the debug host sends a serial GO, TRACE1, or TAGGO command
to return to the user program. This instruction is never used in normal
user application programs. If the ENBDM control bit in the BDC
status/control register is clear, BGND is treated as an illegal opcode.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BGND INH 82 5+ fp...ppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 311
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BGT Branch if Greater Than BGT
Operation If (Z) | (N ⊕ V) = 0, PC ← (PC) + $0002 + rel

For signed two’s complement values
if (Accumulator) > (Memory), then branch

Description If the BGT instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if and only
if the two’s complement number in the A, X, or H:X register was greater
than the two’s complement number in memory.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BGT rel REL 92 rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

312 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BHCC Branch if Half Carry Bit Clear BHCC
Operation If (H) = 0, PC ← (PC) + $0002 + rel

Description Tests the state of the H bit in the CCR and causes a branch if H is clear.
This instruction is used in algorithms involving BCD numbers that were
originally written for the M68HC05 or M68HC08 devices. The DAA
instruction in the HCS08 simplifies operations on BCD numbers so
BHCC and BHCS should not be needed in new programs. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BHCC rel REL 28 rr 3 ppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 313
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BHCS Branch if Half Carry Bit Set BHCS
Operation If (H) = 1, PC ← (PC) + $0002 + rel

Description Tests the state of the H bit in the CCR and causes a branch if H is set.
This instruction is used in algorithms involving BCD numbers that were
originally written for the M68HC05 or M68HC08 devices. The DAA
instruction in the HCS08 simplifies operations on BCD numbers so
BHCC and BHCS should not be needed in new programs. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BHCS rel REL 29 rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

314 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BHI Branch if Higher BHI
Operation If (C) | (Z) = 0, PC ← (PC) + $0002 + rel

For unsigned values, if (Accumulator) > (Memory), then branch

Description Causes a branch if both C and Z are cleared. If the BHI instruction is
executed immediately after execution of a CMP, CPHX, CPX, SBC, or
SUB instruction, the branch will occur if the unsigned binary number in
the A, X, or H:X register was greater than unsigned binary number in
memory. Generally not useful after CLR, COM, DEC, INC, LDA, LDHX,
LDX, STA, STHX, STX, or TST because these instructions do not affect
the carry bit in the CCR. See the BRA instruction for details of the
execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BHI rel REL 22 rr 3 ppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 315
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BHS Branch if Higher or Same BHS
(Same as BCC)

Operation If (C) = 0, PC ← (PC) + $0002 + rel

For unsigned values, if (Accumulator) ≥ (Memory), then branch

Description If the BHS instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if the
unsigned binary number in the A, X, or H:X register was greater than or
equal to the unsigned binary number in memory. Generally not useful
after CLR, COM, DEC, INC, LDA, LDHX, LDX, STA, STHX, STX, or TST
because these instructions do not affect the carry bit in the CCR. See the
BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BHS rel REL 24 rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

316 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BIH Branch if IRQ Pin High BIH
Operation If IRQ pin = 1, PC ← (PC) + $0002 + rel

Description Tests the state of the external interrupt pin and causes a branch if the
pin is high. See the BRA instruction for further details of the execution of
the branch.

Condition Codes
and Boolean
Formulae

 None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BIH rel REL 2F rr 3 ppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 317
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BIL Branch if IRQ Pin Low BIL
Operation If IRQ pin = 0, PC ← (PC) + $0002 + rel

Description Tests the state of the external interrupt pin and causes a branch if the
pin is low. See the BRA instruction for further details of the execution of
the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BIL rel REL 2E rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

318 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BIT Bit Test BIT
Operation (A) & (M)

Description Performs the logical AND comparison of the contents of A and the
contents of M and modifies the condition codes accordingly. Neither the
contents of A nor M are altered. (Each bit of the result of the AND would
be the logical AND of the corresponding bits of A and M.)

This instruction is typically used to see if a particular bit, or any of several
bits, in a byte are 1s. A mask value is prepared with 1s in any bit
positions that are to be checked. This mask may be in accumulator A or
memory and the unknown value to be checked will be in memory or the
accumulator A, respectively. After the BIT instruction, a BNE instruction
will branch if any bits in the tested location that correspond to 1s in the
mask were 1s.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BIT #opr8i IMM A5 ii 2 pp

BIT opr8a DIR B5 dd 3 rpp

BIT opr16a EXT C5 hh ll 4 prpp

BIT oprx16,X IX2 D5 ee ff 4 prpp

BIT oprx8,X IX1 E5 ff 3 rpp

BIT ,X IX F5 3 rfp

BIT oprx16,SP SP2 9ED5 ee ff 5 pprpp

BIT oprx8,SP SP1 9EE5 ff 4 prpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 319
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BLE Branch if Less Than or Equal To BLE
Operation If (Z) | (N ⊕ V) = 1, PC ← (PC) + $0002 + rel

For signed two’s complement numbers
if (Accumulator) ≤ (Memory), then branch

Description If the BLE instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if and only
if the two’s complement in the A, X, or H:X register was less than or
equal to the two’s complement number in memory.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BLE rel REL 93 rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

320 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BLO Branch if Lower BLO
Operation If (C) = 1, PC ← (PC) + $0002 + rel

For unsigned values, if (Accumulator) < (Memory), then branch

Description If the BLO instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if the
unsigned binary number in the A, X, or H:X register was less than the
unsigned binary number in memory. Generally not useful after CLR,
COM, DEC, INC, LDA, LDHX, LDX, STA, STHX, STX, or TST because
these instructions do not affect the carry bit in the CCR. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BLO rel REL 25 rr 3 ppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 321
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BLS Branch if Lower or Same BLS
Operation If (C) | (Z) = 1, PC ← (PC) + $0002 + rel

For unsigned values, if (Accumulator) ≤ (Memory), then branch

Description Causes a branch if (C is set) or (Z is set). If the BLS instruction is
executed immediately after execution of a CMP, CPHX, CPX, SBC, or
SUB instruction, the branch will occur if and only if the unsigned binary
number in the A, X, or H:X register was less than or equal to the
unsigned binary number in memory. Generally not useful after CLR,
COM, DEC, INC, LDA, LDHX, LDX, STA, STHX, STX, or TST because
these instructions do not affect the carry bit in the CCR. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycle, and Access
Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BLS rel REL 23 rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

322 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BLT Branch if Less Than BLT
(Signed Operands)

Operation If (N ⊕ V) = 1, PC ← (PC) + $0002 + rel

For signed two’s complement numbers
if (Accumulator) < (Memory), then branch

Description If the BLT instruction is executed immediately after execution of a CMP,
CPHX, CPX, SBC, or SUB instruction, the branch will occur if and only
if the two’s complement number in the A, X, or H:X register was less than
the two’s complement number in memory. See the BRA instruction for
further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BLT rel REL 91 rr 3 ppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 323
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BMC Branch if Interrupt Mask Clear BMC
Operation If (I) = 0, PC ← (PC) + $0002 + rel

Description Tests the state of the I bit in the CCR and causes a branch if I is clear (if
interrupts are enabled). See the BRA instruction for further details of the
execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BMC rel REL 2C rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

324 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BMI Branch if Minus BMI
Operation If (N) = 1, PC ← (PC) + $0002 + rel

Simple branch; may be used with signed or unsigned operations

Description Tests the state of the N bit in the CCR and causes a branch if N is set.

Simply loading or storing A, X, or H:X will cause the N condition code bit
to be set or cleared to match the most significant bit of the value loaded
or stored. The BMI instruction can be used after such a load or store
without having to do a separate test or compare instruction before the
conditional branch. See the BRA instruction for further details of the
execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BMI rel REL 2B rr 3 ppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 325
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BMS Branch if Interrupt Mask Set BMS
Operation If (I) = 1, PC ← (PC) + $0002 + rel

Description Tests the state of the I bit in the CCR and causes a branch if I is set (if
interrupts are disabled). See BRA instruction for further details of the
execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BMS rel REL 2D rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

326 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BNE Branch if Not Equal BNE
Operation If (Z) = 0, PC ← (PC) + $0002 + rel

Simple branch, may be used with signed or unsigned operations

Description Tests the state of the Z bit in the CCR and causes a branch if Z is clear

Following a compare or subtract instruction, the branch will occur if the
arguments were not equal. This instruction can also be used after a load
or store without having to do a separate test or compare on the loaded
value. See the BRA instruction for further details of the execution of the
branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BNE rel REL 26 rr 3 ppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 327
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BPL Branch if Plus BPL
Operation If (N) = 0, PC ← (PC) + $0002 + rel

Simple branch

Description Tests the state of the N bit in the CCR and causes a branch if N is clear

Simply loading or storing A, X, or H:X will cause the N condition code bit
to be set or cleared to match the most significant bit of the value loaded
or stored. The BPL instruction can be used after such a load or store
without having to do a separate test or compare instruction before the
conditional branch. See the BRA instruction for further details of the
execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BPL rel REL 2A rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

328 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRA Branch Always BRA
Operation PC ← (PC) + $0002 + rel

Description Performs an unconditional branch to the address given in the foregoing
formula. In this formula, rel is the two’s-complement relative offset in the
last byte of machine code for the instruction and (PC) is the address of
the opcode for the branch instruction.

A source program specifies the destination of a branch instruction by its
absolute address, either as a numerical value or as a symbol or
expression which can be numerically evaluated by the assembler. The
assembler calculates the 8-bit relative offset rel from this absolute
address and the current value of the location counter.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail The table on the facing page is a summary of all branch instructions.

The BRA description continues next page.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BRA rel REL 20 rr 3 ppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 329
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRA Branch Always BRA
(Continued)

Branch Instruction
Summary

Table A-1 is a summary of all branch instructions.

During program execution, if the tested condition is true, the two’s
complement offset is sign-extended to a 16-bit value which is added to
the current program counter. This causes program execution to continue
at the address specified as the branch destination. If the tested condition
is not true, the program simply continues to the next instruction after the
branch.

Table A-1. Branch Instruction Summary

Branch Complementary Branch
Type

Test Boolean Mnemonic Opcode Test Mnemonic Opcode

r>m (Z) | (N⊕ V)=0 BGT 92 r≤m BLE 93 Signed

r≥m (N⊕ V)=0 BGE 90 r<m BLT 91 Signed

r=m (Z)=1 BEQ 27 r≠m BNE 26 Signed

r≤m (Z) | (N⊕ V)=1 BLE 93 r>m BGT 92 Signed

r<m (N⊕ V)=1 BLT 91 r≥m BGE 90 Signed

r>m (C) | (Z)=0 BHI 22 r≤m BLS 23 Unsigned

r≥m (C)=0 BHS/BCC 24 r<m BLO/BCS 25 Unsigned

r=m (Z)=1 BEQ 27 r≠m BNE 26 Unsigned

r≤m (C) | (Z)=1 BLS 23 r>m BHI 22 Unsigned

r<m (C)=1 BLO/BCS 25 r≥m BHS/BCC 24 Unsigned

Carry (C)=1 BCS 25 No carry BCC 24 Simple

result=0 (Z)=1 BEQ 27 result≠0 BNE 26 Simple

Negative (N)=1 BMI 2B Plus BPL 2A Simple

I mask (I)=1 BMS 2D I mask=0 BMC 2C Simple

H-Bit (H)=1 BHCS 29 H=0 BHCC 28 Simple

IRQ high — BIH 2F — BIL 2E Simple

Always — BRA 20 Never BRN 21 Uncond.

r = register: A, X, or H:X (for CPHX instruction) m = memory operand
Reference Manual — Volume I HCS08 — Revision 1

330 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRCLR n Branch if Bit n in Memory Clear BRCLR n
Operation If bit n of M = 0, PC ← (PC) + $0003 + rel

Description Tests bit n (n = 7, 6, 5, … 0) of location M and branches if the bit is clear.
M can be any RAM or I/O register address in the $0000 to $00FF area
of memory because direct addressing mode is used to specify the
address of the operand.

The C bit is set to the state of the tested bit. When used with an
appropriate rotate instruction, BRCLR n provides an easy method for
performing serial-to-parallel conversions.

Condition Codes
and Boolean
Formulae

C: Set if Mn = 1; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BRCLR 0,opr8a,rel DIR (b0) 01 dd rr 5 rpppp

BRCLR 1,opr8a,rel DIR (b1) 03 dd rr 5 rpppp

BRCLR 2,opr8a,rel DIR (b2) 05 dd rr 5 rpppp

BRCLR 3,opr8a,rel DIR (b3) 07 dd rr 5 rpppp

BRCLR 4,opr8a,rel DIR (b4) 09 dd rr 5 rpppp

BRCLR 5,opr8a,rel DIR (b5) 0B dd rr 5 rpppp

BRCLR 6,opr8a,rel DIR (b6) 0D dd rr 5 rpppp

BRCLR 7,opr8a,rel DIR (b7) 0F dd rr 5 rpppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 331
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRN Branch Never BRN
Operation PC ← (PC) + $0002

Description Never branches. In effect, this instruction can be considered a 2-byte no
operation (NOP) requiring three cycles for execution. Its inclusion in the
instruction set provides a complement for the BRA instruction. The BRN
instruction is useful during program debugging to negate the effect of
another branch instruction without disturbing the offset byte.

This instruction can be useful in instruction-based timing delays.
Instruction-based timing delays are usually discouraged because such
code is not portable to systems with different clock speeds.

Condition Codes
and Boolean
Formulae

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail See the BRA instruction for a summary of all branches and their

complements.

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BRN rel REL 21 rr 3 ppp
Reference Manual — Volume I HCS08 — Revision 1

332 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BRSET n Branch if Bit n in Memory Set BRSET n
Operation If bit n of M = 1, PC ← (PC) + $0003 + rel

Description Tests bit n (n = 7, 6, 5, … 0) of location M and branches if the bit is set.
M can be any RAM or I/O register address in the $0000 to $00FF area
of memory because direct addressing mode is used to specify the
address of the operand.

The C bit is set to the state of the tested bit. When used with an
appropriate rotate instruction, BRSET n provides an easy method for
performing serial-to-parallel conversions.

Condition Codes
and Boolean
Formulae

C: Set if Mn = 1; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BRSET 0,opr8a,rel DIR (b0) 00 dd rr 5 rpppp

BRSET 1,opr8a,rel DIR (b1) 02 dd rr 5 rpppp

BRSET 2,opr8a,rel DIR (b2) 04 dd rr 5 rpppp

BRSET 3,opr8a,rel DIR (b3) 06 dd rr 5 rpppp

BRSET 4,opr8a,rel DIR (b4) 08 dd rr 5 rpppp

BRSET 5,opr8a,rel DIR (b5) 0A dd rr 5 rpppp

BRSET 6,opr8a,rel DIR (b6) 0C dd rr 5 rpppp

BRSET 7,opr8a,rel DIR (b7) 0E dd rr 5 rpppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 333
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSET n Set Bit n in Memory BSET n
Operation Mn ← 1

Description Set bit n (n = 7, 6, 5, … 0) in location M. All other bits in M are unaffected.
M can be any RAM or I/O register address in the $0000 to $00FF area
of memory because direct addressing mode is used to specify the
address of the operand. This instruction reads the specified 8-bit
location, modifies the specified bit, and then writes the modified 8-bit
value back to the memory location.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BSET 0,opr8a DIR (b0) 10 dd 5 rfwpp

BSET 1,opr8a DIR (b1) 12 dd 5 rfwpp

BSET 2,opr8a DIR (b2) 14 dd 5 rfwpp

BSET 3,opr8a DIR (b3) 16 dd 5 rfwpp

BSET 4,opr8a DIR (b4) 18 dd 5 rfwpp

BSET 5,opr8a DIR (b5) 1A dd 5 rfwpp

BSET 6,opr8a DIR (b6) 1C dd 5 rfwpp

BSET 7,opr8a DIR (b7) 1E dd 5 rfwpp
Reference Manual — Volume I HCS08 — Revision 1

334 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

BSR Branch to Subroutine BSR
Operation PC ← (PC) + $0002 Advance PC to return address

Push (PCL); SP ← (SP) – $0001 Push low half of return address
Push (PCH); SP ← (SP) – $0001 Push high half of return address
PC ← (PC) + rel Load PC with start address of

requested subroutine

Description The program counter is incremented by 2 from the opcode address (so
it points to the opcode of the next instruction which will be the return
address). The least significant byte of the contents of the program
counter (low-order return address) is pushed onto the stack. The stack
pointer is then decremented by 1. The most significant byte of the
contents of the program counter (high-order return address) is pushed
onto the stack. The stack pointer is then decremented by 1. A branch
then occurs to the location specified by the branch offset. See the BRA
instruction for further details of the execution of the branch.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

BSR rel REL AD rr 5 ssppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 335
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CBEQ Compare and Branch if Equal CBEQ
Operation For DIR or IMM modes: if (A) = (M), PC ← (PC) + $0003 + rel

Or for IX+ mode: if (A) = (M); PC ← (PC) + $0002 + rel
Or for SP1 mode: if (A) = (M); PC ← (PC) + $0004 + rel
Or for CBEQX: if (X) = (M); PC ← (PC) + $0003 + rel

Description CBEQ compares the operand with the accumulator (or index register for
CBEQX instruction) against the contents of a memory location and
causes a branch if the register (A or X) is equal to the memory contents.
The CBEQ instruction combines CMP and BEQ for faster table lookup
routines and condition codes are not changed.

The IX+ variation of the CBEQ instruction compares the operand
addressed by H:X to A and causes a branch if the operands are equal.
H:X is then incremented regardless of whether a branch is taken. The
IX1+ variation of CBEQ operates the same way except that an 8-bit
offset is added to H:X to form the effective address of the operand.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

CBEQ opr8a,rel DIR 31 dd rr 5 rpppp

CBEQA #opr8i,rel IMM 41 ii rr 4 pppp

CBEQX #opr8i,rel IMM 51 ii rr 4 pppp

CBEQ oprx8,X+,rel IX1+ 61 ff rr 5 rpppp

CBEQ ,X+,rel IX+ 71 rr 5 rfppp

CBEQ oprx8,SP,rel SP1 9E61 ff rr 6 prpppp
Reference Manual — Volume I HCS08 — Revision 1

336 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLC Clear Carry Bit CLC
Operation C bit ← 0

Description Clears the C bit in the CCR. CLC may be used to set up the C bit prior
to a shift or rotate instruction that involves the C bit. The C bit can also
be used to pass status information between a subroutine and the calling
program.

Condition Codes
and Boolean
Formulae

C: 0
Cleared

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — 0

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

CLC INH 98 1 p
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 337
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLI Clear Interrupt Mask Bit CLI
Operation I bit ← 0

Description Clears the interrupt mask bit in the CCR. When the I bit is clear,
interrupts are enabled. The I bit actually changes to zero at the end of
the cycle where the CLI instruction executes. This is too late to recognize
an interrupt that arrived before or during the CLI instruction so if
interrupts were previously disabled, the next instruction after a CLI will
always be executed even if there was an interrupt pending prior to
execution of the CLI instruction.

Condition Codes
and Boolean
Formulae

I: 0
 Cleared

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — 0 — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

CLI INH 9A 1 p
Reference Manual — Volume I HCS08 — Revision 1

338 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CLR Clear CLR
Operation A ← $00

Or M ← $00
Or X ← $00
Or H ← $00

Description The contents of memory (M), A, X, or H are replaced with zeros.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: 0
Cleared

Z: 1
Set

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — 0 1 —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

CLR opr8a DIR 3F dd 5 rfwpp

CLRA INH (A) 4F 1 p

CLRX INH (X) 5F 1 p

CLRH INH (H) 8C 1 p

CLR oprx8,X IX1 6F ff 5 rfwpp

CLR ,X IX 7F 4 rfwp

CLR oprx8,SP SP1 9E6F ff 6 prfwpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 339
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CMP Compare Accumulator with Memory CMP
Operation (A) – (M)

Description Compares the contents of A to the contents of M and sets the condition
codes, which may then be used for arithmetic (signed or unsigned) and
logical conditional branching. The contents of both A and M are
unchanged.

Condition Codes
and Boolean
Formulae

V: A7&M7&R7 | A7&M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise. Literally read, an overflow condition occurs if
a positive number is subtracted from a negative number with a
positive result, or, if a negative number is subtracted from a
positive number with a negative result.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if the unsigned value of the contents of memory is larger than
the unsigned value of the accumulator; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

CMP #opr8i IMM A1 ii 2 pp

CMP opr8a DIR B1 dd 3 rpp

CMP opr16a EXT C1 hh ll 4 prpp

CMP oprx16,X IX2 D1 ee ff 4 prpp

CMP oprx8,X IX1 E1 ff 3 rpp

CMP ,X IX F1 3 rfp

CMP oprx16,SP SP2 9ED1 ee ff 5 pprpp

CMP oprx8,SP SP1 9EE1 ff 4 prpp
Reference Manual — Volume I HCS08 — Revision 1

340 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

COM Complement (One’s Complement) COM
Operation A ← A = $FF – (A)

Or X ← X = $FF – (X)
Or M ← M = $FF – (M)

Description Replaces the contents of A, X, or M with the one’s complement. Each bit
of A, X, or M is replaced with the complement of that bit.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: 1
Set

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

COM opr8a DIR 33 dd 5 rfwpp

COMA INH (A) 43 1 p

COMX INH (X) 53 1 p

COM oprx8,X IX1 63 ff 5 rfwpp

COM ,X IX 73 4 rfwp

COM oprx8,SP SP1 9E63 ff 6 prfwpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 341
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPHX Compare Index Register with Memory CPHX
Operation (H:X) – (M:M + $0001)

Description CPHX compares index register (H:X) with the 16-bit value in memory
and sets the condition codes, which may then be used for arithmetic
(signed or unsigned) and logical conditional branching. The contents of
both H:X and M:M + $0001 are unchanged.

Condition Codes
and Boolean
Formulae

V: H7&M15&R15 | H7&M15&R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

N: R15
Set if MSB of result is 1; cleared otherwise

Z: R15&R14&R13&R12&R11&R10&R9&R8
&R7&R6&R5&R4&R3&R2&R1&R0
Set if the result is $0000; cleared otherwise

C: H7&M15 | M15&R15 | R15&H7
Set if the absolute value of the contents of memory is larger than
the absolute value of the index register; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

CPHX opr16a EXT 3E hh ll 6 prrfpp

CPHX #opr16i IMM 65 jj kk 3 ppp

CPHX opr8a DIR 75 dd 5 rrfpp

CPHX oprx8,SP SP1 9EF3 ff 6 prrfpp
Reference Manual — Volume I HCS08 — Revision 1

342 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CPX Compare X (Index Register Low) with Memory CPX
Operation (X) – (M)

Description Compares the contents of X to the contents of M and sets the condition
codes, which may then be used for arithmetic (signed or unsigned) and
logical conditional branching. The contents of both X and M are
unchanged.

Condition Codes
and Boolean
Formulae

V: X7&M7&R7 | X7&M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

N: R7
Set if MSB of result of the subtraction is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: X7&M7 | M7&R7 | R7&X7
Set if the unsigned value of the contents of memory is
larger than the unsigned value in the index register;
cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

CPX #opr8i IMM A3 ii 2 pp

CPX opr8a DIR B3 dd 3 rpp

CPX opr16a EXT C3 hh ll 4 prpp

CPX oprx16,X IX2 D3 ee ff 4 prpp

CPX oprx8,X IX1 E3 ff 3 rpp

CPX ,X IX F3 3 rfp

CPX oprx16,SP SP2 9ED3 ee ff 5 pprpp

CPX oprx8,SP SP1 9EE3 ff 4 prpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 343
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DAA Decimal Adjust Accumulator DAA
Operation (A)10

Description Adjusts the contents of the accumulator and the state of the CCR carry
bit after an ADD or ADC operation involving binary-coded decimal (BCD)
values, so that there is a correct BCD sum and an accurate carry
indication. The state of the CCR half carry bit affects operation. Refer to
Table A-2 for details of operation.

Condition Codes
and Boolean
Formulae

V: U

Undefined

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: Set if the decimal adjusted result is greater than 99 (decimal);
refer to Table A-2

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

The DAA description continues next page.

V H I N Z C

U 1 1 — — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

DAA INH 72 1 p
Reference Manual — Volume I HCS08 — Revision 1

344 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DAA Decimal Adjust Accumulator (Continued) DAA
Table A-2 shows DAA operation for all legal combinations of input
operands. Columns 1–4 represent the results of ADC or ADD operations
on BCD operands. The correction factor in column 5 is added to the
accumulator to restore the result of an operation on two BCD operands
to a valid BCD value and to set or clear the C bit. All values in this table
are hexadecimal.

Table A-2. DAA Function Summary

1 2 3 4 5 6

Initial
C-Bit Value

Value
of A[7:4]

Initial
H-Bit Value

Value
of A[3:0]

Correction
Factor

Corrected
C-Bit Value

0 0–9 0 0–9 00 0

0 0–8 0 A–F 06 0

0 0–9 1 0–3 06 0

0 A–F 0 0–9 60 1

0 9–F 0 A–F 66 1

0 A–F 1 0–3 66 1

1 0–2 0 0–9 60 1

1 0–2 0 A–F 66 1

1 0–3 1 0–3 66 1
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 345
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DBNZ Decrement and Branch if Not Zero DBNZ
Operation A ← (A) – $01

Or M ← (M) – $01
Or X ← (X) – $01

For DIR or IX1 modes: PC ← (PC) + $0003 + rel if (result) ≠ 0
Or for INH or IX modes: PC ← (PC) + $0002 + rel if (result) ≠ 0
Or for SP1 mode: PC ← (PC) + $0004 + rel if (result) ≠ 0

Description Subtract 1 from the contents of A, M, or X; then branch using the relative
offset if the result of the subtraction is not $00. DBNZX only affects the
low order eight bits of the H:X index register pair; the high-order byte (H)
is not affected.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

DBNZ opr8a,rel DIR 3B dd rr 7 rfwpppp

DBNZA rel INH 4B rr 4 fppp

DBNZX rel INH 5B rr 4 fppp

DBNZ oprx8,X,rel IX1 6B ff rr 7 rfwpppp

DBNZ ,X, rel IX 7B rr 6 rfwppp

DBNZ oprx8,SP,rel SP1 9E6B ff rr 8 prfwpppp
Reference Manual — Volume I HCS08 — Revision 1

346 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DEC Decrement DEC
Operation A ← (A) – $01

Or X ← (X) – $01
Or M ← (M) – $01

Description Subtract 1 from the contents of A, X, or M. The V, N, and Z bits in the
CCR are set or cleared according to the results of this operation. The C
bit in the CCR is not affected; therefore, the BLS, BLO, BHS, and BHI
branch instructions are not useful following a DEC instruction.

DECX only affects the low-order byte of index register pair (H:X). To
decrement the full 16-bit index register pair (H:X), use AIX # –1.

Condition Codes
and Boolean
Formulae

V: R7 & A7
Set if there was a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs
if and only if (A), (X), or (M) was $80 before the operation.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

DEC opr8a DIR 3A dd 5 rfwpp

DECA INH (A) 4A 1 p

DECX INH (X) 5A 1 p

DEC oprx8,X IX1 6A ff 5 rfwpp

DEC ,X IX 7A 4 rfwp

DEC oprx8,SP SP1 9E6A ff 6 prfwpp

DEX is recognized by assemblers as being equivalent to DECX.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 347
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

DIV Divide DIV
Operation A ← (H:A) ÷ (X); H ← Remainder

Description Divides a 16-bit unsigned dividend contained in the concatenated
registers H and A by an 8-bit divisor contained in X. The quotient is
placed in A, and the remainder is placed in H. The divisor is left
unchanged.

An overflow (quotient > $FF) or divide-by-0 sets the C bit, and the
quotient and remainder are indeterminate.

Condition Codes
and Boolean
Formulae

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result (quotient) is $00; cleared otherwise

C: Set if a divide-by-0 was attempted or if an overflow occurred;
cleared otherwise

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Detail

Opcode Operand(s) Access

DIV INH 52 6 fffffp
Reference Manual — Volume I HCS08 — Revision 1

348 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

EOR Exclusive-OR Memory with Accumulator EOR
Operation A ← (A ⊕ M)

Description Performs the logical exclusive-OR between the contents of A and the
contents of M and places the result in A. Each bit of A after the operation
will be the logical exclusive-OR of the corresponding bits of M and A
before the operation.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

EOR #opr8i IMM A8 ii 2 pp

EOR opr8a DIR B8 dd 3 rpp

EOR opr16a EXT C8 hh ll 4 prpp

EOR oprx16,X IX2 D8 ee ff 4 prpp

EOR oprx8,X IX1 E8 ff 3 rpp

EOR ,X IX F8 3 rfp

EOR oprx16,SP SP2 9ED8 ee ff 5 pprpp

EOR oprx8,SP SP1 9EE8 ff 4 prpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 349
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

INC Increment INC
Operation A ← (A) + $01

Or X ← (X) + $01
Or M ← (M) + $01

Description Add 1 to the contents of A, X, or M. The V, N, and Z bits in the CCR are
set or cleared according to the results of this operation. The C bit in the
CCR is not affected; therefore, the BLS, BLO, BHS, and BHI branch
instructions are not useful following an INC instruction.

INCX only affects the low-order byte of index register pair (H:X). To
increment the full 16-bit index register pair (H:X), use AIX #1.

Condition Codes
and Boolean
Formulae

V: A7&R7
Set if there was a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs
if and only if (A), (X), or (M) was $7F before the operation.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

INC opr8a DIR 3C dd 5 rfwpp

INCA INH (A) 4C 1 p

INCX INH (X) 5C 1 p

INC oprx8,X IX1 6C ff 5 rfwpp

INC ,X IX 7C 4 rfwp

INC oprx8,SP SP1 9E6C ff 6 prfwpp

INX is recognized by assemblers as being equivalent to INCX.
Reference Manual — Volume I HCS08 — Revision 1

350 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JMP Jump JMP
Operation PC ← effective address

Description A jump occurs to the instruction stored at the effective address. The
effective address is obtained according to the rules for extended, direct,
or indexed addressing.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

JMP opr8a DIR BC dd 3 ppp

JMP opr16a EXT CC hh ll 4 pppp

JMP oprx16,X IX2 DC ee ff 4 pppp

JMP oprx8,X IX1 EC ff 3 ppp

JMP ,X IX FC 3 ppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 351
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

JSR Jump to Subroutine JSR
Operation PC ← (PC) + n;

n = 1, 2, or 3 depending on address mode
Push (PCL); SP ← (SP) – $0001 Push low half of return address
Push (PCH); SP ← (SP) – $0001 Push high half of return address
PC ← effective address Load PC with start address of

requested subroutine

Description The program counter is incremented by n so that it points to the opcode
of the next instruction that follows the JSR instruction (n = 1, 2, or 3
depending on the addressing mode). The PC is then pushed onto the
stack, eight bits at a time, least significant byte first. The stack pointer
points to the next empty location on the stack. A jump occurs to the
instruction stored at the effective address. The effective address is
obtained according to the rules for extended, direct, or indexed
addressing.

Condition Codes
and Boolean
Formulae

None affected

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

JSR opr8a DIR BD dd 5 ssppp

JSR opr16a EXT CD hh ll 6 pssppp

JSR oprx16,X IX2 DD ee ff 6 pssppp

JSR oprx8,X IX1 ED ff 5 ssppp

JSR ,X IX FD 5 ssppp
Reference Manual — Volume I HCS08 — Revision 1

352 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDA Load Accumulator from Memory LDA
Operation A ← (M)

Description Loads the contents of the specified memory location into A. The N and
Z condition codes are set or cleared according to the loaded data; V is
cleared. This allows conditional branching after the load without having
to perform a separate test or compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

LDA #opr8i IMM A6 ii 2 pp

LDA opr8a DIR B6 dd 3 rpp

LDA opr16a EXT C6 hh ll 4 prpp

LDA oprx16,X IX2 D6 ee ff 4 prpp

LDA oprx8,X IX1 E6 ff 3 rpp

LDA ,X IX F6 3 rfp

LDA oprx16,SP SP2 9ED6 ee ff 5 pprpp

LDA oprx8,SP SP1 9EE6 ff 4 prpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 353
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDHX Load Index Register from Memory LDHX
Operation H:X ← (M:M + $0001)

Description Loads the contents of the specified memory location into the index
register (H:X). The N and Z condition codes are set according to the
data; V is cleared. This allows conditional branching after the load
without having to perform a separate test or compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R15
Set if MSB of result is 1; cleared otherwise

Z: R15&R14&R13&R12&R11&R10&R9&R8
&R7&R6&R5&R4&R3&R2&R1&R0
Set if the result is $0000; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

LDHX #opr16i IMM 45 jj kk 3 ppp

LDHX opr8a DIR 55 dd 4 rrpp

LDHX opr16a EXT 32 hh ll 5 prrpp

LDHX ,X IX 9EAE 5 prrfp

LDHX oprx16,X IX2 9EBE ee ff 6 pprrpp

LDHX oprx8,X IX1 9ECE ff 5 prrpp

LDHX oprx8,SP SP1 9EFE ff 5 prrpp
Reference Manual — Volume I HCS08 — Revision 1

354 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LDX Load X (Index Register Low) from Memory LDX
Operation X ← (M)

Description Loads the contents of the specified memory location into X. The N and
Z condition codes are set or cleared according to the loaded data; V is
cleared. This allows conditional branching after the load without having
to perform a separate test or compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

LDX #opr8i IMM AE ii 2 pp

LDX opr8a DIR BE dd 3 rpp

LDX opr16a EXT CE hh ll 4 prpp

LDX oprx16,X IX2 DE ee ff 4 prpp

LDX oprx8,X IX1 EE ff 3 rpp

LDX ,X IX FE 3 rfp

LDX oprx16,SP SP2 9EDE ee ff 5 pprpp

LDX oprx8,SP SP1 9EEE ff 4 prpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 355
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSL Logical Shift Left LSL
(Same as ASL)

Operation

Description Shifts all bits of the A, X, or M one place to the left. Bit 0 is loaded with
a 0. The C bit in the CCR is loaded from the most significant bit of A, X,
or M.

Condition Codes
and Boolean
Formulae

V: R7⊕ b7
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b7
Set if, before the shift, the MSB of A, X, or M was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

C b7 — — — — — — b0 0

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

LSL opr8a DIR 38 dd 5 rfwpp

LSLA INH (A) 48 1 p

LSLX INH (X) 58 1 p

LSL oprx8,X IX1 68 ff 5 rfwpp

LSL ,X IX 78 4 rfwp

LSL oprx8,SP SP1 9E68 ff 6 prfwpp
Reference Manual — Volume I HCS08 — Revision 1

356 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LSR Logical Shift Right LSR
Operation

Description Shifts all bits of A, X, or M one place to the right. Bit 7 is loaded with
a 0. Bit 0 is shifted into the C bit.

Condition Codes
and Boolean
Formulae

V: 0⊕ b0 = b0
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise. Since N = 0, this simplifies to the value of bit 0
before the shift.

N: 0
Cleared

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b0
Set if, before the shift, the LSB of A, X, or M, was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

0 b7 — — — — — — b0 C

V H I N Z C

↕ 1 1 — — 0 ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

LSR opr8a DIR 34 dd 5 rfwpp

LSRA INH (A) 44 1 p

LSRX INH (X) 54 1 p

LSR oprx8,X IX1 64 ff 5 rfwpp

LSR ,X IX 74 4 rfwp

LSR oprx8,SP SP1 9E64 ff 6 prfwpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 357
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MOV Move MOV
Operation (M)Destination ← (M)Source

Description Moves a byte of data from a source address to a destination address.
Data is examined as it is moved, and condition codes are set. Source
data is not changed. The accumulator is not affected.

The four addressing modes for the MOV instruction are:

1. IMM/DIR moves an immediate byte to a direct memory location.

2. DIR/DIR moves a direct location byte to another direct location.

3. IX+/DIR moves a byte from a location addressed by H:X to a direct
location. H:X is incremented after the move.

4. DIR/IX+ moves a byte from a direct location to one addressed by
H:X. H:X is incremented after the move.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is set; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

MOV opr8a,opr8a DIR/DIR 4E dd dd 5 rpwpp

MOV opr8a,X+ DIR/IX+ 5E dd 5 rfwpp

MOV #opr8i,opr8a IMM/DIR 6E ii dd 4 pwpp

MOV ,X+,opr8a IX+/DIR 7E dd 5 rfwpp
Reference Manual — Volume I HCS08 — Revision 1

358 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MUL Unsigned Multiply MUL
Operation X:A ← (X) × (A)

Description Multiplies the 8-bit value in X (index register low) by the 8-bit value in the
accumulator to obtain a 16-bit unsigned result in the concatenated index
register and accumulator. After the operation, X contains the upper eight
bits of the 16-bit result and A contains the lower eight bits of the result.

Condition Codes
and Boolean
Formulae

H: 0
Cleared

C: 0
Cleared

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 0 — — — 0

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

MUL INH 42 5 ffffp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 359
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NEG Negate (Two’s Complement) NEG
Operation A ← – (A)

Or X ← – (X)
Or M ← – (M);

this is equivalent to subtracting A, X, or M from $00

Description Replaces the contents of A, X, or M with its two’s complement. Note that
the value $80 is left unchanged.

Condition Codes
and Boolean
Formulae

V: M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise. Overflow will occur only if the operand is $80
before the operation.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: R7|R6|R5|R4|R3|R2|R1|R0
Set if there is a borrow in the implied subtraction from 0; cleared
otherwise. The C bit will be set in all cases except when the
contents of A, X, or M was $00 prior to the NEG operation.

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

NEG opr8a DIR 30 dd 5 rfwpp

NEGA INH (A) 40 1 p

NEGX INH (X) 50 1 p

NEG oprx8,X IX1 60 ff 5 rfwpp

NEG ,X IX 70 4 rfwp

NEG oprx8,SP SP1 9E60 ff 6 prfwpp
Reference Manual — Volume I HCS08 — Revision 1

360 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOP No Operation NOP
Operation Uses one bus cycle

Description This is a single-byte instruction that does nothing except to consume one
CPU clock cycle while the program counter is advanced to the next
instruction. No register or memory contents are affected by this
instruction.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

NOP INH 9D 1 p
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 361
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NSA Nibble Swap Accumulator NSA
Operation A ← (A[3:0]:A[7:4])

Description Swaps upper and lower nibbles (4 bits) of the accumulator. The NSA
instruction is used for more efficient storage and use of binary-coded
decimal operands.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

NSA INH 62 1 p
Reference Manual — Volume I HCS08 — Revision 1

362 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ORA Inclusive-OR Accumulator and Memory ORA
Operation A ← (A) | (M)

Description Performs the logical inclusive-OR between the contents of A and the
contents of M and places the result in A. Each bit of A after the operation
will be the logical inclusive-OR of the corresponding bits of M and A
before the operation.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

ORA #opr8i IMM AA ii 2 pp

ORA opr8a DIR BA dd 3 rpp

ORA opr16a EXT CA hh ll 4 prpp

ORA oprx16,X IX2 DA ee ff 4 prpp

ORA oprx8,X IX1 EA ff 3 rpp

ORA ,X IX FA 3 rfp

ORA oprx16,SP SP2 9EDA ee ff 5 pprpp

ORA oprx8,SP SP1 9EEA ff 4 prpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 363
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PSHA Push Accumulator onto Stack PSHA
Operation Push (A); SP ← (SP) – $0001

Description The contents of A are pushed onto the stack at the address contained in
the stack pointer. The stack pointer is then decremented to point to the
next available location in the stack. The contents of A remain
unchanged.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

PSHA INH 87 2 sp
Reference Manual — Volume I HCS08 — Revision 1

364 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PSHH Push H (Index Register High) onto Stack PSHH
Operation Push (H); SP ← (SP) – $0001

Description The contents of H are pushed onto the stack at the address contained in
the stack pointer. The stack pointer is then decremented to point to the
next available location in the stack. The contents of H remain
unchanged.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

PSHH INH 8B 2 sp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 365
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PSHX Push X (Index Register Low) onto Stack PSHX
Operation Push (X); SP ← (SP) – $0001

Description The contents of X are pushed onto the stack at the address contained in
the stack pointer (SP). SP is then decremented to point to the next
available location in the stack. The contents of X remain unchanged.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

PSHX INH 89 2 sp
Reference Manual — Volume I HCS08 — Revision 1

366 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PULA Pull Accumulator from Stack PULA
Operation SP ← (SP + $0001); pull (A)

Description The stack pointer (SP) is incremented to address the last operand on the
stack. The accumulator is then loaded with the contents of the address
pointed to by SP.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

PULA INH 86 3 ufp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 367
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PULH Pull H (Index Register High) from Stack PULH
Operation SP ← (SP + $0001); pull (H)

Description The stack pointer (SP) is incremented to address the last operand on the
stack. H is then loaded with the contents of the address pointed to by SP.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

PULH INH 8A 3 ufp
Reference Manual — Volume I HCS08 — Revision 1

368 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PULX Pull X (Index Register Low) from Stack PULX
Operation SP ← (SP + $0001); pull (X)

Description The stack pointer (SP) is incremented to address the last operand on the
stack. X is then loaded with the contents of the address pointed to by SP.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

PULX INH 88 3 ufp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 369
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROL Rotate Left through Carry ROL
Operation

Description Shifts all bits of A, X, or M one place to the left. Bit 0 is loaded from the
C bit. The C bit is loaded from the most significant bit of A, X, or M. The
rotate instructions include the carry bit to allow extension of the shift and
rotate instructions to multiple bytes. For example, to shift a 24-bit value
left one bit, the sequence (ASL LOW, ROL MID, ROL HIGH) could be
used, where LOW, MID, and HIGH refer to the low-order, middle, and
high-order bytes of the 24-bit value, respectively.

Condition Codes
and Boolean
Formulae

V: R7 ⊕ b7
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b7
Set if, before the rotate, the MSB of A, X, or M was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

C b7 — — — — — — — b0

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

ROL opr8a DIR 39 dd 5 rfwpp

ROLA INH (A) 49 1 p

ROLX INH (X) 59 1 p

ROL oprx8,X IX1 69 ff 5 rfwpp

ROL ,X IX 79 4 rfwp

ROL oprx8,SP SP1 9E69 ff 6 prfwpp
Reference Manual — Volume I HCS08 — Revision 1

370 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ROR Rotate Right through Carry ROR
Operation

Description Shifts all bits of A, X, or M one place to the right. Bit 7 is loaded from the
C bit. Bit 0 is shifted into the C bit. The rotate instructions include the
carry bit to allow extension of the shift and rotate instructions to multiple
bytes. For example, to shift a 24-bit value right one bit, the sequence
(LSR HIGH, ROR MID, ROR LOW) could be used, where LOW, MID,
and HIGH refer to the low-order, middle, and high-order bytes of the
24-bit value, respectively.

Condition Codes
and Boolean
Formulae

V: R7 ⊕ b0
Set if the exclusive-OR of the resulting N and C flags is 1;
cleared otherwise

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: b0
Set if, before the shift, the LSB of A, X, or M was set; cleared
otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

b7 — — — — — — — b0 C

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

ROR opr8a DIR 36 dd 5 rfwpp

RORA INH (A) 46 1 p

RORX INH (X) 56 1 p

ROR oprx8,X IX1 66 ff 5 rfwpp

ROR ,X IX 76 4 rfwp

ROR oprx8,SP SP1 9E66 ff 6 prfwpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 371
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RSP Reset Stack Pointer RSP
Operation SP ← $FF

Description For M68HC08 compatibility, the HCS08 RSP instruction only sets the
least significant byte of SP to $FF. The most significant byte is
unaffected.

In most M68HC05 MCUs, RAM only goes to $00FF. In most HCS08s,
however, RAM extends beyond $00FF. Therefore, do not locate the
stack in direct address space which is more valuable for commonly
accessed variables. In new HCS08 programs, it is more appropriate to
initialize the stack pointer to the address of the last location (highest
address) in the on-chip RAM, shortly after reset. This code segment
demonstrates a typical method for initializing SP.

LDHX #RamLast+1 ; Point at next addr past RAM
TXS ; SP <-(H:X)-1

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

RSP INH 9C 1 p
Reference Manual — Volume I HCS08 — Revision 1

372 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RTI Return from Interrupt RTI
Operation SP ← SP + $0001; pull (CCR) Restore CCR from stack

SP ← SP + $0001; pull (A) Restore A from stack
SP ← SP + $0001; pull (X) Restore X from stack
SP ← SP + $0001; pull (PCH) Restore PCH from stack
SP ← SP + $0001; pull (PCL) Restore PCL from stack

Description The condition codes, the accumulator, X (index register low), and the
program counter are restored to the state previously saved on the stack.
The I bit will be cleared if the corresponding bit stored on the stack is 0,
the normal case. If this instruction causes the I bit to change from 1 to 0,
a one bus cycle delay is imposed before interrupts are allowed. This
ensures that the next instruction after an RTI instruction will always be
executed, even if an interrupt was pending before the RTI instruction
was executed and bit 3 of the CCR value on the stack cleared.

Condition Codes
and Boolean
Formulae

Set or cleared according to the byte pulled from the stack into CCR.

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

↕ 1 1 ↕ ↕ ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

RTI INH 80 9 uuuuufppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 373
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

RTS Return from Subroutine RTS
Operation SP ← SP + $0001; pull (PCH) Restore PCH from stack

SP ← SP + $0001; pull (PCL) Restore PCL from stack

Description The stack pointer is incremented by 1. The contents of the byte of
memory that is pointed to by the stack pointer are loaded into the
high-order byte of the program counter. The stack pointer is again
incremented by 1. The contents of the byte of memory that are pointed
to by the stack pointer are loaded into the low-order eight bits of the
program counter. Program execution resumes at the address that was
just restored from the stack.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

RTS INH 81 6 uufppp
Reference Manual — Volume I HCS08 — Revision 1

374 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SBC Subtract with Carry SBC
Operation A ← (A) – (M) – (C)

Description Subtracts the contents of M and the contents of the C bit of the CCR from
the contents of A and places the result in A. This is useful for
multi-precision subtract algorithms involving operands with more than
eight bits.

Condition Codes
and Boolean
Formulae

V: A7&M7&R7 | A7&M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise. Literally read, an overflow condition occurs if
a positive number is subtracted from a negative number with a
positive result, or, if a negative number is subtracted from a
positive number with a negative result.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if the unsigned value of the contents of memory plus the
previous carry are larger than the unsigned value of the
accumulator; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

SBC #opr8i IMM A2 ii 2 pp

SBC opr8a DIR B2 dd 3 rpp

SBC opr16a EXT C2 hh ll 4 prpp

SBC oprx16,X IX2 D2 ee ff 4 prpp

SBC oprx8,X IX1 E2 ff 3 rpp

SBC ,X IX F2 3 rfp

SBC oprx16,SP SP2 9ED2 ee ff 5 pprpp

SBC oprx8,SP SP1 9EE2 ff 4 prpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 375
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SEC Set Carry Bit SEC
Operation C bit ← 1

Description Sets the C bit in the condition code register (CCR). SEC may be used to
set up the C bit prior to a shift or rotate instruction that involves the C bit.

Condition Codes
and Boolean
Formulae

C: 1
Set

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — 1

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

SEC INH 99 1 p
Reference Manual — Volume I HCS08 — Revision 1

376 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SEI Set Interrupt Mask Bit SEI
Operation I bit ← 1

Description Sets the interrupt mask bit in the condition code register (CCR). The
microprocessor is inhibited from responding to interrupts while the I bit
is set. The I bit actually changes at the end of the cycle where SEI
executed. This is too late to stop an interrupt that arrived during
execution of the SEI instruction so it is possible that an interrupt request
could be serviced after the SEI instruction before the next instruction
after SEI is executed. The global I-bit interrupt mask takes effect before
the next instruction can be completed.

Condition Codes
and Boolean
Formulae

I: 1
Set

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — 1 — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

SEI INH 9B 1 p
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 377
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STA Store Accumulator in Memory STA
Operation M ← (A)

Description Stores the contents of A in memory. The contents of A remain
unchanged. The N condition code is set if the most significant bit of A is
set, the Z bit is set if A was $00, and V is cleared. This allows conditional
branching after the store without having to do a separate test or
compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: A7
Set if MSB of result is 1; cleared otherwise

Z: A7&A6&A5&A4&A3&A2&A1&A0
Set if result is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

STA opr8a DIR B7 dd 3 wpp

STA opr16a EXT C7 hh ll 4 pwpp

STA oprx16,X IX2 D7 ee ff 4 pwpp

STA oprx8,X IX1 E7 ff 3 wpp

STA ,X IX F7 2 wp

STA oprx16,SP SP2 9ED7 ee ff 5 ppwpp

STA oprx8,SP SP1 9EE7 ff 4 pwpp
Reference Manual — Volume I HCS08 — Revision 1

378 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STHX Store Index Register STHX
Operation (M:M + $0001) ← (H:X)

Description Stores the contents of H in memory location M and then the contents of
X into the next memory location (M + $0001). The N condition code bit
is set if the most significant bit of H was set, the Z bit is set if the value
of H:X was $0000, and V is cleared. This allows conditional branching
after the store without having to do a separate test or compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: R15
Set if MSB of result is 1; cleared otherwise

Z: R15&R14&R13&R12&R11&R10&R9&R8
&R7&R6&R5&R4&R3&R2&R1&R0
Set if the result is $0000; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

STHX opr8a DIR 35 dd 4 wwpp

STHX opr16a EXT 96 hh ll 5 pwwpp

STHX oprx8,SP SP1 9E FF ff 5 pwwpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 379
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STOP Enable IRQ Pin, Stop Processing STOP
Operation I bit ← 0; stop processing

Description Reduces power consumption by eliminating all dynamic power
dissipation. Depending on system configuration, this instruction is used
to enter stop1, stop2, or stop3 mode. (See module documentation for the
behavior of these modes and module reactions to the stop instruction.)

The external interrupt pin is enabled and the I bit in the condition code
register (CCR) is cleared to enable interrupts. Interrupts can be used to
exit stop3 only.

Finally, the oscillator is inhibited to put the MCU into the stop condition.
In stop1 or stop2 mode, when either the RESET pin or IRQ pin goes low,
the reset vector is fetched and the MCU operates as if a POR has
occurred. For stop3 mode, if an IRQ, KBI, or RTI interrupt occurs, the
associated service routine is executed. Upon stop recovery, normally the
MCU defaults to a self-clocked system clock source so there is little or
no startup delay.

Some HCS08 derivatives can be configured so the oscillator and
real-time interrupt (RTI) module continue to run in stop mode so no
external components are needed to make the MCU periodically wake up
from stop. Also, if the background debug system is enabled (ENBDM),
only stop3 mode is entered and the oscillator continues to run so a host
debug system can still force the target MCU into active background
mode.

Condition Codes
and Boolean
Formulae

I: 0
Cleared

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — 0 — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

STOP INH 8E 2+stop fp
Reference Manual — Volume I HCS08 — Revision 1

380 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

STX Store X (Index Register Low) in Memory STX
Operation M ← (X)

Description Stores the contents of X in memory. The contents of X remain
unchanged. The N condition code is set if the most significant bit of X
was set, the Z bit is set if X was $00, and V is cleared. This allows
conditional branching after the store without having to do a separate test
or compare.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: X7
Set if MSB of result is 1; cleared otherwise

Z: X7&X6&X5&X4&X3&X2&X1&X0
Set if X is $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

STX opr8a DIR BF dd 3 wpp

STX opr16a EXT CF hh ll 4 pwpp

STX oprx16,X IX2 DF ee ff 4 pwpp

STX oprx8,X IX1 EF ff 3 wpp

STX ,X IX FF 2 wp

STX oprx16,SP SP2 9EDF ee ff 5 ppwpp

STX oprx8,SP SP1 9EEF ff 4 pwpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 381
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SUB Subtract SUB
Operation A ← (A) – (M)

Description Subtracts the contents of M from A and places the result in A

Condition Codes
and Boolean
Formulae

V: A7&M7&R7 | A7&M7&R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise. Literally read, an overflow condition occurs if
a positive number is subtracted from a negative number with a
positive result, or, if a negative number is subtracted from a
positive number with a negative result.

N: R7
Set if MSB of result is 1; cleared otherwise

Z: R7&R6&R5&R4&R3&R2&R1&R0
Set if result is $00; cleared otherwise

C: A7&M7 | M7&R7 | R7&A7
Set if the unsigned value of the contents of memory is larger than
the unsigned value of the accumulator; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

↕ 1 1 — — ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

SUB #opr8i IMM A0 ii 2 pp

SUB opr8a DIR B0 dd 3 rpp

SUB opr16a EXT C0 hh ll 4 prpp

SUB oprx16,X IX2 D0 ee ff 4 prpp

SUB oprx8,X IX1 E0 ff 3 rpp

SUB X IX F0 3 rfp

SUB oprx16,SP SP2 9ED0 ee ff 5 pprpp

SUB oprx8,SP SP1 9EE0 ff 4 prpp
Reference Manual — Volume I HCS08 — Revision 1

382 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SWI Software Interrupt SWI
Operation PC ← (PC) + $0001 Increment PC to return address

Push (PCL); SP ← (SP) – $0001 Push low half of return address
Push (PCH); SP ← (SP) – $0001 Push high half of return address
Push (X); SP ← (SP) – $0001 Push index register on stack
Push (A); SP ← (SP) – $0001 Push A on stack
Push (CCR); SP ← (SP) – $0001 Push CCR on stack
Push bit ← 1 Mask further interrupts
PCH ← ($FFFC) Vector fetch (high byte)
PCL ← ($FFFD) Vector fetch (low byte)

Description The program counter (PC) is incremented by 1 to point at the instruction
after the SWI. The PC, index register, and accumulator are pushed onto
the stack. The condition code register (CCR) bits are then pushed onto
the stack, with bits V, H, I, N, Z, and C going into bit positions 7 and 4–0.
Bit positions 6 and 5 contain 1s. The stack pointer is decremented by 1
after each byte of data is stored on the stack. The interrupt mask bit is
then set. The program counter is then loaded with the address stored in
the SWI vector located at memory locations $FFFC and $FFFD. This
instruction is not maskable by the I bit.

Condition Codes
and Boolean
Formulae

I: 1
Set

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — 1 — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

SWI INH 83 11 sssssvvfppp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 383
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TAP Transfer Accumulator to Processor Status Byte TAP
Operation CCR ← (A)

Description Transfers the contents of A to the condition code register (CCR). The
contents of A are unchanged. If this instruction causes the I bit to change
from 1 to 0, a one bus cycle delay is imposed before interrupts are
allowed. This ensures that the next instruction after a TAP instruction will
always be executed even if an interrupt was pending before the TAP
instruction was executed with bit 3 of accumulator A cleared.

Condition Codes
and Boolean
Formulae

Set or cleared according to the value that was in the accumulator.

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

bit 7 6 5 4 3 2 1 bit 0

A

V 1 1 H I N Z C CCR

Carry/Borrow

Zero

Negative

I Interrupt
Mask

Half Carry

Overflow
(Two’s
Complement)

V H I N Z C

↕ 1 1 ↕ ↕ ↕ ↕ ↕

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailsOpcode Operand(s)

TAP INH 84 1 p
Reference Manual — Volume I HCS08 — Revision 1

384 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TAX Transfer Accumulator to X (Index Register Low) TAX
Operation X ← (A)

Description Loads X with the contents of the accumulator (A). The contents of A are
unchanged.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

TAX INH 97 1 p
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 385
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TPA Transfer Processor Status Byte to Accumulator TPA
Operation A ← (CCR)

Description Transfers the contents of the condition code register (CCR) into the
accumulator (A)

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

bit 7 6 5 4 3 2 1 bit 0

A

V 1 1 H I N Z C CCR

Carry/Borrow

Zero

Negative

I Interrupt
Mask

Half Carry

Overflow
(Two’s
Complement)

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

TPA INH 85 1 p
Reference Manual — Volume I HCS08 — Revision 1

386 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TST Test for Negative or Zero TST
Operation (A) – $00

Or (X) – $00
Or (M) – $00

Description Sets the N and Z condition codes according to the contents of A, X, or
M. The contents of A, X, and M are not altered.

Condition Codes
and Boolean
Formulae

V: 0
Cleared

N: M7
Set if MSB of the tested value is 1; cleared otherwise

Z: M7&M6&M5&M4&M3&M2&M1&M0
Set if A, X, or M contains $00; cleared otherwise

Source Forms,
Addressing
Modes, Machine
Code, Cycles, and
Access Details

V H I N Z C

0 1 1 — — ↕ ↕ —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailOpcode Operand(s)

TST opr8a DIR 3D dd 4 rfpp

TSTA INH (A) 4D 1 p

TSTX INH (X) 5D 1 p

TST oprx8,X IX1 6D ff 4 rfpp

TST ,X IX 7D 3 rfp

TST oprx8,SP SP1 9E6D ff 5 prfpp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 387
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TSX Transfer Stack Pointer to Index Register TSX
Operation H:X ← (SP) + $0001

Description Loads index register (H:X) with 1 plus the contents of the stack pointer
(SP). The contents of SP remain unchanged. After a TSX instruction,
H:X points to the last value that was stored on the stack.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailsOpcode Operand(s)

TSX INH 95 2 fp
Reference Manual — Volume I HCS08 — Revision 1

388 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TXA Transfer X (Index Register Low) to Accumulator TXA
Operation A ← (X)

Description Loads the accumulator (A) with the contents of X. The contents of X are
not altered.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailsOpcode Operand(s)

TXA INH 9F 1 p
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 389
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TXS Transfer Index Register to Stack Pointer TXS
Operation SP ← (H:X) – $0001

Description Loads the stack pointer (SP) with the contents of the index register (H:X)
minus 1. The contents of H:X are not altered.

Condition Codes
and Boolean
Formulae

None affected

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — — — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailsOpcode Operand(s)

TXS INH 94 2 fp
Reference Manual — Volume I HCS08 — Revision 1

390 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details
Instruction Set

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

WAIT Enable Interrupts; Stop Processor WAIT
Operation I bit ← 0; inhibit CPU clocking until interrupted

Description Reduces power consumption by eliminating dynamic power dissipation
in some portions of the MCU. The timer, the timer prescaler, and the
on-chip peripherals continue to operate (if enabled) because they are
potential sources of an interrupt. Wait causes enabling of interrupts by
clearing the I bit in the CCR and stops clocking of processor circuits.

Interrupts from on-chip peripherals may be enabled or disabled by local
control bits prior to execution of the WAIT instruction.

When either the RESET or IRQ pin goes low or when any on-chip
system requests interrupt service, the processor clocks are enabled, and
the reset, IRQ, or other interrupt service request is processed.

Condition Codes
and Boolean
Formulae

I: 0
Cleared

Source Form,
Addressing Mode,
Machine Code,
Cycles, and
Access Detail

V H I N Z C

— 1 1 — 0 — — —

Source
Form

Addr.
Mode

Machine Code HCS08
Cycles

Access
DetailsOpcode Operand(s)

WAIT INH 8F 2+wait fp
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Instruction Set Details 391
For More Information On This Product,

 Go to: www.freescale.com

Instruction Set Details

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Reference Manual — Volume I HCS08 — Revision 1

392 Instruction Set Details MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I
Freescale Semiconductor, Inc.

n
c

..
.

HCS08 Family Reference Manual

Appendix B. Equate File Conventions

B.1 Introduction

This appendix describes the conventions used to create and use device
definition files, usually called equate files. The equate file for the first
device derivative in the HCS08 Family (9S08GB60_v1.equ) is used as
an example and the entire equate file is included in B.5 Complete
Equate File for MC9S08GB60. Each new member of the HCS08 Family
will have a similar equate file available on the Motorola MCU Web site
http://www.motorola.com/semiconductors

Equate files do not produce object code, so including this file in an
application program does not affect program size. The equate file
defines all control register and bit names from the manufacturer’s
documentation into a form that is understood by the assembler. The
equate file also defines some basic system attributes including the
beginning and ending addresses of on-chip memory blocks and the
name and location of all interrupt vectors. The file is comprised entirely
of EQU directives and comments.

All register names and bit names use uppercase characters so they
match the spelling and capitalization used in the data sheet and other
manuals. To help prevent conflicting register names as new device
derivatives are introduced, register names will start with a 2- or
3-character prefix that identifies the module they are located in. For
example, the KBI in KBISC indicates this register is located in the
keyboard interrupt module (KBI). When more than one copy of a module
is included in the MCU derivative, a digit immediately after this prefix
indicates which instance of the module the register is located in, such as
SCI1C1 and SCI2C1, which refer to the control register number 1 in SCI
module 1 and 2, respectively.

Occasionally, two different control bits may have the same name. The
most common case occurs when two identical modules are included on
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 393
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

the same MCU. In this situation, the matching bit names don’t really
conflict because the definitions equate the bit name to its bit number and
its bit position which are the same for both registers. When two identical
modules are included, the register names must include the module
number in the name to make each register name unique, but the bit
numbers and bit positions can simply be defined once. These definitions
are valid regardless of which register is being referenced, so there is no
conflict.

In this example, the first two lines identify the status register number 2
for each of the SCI modules. The remaining lines define the bit position
and bit number once and these definitions may be used with either
register.

SCI1S2: equ $1D ;SCI1 status register 2
SCI2S2: equ $25 ;SCI2 status register 2
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
RAF: equ 0 ;(bit #0) Rx active flag
; bit position masks
mRAF: equ %00000001 ;receiver active flag

As future modules are designed for the HCS08 Family, care will be taken
to avoid bit names that are the same in different registers but are not
located in the same bit position in all registers where the name appears.

B.2 Memory Map Definition

The first set of EQU directives defines the starting and ending addresses
for each on-chip memory block. The main program memory is called
“Rom” even if it is actually FLASH memory in the HCS08 Family. For
each memory, there is an xxxStart definition and an xxxLast definition.
This book uses a combination of uppercase and lowercase letters to
break up multiword labels so “RomStart” is the convention rather than
“rom_start.”

RomStart: equ $1080 ;start of 60K flash
HighRegs: equ $1800 ;start of high page registers
Rom1Start: equ $182C ;start of flash after high regs
RomLast: equ $FFFF ;last flash location
RamStart: equ $0080 ;start of 4096 byte RAM
RamLast: equ $107F ;last RAM location
Reference Manual — Volume I HCS08 — Revision 1

394 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Vector Definitions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

B.3 Vector Definitions

The next set of EQU directives defines the location of each interrupt
vector starting from the lowest vector address and continuing through
the reset vector location at the end of memory ($FFFE:FFFF). The
names for each of these vector definitions starts with an uppercase V.
Care should be taken to use the same name for these vectors in equate
files for other derivatives that reuse a module such as the TPM or SCI.

Vrti: equ $FFCC ;RTI (periodic interrupt) vector
Viic: equ $FFCE ;IIC vector
Vatd: equ $FFD0 ;analog to digital conversion vector
Vkeyboard: equ $FFD2 ;keyboard vector
Vsci2tx: equ $FFD4 ;SCI2 transmit vector
Vsci2rx: equ $FFD6 ;SCI2 receive vector
Vsci2err: equ $FFD8 ;SCI2 error vector
Vsci1tx: equ $FFDA ;SCI1 transmit vector
Vsci1rx: equ $FFDC ;SCI1 receive vector
Vsci1err: equ $FFDE ;SCI1 error vector
Vspi: equ $FFE0 ;SPI vector
Vtpm2ovf: equ $FFE2 ;TPM2 overflow vector
Vtpm2ch4: equ $FFE4 ;TPM2 channel 4 vector
Vtpm2ch3: equ $FFE6 ;TPM2 channel 3 vector
Vtpm2ch2: equ $FFE8 ;TPM2 channel 2 vector
Vtpm2ch1: equ $FFEA ;TPM2 channel 1 vector
Vtpm2ch0: equ $FFEC ;TPM2 channel 0 vector
Vtpm1ovf: equ $FFEE ;TPM1 overflow vector
Vtpm1ch2: equ $FFF0 ;TPM1 channel 2 vector
Vtpm1ch1: equ $FFF2 ;TPM1 channel 1 vector
Vtpm1ch0: equ $FFF4 ;TPM1 channel 0 vector
Vicg: equ $FFF6 ;ICG vector
Vlvd: equ $FFF8 ;low voltage detect vector
Virq: equ $FFFA ;IRQ pin vector
Vswi: equ $FFFC ;SWI vector
Vreset: equ $FFFE ;reset vector

B.4 Bits Defined in Two Ways

Bit names in the equate files for HCS08 MCUs need to be defined in two
separate ways:

• With their bit number (0–7)

• A bit-position mask which is used in instructions such as AND,
ORA, BIT, etc.
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 395
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In the equate file, the bit name is first equated to its bit number (0–7), and
then its bit position mask is equated to the bit name with a prefix of
lowercase m, as in the next example.

SCI1S1: equ $1C ;SCI1 status register 1
SCI2S1: equ $24 ;SCI2 status register 1
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
TDRE: equ 7 ;(bit #7) Tx data register empty
TC: equ 6 ;(bit #6) transmit complete
RDRF: equ 5 ;(bit #5) Rx data register full
IDLE: equ 4 ;(bit #4) idle line detected
OR: equ 3 ;(bit #3) Rx over run
NF: equ 2 ;(bit #2) Rx noise flag
FE: equ 1 ;(bit #1) Rx framing error
PF: equ 0 ;(bit #0) Rx parity failed
; bit position masks
mTDRE: equ %10000000 ;transmit data register empty
mTC: equ %01000000 ;transmit complete
mRDRF: equ %00100000 ;receive data register full
mIDLE: equ %00010000 ;idle line detected
mOR: equ %00001000 ;receiver over run
mNF: equ %00000100 ;receiver noise flag
mFE: equ %00000010 ;receiver framing error
mPF: equ %00000001 ;received parity failed

The next example shows the bit number variation of a bit definition. The
operand field of the BRCLR instruction includes three items separated
by commas. RDRF is converted to the number 5 which tells the
assembler to use the bit-5 variation of the BRCLR instruction
(opcode = $0B). The next item, SCI1S1, tells the assembler the operand
to be tested is located at the direct addressing mode address $001C
(just 1C in the object code). The last item, waitRDRF, tells the assembler
to branch back to the same BRCLR instruction if the RDRF status bit is
found to be still clear (0).

 450 120A 0B 1C FD waitRDRF: brclr RDRF,SCI1S1,waitRDRF ;loop till RDRF set
Reference Manual — Volume I HCS08 — Revision 1

396 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The next example shows an expression combining the bit masks for the
OR, NF, FE, and PF status bits. In this example, the bit names are used
with a preceding m to get the bit position mask rather than the bit
number. A simple addition operator (+) combines the bit masks.
Although a logical OR might have been more correct in this case, not all
assemblers use the same character to indicate the logical OR operation
so the + is more portable among assemblers. The plus operator can be
used in this case because the individual bit masks do not have any
overlapping logic 1 bits.

 mOR: equ %00001000 ;receiver over run
 mNF: equ %00000100 ;receiver noise flag
 mFE: equ %00000010 ;receiver framing error
 mPF: equ %00000001 ;received parity failed
 “ “ “ “ “ “ “ “
 413 ; BIT example to check several error flags in SCI status reg
 414 11F1 B6 1C lda SCI1S1 ;read SCI status register
 415 11F3 A5 0F bit #(mOR+mNF+mFE+mPF) ;mask of all error flags
 416 11F5 26 00 bne sciError ;branch if any flags set
 417 ; A still contains undisturbed status register

The 0F in the object code field of line 415 shows the assembler
evaluated (mOR+mNF+mFE+mFF) to $0F. The A5 in the object code
field of the same line is the opcode for the immediate addressing mode
variation of the BIT instruction.

B.5 Complete Equate File for MC9S08GB60

The following listing is a complete equate file for the MC9S08GB60 MCU
and is a complete example of an equate file for an HCS08 MCU. Each
derivative in the HCS08 Family has a similar equate file posted on the
Motorola Web site for free downloading.

;**
;* Title: 9S08GB60_v1.EQU (c) MOTOROLA Inc. 2003 All rights reserved.
;**
;* Author: Jim Sibigtroth - Motorola TSPG
;*
;* Description: Register and bit name definitions for 9S08GB60
;*
;* Documentation: 9S08GB60 family Data Sheet for register and bit explanations
;* HCS08 Family Reference Manual (HCS08RM1/D) appendix B for explanation of equate files
;*
;* Include Files: none
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 397
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;*
;* Assembler: Metrowerks Code Warrior 3.0 (pre-release)
;* or P&E Microcomputer Systems - CASMS08 (beta v4.02)
;*
;* Revision History: not yet released
;* Rev # Date Who Comments
;* ----- ----------- ------ --
;* 1.2 24-Apr-03 J-Sib correct minor typos in comments
;* 1.1 21-Apr-03 J-Sib comments and modify for CW 3.0 project
;* 1.0 15-Apr-03 J-Sib Release version for 9S09GB60
;**

;**** Memory Map and Interrupt Vectors **
;*
RomStart: equ $1080 ;start of 60K flash
HighRegs: equ $1800 ;start of high page registers
Rom1Start: equ $182C ;start of flash after high regs
RomLast: equ $FFFF ;last flash location
RamStart: equ $0080 ;start of 4096 byte RAM
RamLast: equ $107F ;last RAM location
;
Vrti: equ $FFCC ;RTI (periodic interrupt) vector
Viic: equ $FFCE ;IIC vector
Vatd: equ $FFD0 ;analog to digital conversion vector
Vkeyboard: equ $FFD2 ;keyboard vector
Vsci2tx: equ $FFD4 ;SCI2 transmit vector
Vsci2rx: equ $FFD6 ;SCI2 receive vector
Vsci2err: equ $FFD8 ;SCI2 error vector
Vsci1tx: equ $FFDA ;SCI1 transmit vector
Vsci1rx: equ $FFDC ;SCI1 receive vector
Vsci1err: equ $FFDE ;SCI1 error vector
Vspi: equ $FFE0 ;SPI vector
Vtpm2ovf: equ $FFE2 ;TPM2 overflow vector
Vtpm2ch4: equ $FFE4 ;TPM2 channel 4 vector
Vtpm2ch3: equ $FFE6 ;TPM2 channel 3 vector
Vtpm2ch2: equ $FFE8 ;TPM2 channel 2 vector
Vtpm2ch1: equ $FFEA ;TPM2 channel 1 vector
Vtpm2ch0: equ $FFEC ;TPM2 channel 0 vector
Vtpm1ovf: equ $FFEE ;TPM1 overflow vector
Vtpm1ch2: equ $FFF0 ;TPM1 channel 2 vector
Vtpm1ch1: equ $FFF2 ;TPM1 channel 1 vector
Vtpm1ch0: equ $FFF4 ;TPM1 channel 0 vector
Vicg: equ $FFF6 ;ICG vector
Vlvd: equ $FFF8 ;low voltage detect vector
Virq: equ $FFFA ;IRQ pin vector
Vswi: equ $FFFC ;SWI vector
Vreset: equ $FFFE ;reset vector

;**** Input/Output (I/O) Ports **
;*
PTAD: equ $00 ;I/O port A data register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTAD7: equ 7 ;bit #7
PTAD6: equ 6 ;bit #6
PTAD5: equ 5 ;bit #5
Reference Manual — Volume I HCS08 — Revision 1

398 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PTAD4: equ 4 ;bit #4
PTAD3: equ 3 ;bit #3
PTAD2: equ 2 ;bit #2
PTAD1: equ 1 ;bit #1
PTAD0: equ 0 ;bit #0
; bit position masks
mPTAD7: equ %10000000 ;port A bit 7
mPTAD6: equ %01000000 ;port A bit 6
mPTAD5: equ %00100000 ;port A bit 5
mPTAD4: equ %00010000 ;port A bit 4
mPTAD3: equ %00001000 ;port A bit 3
mPTAD2: equ %00000100 ;port A bit 2
mPTAD1: equ %00000010 ;port A bit 1
mPTAD0: equ %00000001 ;port A bit 0

PTAPE: equ $01 ;I/O port A pullup enable controls
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTAPE7: equ 7 ;bit #7
PTAPE6: equ 6 ;bit #6
PTAPE5: equ 5 ;bit #5
PTAPE4: equ 4 ;bit #4
PTAPE3: equ 3 ;bit #3
PTAPE2: equ 2 ;bit #2
PTAPE1: equ 1 ;bit #1
PTAPE0: equ 0 ;bit #0
; bit position masks
mPTAPE7: equ %10000000 ;port A bit 7
mPTAPE6: equ %01000000 ;port A bit 6
mPTAPE5: equ %00100000 ;port A bit 5
mPTAPE4: equ %00010000 ;port A bit 4
mPTAPE3: equ %00001000 ;port A bit 3
mPTAPE2: equ %00000100 ;port A bit 2
mPTAPE1: equ %00000010 ;port A bit 1
mPTAPE0: equ %00000001 ;port A bit 0

PTASE: equ $02 ;I/O port A slew rate control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTASE7: equ 7 ;bit #7
PTASE6: equ 6 ;bit #6
PTASE5: equ 5 ;bit #5
PTASE4: equ 4 ;bit #4
PTASE3: equ 3 ;bit #3
PTASE2: equ 2 ;bit #2
PTASE1: equ 1 ;bit #1
PTASE0: equ 0 ;bit #0
; bit position masks
mPTASE7: equ %10000000 ;port A bit 7
mPTASE6: equ %01000000 ;port A bit 6
mPTASE5: equ %00100000 ;port A bit 5
mPTASE4: equ %00010000 ;port A bit 4
mPTASE3: equ %00001000 ;port A bit 3
mPTASE2: equ %00000100 ;port A bit 2
mPTASE1: equ %00000010 ;port A bit 1
mPTASE0: equ %00000001 ;port A bit 0
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 399
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PTADD: equ $03 ;I/O port A data direction register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTADD7: equ 7 ;bit #7
PTADD6: equ 6 ;bit #6
PTADD5: equ 5 ;bit #5
PTADD4: equ 4 ;bit #4
PTADD3: equ 3 ;bit #3
PTADD2: equ 2 ;bit #2
PTADD1: equ 1 ;bit #1
PTADD0: equ 0 ;bit #0
; bit position masks
mPTADD7: equ %10000000 ;port A bit 7
mPTADD6: equ %01000000 ;port A bit 6
mPTADD5: equ %00100000 ;port A bit 5
mPTADD4: equ %00010000 ;port A bit 4
mPTADD3: equ %00001000 ;port A bit 3
mPTADD2: equ %00000100 ;port A bit 2
mPTADD1: equ %00000010 ;port A bit 1
mPTADD0: equ %00000001 ;port A bit 0

PTBD: equ $04 ;I/O port B data register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTBD7: equ 7 ;bit #7
PTBD6: equ 6 ;bit #6
PTBD5: equ 5 ;bit #5
PTBD4: equ 4 ;bit #4
PTBD3: equ 3 ;bit #3
PTBD2: equ 2 ;bit #2
PTBD1: equ 1 ;bit #1
PTBD0: equ 0 ;bit #0
; bit position masks
mPTBD7: equ %10000000 ;port B bit 7
mPTBD6: equ %01000000 ;port B bit 6
mPTBD5: equ %00100000 ;port B bit 5
mPTBD4: equ %00010000 ;port B bit 4
mPTBD3: equ %00001000 ;port B bit 3
mPTBD2: equ %00000100 ;port B bit 2
mPTBD1: equ %00000010 ;port B bit 1
mPTBD0: equ %00000001 ;port B bit 0

PTBPE: equ $05 ;I/O port B pullup enable controls
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTBPE7: equ 7 ;bit #7
PTBPE6: equ 6 ;bit #6
PTBPE5: equ 5 ;bit #5
PTBPE4: equ 4 ;bit #4
PTBPE3: equ 3 ;bit #3
PTBPE2: equ 2 ;bit #2
PTBPE1: equ 1 ;bit #1
PTBPE0: equ 0 ;bit #0
; bit position masks
mPTBPE7: equ %10000000 ;port B bit 7
mPTBPE6: equ %01000000 ;port B bit 6
mPTBPE5: equ %00100000 ;port B bit 5
mPTBPE4: equ %00010000 ;port B bit 4
Reference Manual — Volume I HCS08 — Revision 1

400 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mPTBPE3: equ %00001000 ;port B bit 3
mPTBPE2: equ %00000100 ;port B bit 2
mPTBPE1: equ %00000010 ;port B bit 1
mPTBPE0: equ %00000001 ;port B bit 0

PTBSE: equ $06 ;I/O port B slew rate control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTBSE7: equ 7 ;bit #7
PTBSE6: equ 6 ;bit #6
PTBSE5: equ 5 ;bit #5
PTBSE4: equ 4 ;bit #4
PTBSE3: equ 3 ;bit #3
PTBSE2: equ 2 ;bit #2
PTBSE1: equ 1 ;bit #1
PTBSE0: equ 0 ;bit #0
; bit position masks
mPTBSE7: equ %10000000 ;port B bit 7
mPTBSE6: equ %01000000 ;port B bit 6
mPTBSE5: equ %00100000 ;port B bit 5
mPTBSE4: equ %00010000 ;port B bit 4
mPTBSE3: equ %00001000 ;port B bit 3
mPTBSE2: equ %00000100 ;port B bit 2
mPTBSE1: equ %00000010 ;port B bit 1
mPTBSE0: equ %00000001 ;port B bit 0

PTBDD: equ $07 ;I/O port B data direction register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTBDD7: equ 7 ;bit #7
PTBDD6: equ 6 ;bit #6
PTBDD5: equ 5 ;bit #5
PTBDD4: equ 4 ;bit #4
PTBDD3: equ 3 ;bit #3
PTBDD2: equ 2 ;bit #2
PTBDD1: equ 1 ;bit #1
PTBDD0: equ 0 ;bit #0
; bit position masks
mPTBDD7: equ %10000000 ;port B bit 7
mPTBDD6: equ %01000000 ;port B bit 6
mPTBDD5: equ %00100000 ;port B bit 5
mPTBDD4: equ %00010000 ;port B bit 4
mPTBDD3: equ %00001000 ;port B bit 3
mPTBDD2: equ %00000100 ;port B bit 2
mPTBDD1: equ %00000010 ;port B bit 1
mPTBDD0: equ %00000001 ;port B bit 0

PTCD: equ $08 ;I/O port C data register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTCD7: equ 7 ;bit #7
PTCD6: equ 6 ;bit #6
PTCD5: equ 5 ;bit #5
PTCD4: equ 4 ;bit #4
PTCD3: equ 3 ;bit #3
PTCD2: equ 2 ;bit #2
PTCD1: equ 1 ;bit #1
PTCD0: equ 0 ;bit #0
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 401
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

; bit position masks
mPTCD7: equ %10000000 ;port C bit 7
mPTCD6: equ %01000000 ;port C bit 6
mPTCD5: equ %00100000 ;port C bit 5
mPTCD4: equ %00010000 ;port C bit 4
mPTCD3: equ %00001000 ;port C bit 3
mPTCD2: equ %00000100 ;port C bit 2
mPTCD1: equ %00000010 ;port C bit 1
mPTCD0: equ %00000001 ;port C bit 0

PTCPE: equ $09 ;I/O port C pullup enable controls
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTCPE7: equ 7 ;bit #7
PTCPE6: equ 6 ;bit #6
PTCPE5: equ 5 ;bit #5
PTCPE4: equ 4 ;bit #4
PTCPE3: equ 3 ;bit #3
PTCPE2: equ 2 ;bit #2
PTCPE1: equ 1 ;bit #1
PTCPE0: equ 0 ;bit #0
; bit position masks
mPTCPE7: equ %10000000 ;port C bit 7
mPTCPE6: equ %01000000 ;port C bit 6
mPTCPE5: equ %00100000 ;port C bit 5
mPTCPE4: equ %00010000 ;port C bit 4
mPTCPE3: equ %00001000 ;port C bit 3
mPTCPE2: equ %00000100 ;port C bit 2
mPTCPE1: equ %00000010 ;port C bit 1
mPTCPE0: equ %00000001 ;port C bit 0

PTCSE: equ $0A ;I/O port C slew rate control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTCSE7: equ 7 ;bit #7
PTCSE6: equ 6 ;bit #6
PTCSE5: equ 5 ;bit #5
PTCSE4: equ 4 ;bit #4
PTCSE3: equ 3 ;bit #3
PTCSE2: equ 2 ;bit #2
PTCSE1: equ 1 ;bit #1
PTCSE0: equ 0 ;bit #0
; bit position masks
mPTCSE7: equ %10000000 ;port C bit 7
mPTCSE6: equ %01000000 ;port C bit 6
mPTCSE5: equ %00100000 ;port C bit 5
mPTCSE4: equ %00010000 ;port C bit 4
mPTCSE3: equ %00001000 ;port C bit 3
mPTCSE2: equ %00000100 ;port C bit 2
mPTCSE1: equ %00000010 ;port C bit 1
mPTCSE0: equ %00000001 ;port C bit 0

PTCDD: equ $0B ;I/O port C data direction register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTCDD7: equ 7 ;bit #7
PTCDD6: equ 6 ;bit #6
PTCDD5: equ 5 ;bit #5
Reference Manual — Volume I HCS08 — Revision 1

402 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PTCDD4: equ 4 ;bit #4
PTCDD3: equ 3 ;bit #3
PTCDD2: equ 2 ;bit #2
PTCDD1: equ 1 ;bit #1
PTCDD0: equ 0 ;bit #0
; bit position masks
mPTCDD7: equ %10000000 ;port C bit 7
mPTCDD6: equ %01000000 ;port C bit 6
mPTCDD5: equ %00100000 ;port C bit 5
mPTCDD4: equ %00010000 ;port C bit 4
mPTCDD3: equ %00001000 ;port C bit 3
mPTCDD2: equ %00000100 ;port C bit 2
mPTCDD1: equ %00000010 ;port C bit 1
mPTCDD0: equ %00000001 ;port C bit 0

PTDD: equ $0C ;I/O port D data register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTDD7: equ 7 ;bit #7
PTDD6: equ 6 ;bit #6
PTDD5: equ 5 ;bit #5
PTDD4: equ 4 ;bit #4
PTDD3: equ 3 ;bit #3
PTDD2: equ 2 ;bit #2
PTDD1: equ 1 ;bit #1
PTDD0: equ 0 ;bit #0
; bit position masks
mPTDD7: equ %10000000 ;port D bit 7
mPTDD6: equ %01000000 ;port D bit 6
mPTDD5: equ %00100000 ;port D bit 5
mPTDD4: equ %00010000 ;port D bit 4
mPTDD3: equ %00001000 ;port D bit 3
mPTDD2: equ %00000100 ;port D bit 2
mPTDD1: equ %00000010 ;port D bit 1
mPTDD0: equ %00000001 ;port D bit 0

PTDPE: equ $0D ;I/O port D pullup enable controls
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTDPE7: equ 7 ;bit #7
PTDPE6: equ 6 ;bit #6
PTDPE5: equ 5 ;bit #5
PTDPE4: equ 4 ;bit #4
PTDPE3: equ 3 ;bit #3
PTDPE2: equ 2 ;bit #2
PTDPE1: equ 1 ;bit #1
PTDPE0: equ 0 ;bit #0
; bit position masks
mPTDPE7: equ %10000000 ;port D bit 7
mPTDPE6: equ %01000000 ;port D bit 6
mPTDPE5: equ %00100000 ;port D bit 5
mPTDPE4: equ %00010000 ;port D bit 4
mPTDPE3: equ %00001000 ;port D bit 3
mPTDPE2: equ %00000100 ;port D bit 2
mPTDPE1: equ %00000010 ;port D bit 1
mPTDPE0: equ %00000001 ;port D bit 0
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 403
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PTDSE: equ $0E ;I/O port D slew rate control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTDSE7: equ 7 ;bit #7
PTDSE6: equ 6 ;bit #6
PTDSE5: equ 5 ;bit #5
PTDSE4: equ 4 ;bit #4
PTDSE3: equ 3 ;bit #3
PTDSE2: equ 2 ;bit #2
PTDSE1: equ 1 ;bit #1
PTDSE0: equ 0 ;bit #0
; bit position masks
mPTDSE7: equ %10000000 ;port D bit 7
mPTDSE6: equ %01000000 ;port D bit 6
mPTDSE5: equ %00100000 ;port D bit 5
mPTDSE4: equ %00010000 ;port D bit 4
mPTDSE3: equ %00001000 ;port D bit 3
mPTDSE2: equ %00000100 ;port D bit 2
mPTDSE1: equ %00000010 ;port D bit 1
mPTDSE0: equ %00000001 ;port D bit 0

PTDDD: equ $0F ;I/O port D data direction register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTDDD7: equ 7 ;bit #7
PTDDD6: equ 6 ;bit #6
PTDDD5: equ 5 ;bit #5
PTDDD4: equ 4 ;bit #4
PTDDD3: equ 3 ;bit #3
PTDDD2: equ 2 ;bit #2
PTDDD1: equ 1 ;bit #1
PTDDD0: equ 0 ;bit #0
; bit position masks
mPTDDD7: equ %10000000 ;port D bit 7
mPTDDD6: equ %01000000 ;port D bit 6
mPTDDD5: equ %00100000 ;port D bit 5
mPTDDD4: equ %00010000 ;port D bit 4
mPTDDD3: equ %00001000 ;port D bit 3
mPTDDD2: equ %00000100 ;port D bit 2
mPTDDD1: equ %00000010 ;port D bit 1
mPTDDD0: equ %00000001 ;port D bit 0

PTED: equ $10 ;I/O port E data register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTED7: equ 7 ;bit #7
PTED6: equ 6 ;bit #6
PTED5: equ 5 ;bit #5
PTED4: equ 4 ;bit #4
PTED3: equ 3 ;bit #3
PTED2: equ 2 ;bit #2
PTED1: equ 1 ;bit #1
PTED0: equ 0 ;bit #0
; bit position masks
mPTED7: equ %10000000 ;port E bit 7
mPTED6: equ %01000000 ;port E bit 6
mPTED5: equ %00100000 ;port E bit 5
mPTED4: equ %00010000 ;port E bit 4
Reference Manual — Volume I HCS08 — Revision 1

404 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mPTED3: equ %00001000 ;port E bit 3
mPTED2: equ %00000100 ;port E bit 2
mPTED1: equ %00000010 ;port E bit 1
mPTED0: equ %00000001 ;port E bit 0

PTEPE: equ $11 ;I/O port E pullup enable controls
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTEPE7: equ 7 ;bit #7
PTEPE6: equ 6 ;bit #6
PTEPE5: equ 5 ;bit #5
PTEPE4: equ 4 ;bit #4
PTEPE3: equ 3 ;bit #3
PTEPE2: equ 2 ;bit #2
PTEPE1: equ 1 ;bit #1
PTEPE0: equ 0 ;bit #0
; bit position masks
mPTEPE7: equ %10000000 ;port E bit 7
mPTEPE6: equ %01000000 ;port E bit 6
mPTEPE5: equ %00100000 ;port E bit 5
mPTEPE4: equ %00010000 ;port E bit 4
mPTEPE3: equ %00001000 ;port E bit 3
mPTEPE2: equ %00000100 ;port E bit 2
mPTEPE1: equ %00000010 ;port E bit 1
mPTEPE0: equ %00000001 ;port E bit 0

PTESE: equ $12 ;I/O port E slew rate control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTESE7: equ 7 ;bit #7
PTESE6: equ 6 ;bit #6
PTESE5: equ 5 ;bit #5
PTESE4: equ 4 ;bit #4
PTESE3: equ 3 ;bit #3
PTESE2: equ 2 ;bit #2
PTESE1: equ 1 ;bit #1
PTESE0: equ 0 ;bit #0
; bit position masks
mPTESE7: equ %10000000 ;port E bit 7
mPTESE6: equ %01000000 ;port E bit 6
mPTESE5: equ %00100000 ;port E bit 5
mPTESE4: equ %00010000 ;port E bit 4
mPTESE3: equ %00001000 ;port E bit 3
mPTESE2: equ %00000100 ;port E bit 2
mPTESE1: equ %00000010 ;port E bit 1
mPTESE0: equ %00000001 ;port E bit 0

PTEDD: equ $13 ;I/O port E data direction register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTEDD7: equ 7 ;bit #7
PTEDD6: equ 6 ;bit #6
PTEDD5: equ 5 ;bit #5
PTEDD4: equ 4 ;bit #4
PTEDD3: equ 3 ;bit #3
PTEDD2: equ 2 ;bit #2
PTEDD1: equ 1 ;bit #1
PTEDD0: equ 0 ;bit #0
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 405
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

; bit position masks
mPTEDD7: equ %10000000 ;port E bit 7
mPTEDD6: equ %01000000 ;port E bit 6
mPTEDD5: equ %00100000 ;port E bit 5
mPTEDD4: equ %00010000 ;port E bit 4
mPTEDD3: equ %00001000 ;port E bit 3
mPTEDD2: equ %00000100 ;port E bit 2
mPTEDD1: equ %00000010 ;port E bit 1
mPTEDD0: equ %00000001 ;port E bit 0

PTFD: equ $40 ;I/O port F data register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTFD7: equ 7 ;bit #7
PTFD6: equ 6 ;bit #6
PTFD5: equ 5 ;bit #5
PTFD4: equ 4 ;bit #4
PTFD3: equ 3 ;bit #3
PTFD2: equ 2 ;bit #2
PTFD1: equ 1 ;bit #1
PTFD0: equ 0 ;bit #0
; bit position masks
mPTFD7: equ %10000000 ;port F bit 7
mPTFD6: equ %01000000 ;port F bit 6
mPTFD5: equ %00100000 ;port F bit 5
mPTFD4: equ %00010000 ;port F bit 4
mPTFD3: equ %00001000 ;port F bit 3
mPTFD2: equ %00000100 ;port F bit 2
mPTFD1: equ %00000010 ;port F bit 1
mPTFD0: equ %00000001 ;port F bit 0

PTFPE: equ $41 ;I/O port F pullup enable controls
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTFPE7: equ 7 ;bit #7
PTFPE6: equ 6 ;bit #6
PTFPE5: equ 5 ;bit #5
PTFPE4: equ 4 ;bit #4
PTFPE3: equ 3 ;bit #3
PTFPE2: equ 2 ;bit #2
PTFPE1: equ 1 ;bit #1
PTFPE0: equ 0 ;bit #0
; bit position masks
mPTFPE7: equ %10000000 ;port F bit 7
mPTFPE6: equ %01000000 ;port F bit 6
mPTFPE5: equ %00100000 ;port F bit 5
mPTFPE4: equ %00010000 ;port F bit 4
mPTFPE3: equ %00001000 ;port F bit 3
mPTFPE2: equ %00000100 ;port F bit 2
mPTFPE1: equ %00000010 ;port F bit 1
mPTFPE0: equ %00000001 ;port F bit 0

PTFSE: equ $42 ;I/O port F slew rate control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTFSE7: equ 7 ;bit #7
PTFSE6: equ 6 ;bit #6
PTFSE5: equ 5 ;bit #5
Reference Manual — Volume I HCS08 — Revision 1

406 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PTFSE4: equ 4 ;bit #4
PTFSE3: equ 3 ;bit #3
PTFSE2: equ 2 ;bit #2
PTFSE1: equ 1 ;bit #1
PTFSE0: equ 0 ;bit #0
; bit position masks
mPTFSE7: equ %10000000 ;port F bit 7
mPTFSE6: equ %01000000 ;port F bit 6
mPTFSE5: equ %00100000 ;port F bit 5
mPTFSE4: equ %00010000 ;port F bit 4
mPTFSE3: equ %00001000 ;port F bit 3
mPTFSE2: equ %00000100 ;port F bit 2
mPTFSE1: equ %00000010 ;port F bit 1
mPTFSE0: equ %00000001 ;port F bit 0

PTFDD: equ $43 ;I/O port F data direction register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTFDD7: equ 7 ;bit #7
PTFDD6: equ 6 ;bit #6
PTFDD5: equ 5 ;bit #5
PTFDD4: equ 4 ;bit #4
PTFDD3: equ 3 ;bit #3
PTFDD2: equ 2 ;bit #2
PTFDD1: equ 1 ;bit #1
PTFDD0: equ 0 ;bit #0
; bit position masks
mPTFDD7: equ %10000000 ;port F bit 7
mPTFDD6: equ %01000000 ;port F bit 6
mPTFDD5: equ %00100000 ;port F bit 5
mPTFDD4: equ %00010000 ;port F bit 4
mPTFDD3: equ %00001000 ;port F bit 3
mPTFDD2: equ %00000100 ;port F bit 2
mPTFDD1: equ %00000010 ;port F bit 1
mPTFDD0: equ %00000001 ;port F bit 0

PTGD: equ $44 ;I/O port G data register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTGD7: equ 7 ;bit #7
PTGD6: equ 6 ;bit #6
PTGD5: equ 5 ;bit #5
PTGD4: equ 4 ;bit #4
PTGD3: equ 3 ;bit #3
PTGD2: equ 2 ;bit #2
PTGD1: equ 1 ;bit #1
PTGD0: equ 0 ;bit #0
; bit position masks
mPTGD7: equ %10000000 ;port G bit 7
mPTGD6: equ %01000000 ;port G bit 6
mPTGD5: equ %00100000 ;port G bit 5
mPTGD4: equ %00010000 ;port G bit 4
mPTGD3: equ %00001000 ;port G bit 3
mPTGD2: equ %00000100 ;port G bit 2
mPTGD1: equ %00000010 ;port G bit 1
mPTGD0: equ %00000001 ;port G bit 0
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 407
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

PTGPE: equ $45 ;I/O port G pullup enable controls
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTGPE7: equ 7 ;bit #7
PTGPE6: equ 6 ;bit #6
PTGPE5: equ 5 ;bit #5
PTGPE4: equ 4 ;bit #4
PTGPE3: equ 3 ;bit #3
PTGPE2: equ 2 ;bit #2
PTGPE1: equ 1 ;bit #1
PTGPE0: equ 0 ;bit #0
; bit position masks
mPTGPE7: equ %10000000 ;port G bit 7
mPTGPE6: equ %01000000 ;port G bit 6
mPTGPE5: equ %00100000 ;port G bit 5
mPTGPE4: equ %00010000 ;port G bit 4
mPTGPE3: equ %00001000 ;port G bit 3
mPTGPE2: equ %00000100 ;port G bit 2
mPTGPE1: equ %00000010 ;port G bit 1
mPTGPE0: equ %00000001 ;port G bit 0

PTGSE: equ $46 ;I/O port G slew rate control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTGSE7: equ 7 ;bit #7
PTGSE6: equ 6 ;bit #6
PTGSE5: equ 5 ;bit #5
PTGSE4: equ 4 ;bit #4
PTGSE3: equ 3 ;bit #3
PTGSE2: equ 2 ;bit #2
PTGSE1: equ 1 ;bit #1
PTGSE0: equ 0 ;bit #0
; bit position masks
mPTGSE7: equ %10000000 ;port G bit 7
mPTGSE6: equ %01000000 ;port G bit 6
mPTGSE5: equ %00100000 ;port G bit 5
mPTGSE4: equ %00010000 ;port G bit 4
mPTGSE3: equ %00001000 ;port G bit 3
mPTGSE2: equ %00000100 ;port G bit 2
mPTGSE1: equ %00000010 ;port G bit 1
mPTGSE0: equ %00000001 ;port G bit 0

PTGDD: equ $47 ;I/O port G data direction register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
PTGDD7: equ 7 ;bit #7
PTGDD6: equ 6 ;bit #6
PTGDD5: equ 5 ;bit #5
PTGDD4: equ 4 ;bit #4
PTGDD3: equ 3 ;bit #3
PTGDD2: equ 2 ;bit #2
PTGDD1: equ 1 ;bit #1
PTGDD0: equ 0 ;bit #0
; bit position masks
mPTGDD7: equ %10000000 ;port G bit 7
mPTGDD6: equ %01000000 ;port G bit 6
mPTGDD5: equ %00100000 ;port G bit 5
Reference Manual — Volume I HCS08 — Revision 1

408 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mPTGDD4: equ %00010000 ;port G bit 4
mPTGDD3: equ %00001000 ;port G bit 3
mPTGDD2: equ %00000100 ;port G bit 2
mPTGDD1: equ %00000010 ;port G bit 1
mPTGDD0: equ %00000001 ;port G bit 0

;**** Interrupt Request Module (IRQ) **
;*
IRQSC: equ $14 ;IRQ status and control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
IRQEDG: equ 5 ;(bit #5) IRQ pin edge sensitivity
IRQPE: equ 4 ;(bit #4) IRQ pin enable (PTB5)
IRQF: equ 3 ;(bit #3) IRQ flag
IRQACK: equ 2 ;(bit #2) acknowledge IRQ flag
IRQIE: equ 1 ;(bit #1) IRQ pin interrupt enable
IRQMOD: equ 0 ;(bit #0) IRQ mode
; bit position masks
mIRQEDG: equ %00100000 ;IRQ pin edge sensitivity
mIRQPE: equ %00010000 ;IRQ pin enable (PTB5)
mIRQF: equ %00001000 ;IRQ flag
mIRQACK: equ %00000100 ;acknowledge IRQ flag
mIRQIE: equ %00000010 ;IRQ pin interrupt enable
mIRQMOD: equ %00000001 ;IRQ mode

;**** Keyboard Interrupt Module (KBI) ***
;*
KBISC: equ $16 ;KBI status and control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
KBEDG7: equ 7 ;rise-hi/fall-low for KBIP7 pin
KBEDG6: equ 6 ;rise-hi/fall-low for KBIP6 pin
KBEDG5: equ 5 ;rise-hi/fall-low for KBIP5 pin
KBEDG4: equ 4 ;rise-hi/fall-low for KBIP4 pin
KBF: equ 3 ;KBI flag
KBACK: equ 2 ;acknowledge
KBIE: equ 1 ;KBI interrupt enable
KBIMOD: equ 0 ;KBI mode select
; bit position masks
mKBEDG7: equ %10000000 ;rise-hi/fall-low for KBIP7 pin
mKBEDG6: equ %01000000 ;rise-hi/fall-low for KBIP6 pin
mKBEDG5: equ %00100000 ;rise-hi/fall-low for KBIP5 pin
mKBEDG4: equ %00010000 ;rise-hi/fall-low for KBIP4 pin
mKBF: equ %00001000 ;KBI flag
mKBACK: equ %00000100 ;acknowledge
mKBIE: equ %00000010 ;KBI interrupt enable
mKBIMOD: equ %00000001 ;KBI mode select

KBIPE: equ $17 ;KBI pin enable controls
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
KBIPE7: equ 7 ;bit #7
KBIPE6: equ 6 ;bit #6
KBIPE5: equ 5 ;bit #5
KBIPE4: equ 4 ;bit #4
KBIPE3: equ 3 ;bit #3
KBIPE2: equ 2 ;bit #2
KBIPE1: equ 1 ;bit #1
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 409
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

KBIPE0: equ 0 ;bit #0
; bit position masks
mKBIPE7: equ %10000000 ;port A bit 7
mKBIPE6: equ %01000000 ;port A bit 6
mKBIPE5: equ %00100000 ;port A bit 5
mKBIPE4: equ %00010000 ;port A bit 4
mKBIPE3: equ %00001000 ;port A bit 3
mKBIPE2: equ %00000100 ;port A bit 2
mKBIPE1: equ %00000010 ;port A bit 1
mKBIPE0: equ %00000001 ;port A bit 0

;**** Serial Communications Interface 1&2 (SCI1 & SCI2) ***********************************
;*
SCI1BDH: equ $18 ;SCI1 baud rate register (high)
SCI2BDH: equ $20 ;SCI2 baud rate register (high)
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
SBR12: equ 4 ;(bit #4) baud divide (high)
SBR11: equ 3 ;(bit #3) "
SBR10: equ 2 ;(bit #2) "
SBR9: equ 1 ;(bit #1) "
SBR8: equ 0 ;(bit #0) "
; bit position masks
mSBR12: equ %00010000 ;high bits of baud rate divider
mSBR11: equ %00001000 ; "
mSBR10: equ %00000100 ; "
mSBR9: equ %00000010 ; "
mSBR8: equ %00000001 ; "

SCI1BDL: equ $19 ;SCI1 baud rate register (low byte)
SCI2BDL: equ $21 ;SCI2 baud rate register (low byte)
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
SBR7: equ 7 ;(bit #7) baud divide (low)
SBR6: equ 6 ;(bit #6) "
SBR5: equ 5 ;(bit #5) "
SBR4: equ 4 ;(bit #4) "
SBR3: equ 3 ;(bit #3) "
SBR2: equ 2 ;(bit #2) "
SBR1: equ 1 ;(bit #1) "
SBR0: equ 0 ;(bit #0) "
; bit position masks
mSBR7: equ %10000000 ;low byte of baud rate divider
mSBR6: equ %01000000 ; "
mSBR5: equ %00100000 ; "
mSBR4: equ %00010000 ; "
mSBR3: equ %00001000 ; "
mSBR2: equ %00000100 ; "
mSBR1: equ %00000010 ; "
mSBR0: equ %00000001 ; "

SCI1C1: equ $1A ;SCI1 control register 1
SCI2C1: equ $22 ;SCI2 control register 1
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
LOOPS: equ 7 ;(bit #7) loopback mode
SCISWAI: equ 6 ;(bit #6) SCI stop in wait
RSRC: equ 5 ;(bit #5) receiver source
Reference Manual — Volume I HCS08 — Revision 1

410 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

M: equ 4 ;(bit #4) 9/8 bit data
WAKE: equ 3 ;(bit #3) wake by addr mark/idle
ILT: equ 2 ;(bit #2) idle line type; stop/start
PE: equ 1 ;(bit #1) parity enable
PT: equ 0 ;(bit #0) parity type
; bit position masks
mLOOPS: equ %10000000 ;loopback mode select
mSCISWAI: equ %01000000 ;SCI stops in wait mode
mRSRC: equ %00100000 ;receiver source
mM: equ %00010000 ;9/8 bit data
mWAKE: equ %00001000 ;wakeup by addr mark/idle
mILT: equ %00000100 ;idle line type; after stop/start
mPE: equ %00000010 ;parity enable
mPT: equ %00000001 ;parity type even/odd

SCI1C2: equ $1B ;SCI1 control register 2
SCI2C2: equ $23 ;SCI2 control register 2
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
TIE: equ 7 ;(bit #7) transmit interrupt enable
TCIE: equ 6 ;(bit #6) TC interrupt enable
RIE: equ 5 ;(bit #5) receive interrupt enable
ILIE: equ 4 ;(bit #4) idle line interrupt enable
TE: equ 3 ;(bit #3) transmitter enable
RE: equ 2 ;(bit #2) receiver enable
RWU: equ 1 ;(bit #1) receiver wakeup engage
SBK: equ 0 ;(bit #0) send break
; bit position masks
mTIE: equ %10000000 ;transmit interrupt (TDRE) enable
mTCIE: equ %01000000 ;transmit complete interrupt enable
mRIE: equ %00100000 ;receive interrupt (RDRF) enable
mILIE: equ %00010000 ;idle line interrupt (ILIE) enable
mTE: equ %00001000 ;transmitter enable
mRE: equ %00000100 ;receiver enable
mRWU: equ %00000010 ;receiver wakeup engage
mSBK: equ %00000001 ;send break characters

SCI1S1: equ $1C ;SCI1 status register 1
SCI2S1: equ $24 ;SCI2 status register 1
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
TDRE: equ 7 ;(bit #7) Tx data register empty
TC: equ 6 ;(bit #6) transmit complete
RDRF: equ 5 ;(bit #5) Rx data register full
IDLE: equ 4 ;(bit #4) idle line detected
OR: equ 3 ;(bit #3) Rx over run
NF: equ 2 ;(bit #2) Rx noise flag
FE: equ 1 ;(bit #1) Rx framing error
PF: equ 0 ;(bit #0) Rx parity failed
; bit position masks
mTDRE: equ %10000000 ;transmit data register empty
mTC: equ %01000000 ;transmit complete
mRDRF: equ %00100000 ;receive data register full
mIDLE: equ %00010000 ;idle line detected
mOR: equ %00001000 ;receiver over run
mNF: equ %00000100 ;receiver noise flag
mFE: equ %00000010 ;receiver framing error
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 411
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mPF: equ %00000001 ;received parity failed

SCI1S2: equ $1D ;SCI1 status register 2
SCI2S2: equ $25 ;SCI2 status register 2
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
RAF: equ 0 ;(bit #0) Rx active flag
; bit position masks
mRAF: equ %00000001 ;receiver active flag

SCI1C3: equ $1E ;SCI1 control register 3
SCI2C3: equ $26 ;SCI2 control register 3
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
R8: equ 7 ;(bit #7) 9th Rx bit
T8: equ 6 ;(bit #6) 9th Tx bit
TXDIR: equ 5 ;(bit #5) TxD pin direction?
ORIE: equ 3 ;(bit #3) Rx over run int. enable
NEIE: equ 2 ;(bit #2) Rx noise flag int. enable
FEIE: equ 1 ;(bit #1) Rx framing error int. enable
PEIE: equ 0 ;(bit #0) Rx parity error int. enable
; bit position masks
mR8: equ %10000000 ;9th receive data bit
mT8: equ %01000000 ;9th transmit data bit
mTXDIR: equ %00100000 ;transmit pin direction?
mORIE: equ %00001000 ;receiver over run int. enable
mNEIE: equ %00000100 ;receiver noise flag int. enable
mFEIE: equ %00000010 ;receiver framing error int. enable
mPEIE: equ %00000001 ;received parity error int. enable

SCI1D: equ $1F ;SCI1 data register (low byte)
SCI2D: equ $27 ;SCI2 data register (low byte)
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
; read-only Rx data buffer
R7: equ 7 ;(bit #7) receive data bits
R6: equ 6 ;(bit #6) "
R5: equ 5 ;(bit #5) "
R4: equ 4 ;(bit #4) "
R3: equ 3 ;(bit #3) "
R2: equ 2 ;(bit #2) "
R1: equ 1 ;(bit #1) "
R0: equ 0 ;(bit #0) "
; write-only Tx data buffer
T7: equ 7 ;(bit #7) transmit data bits
T6: equ 6 ;(bit #6) "
T5: equ 5 ;(bit #5) "
T4: equ 4 ;(bit #4) "
T3: equ 3 ;(bit #3) "
T2: equ 2 ;(bit #2) "
T1: equ 1 ;(bit #1) "
T0: equ 0 ;(bit #0) "
; bit position masks
; read-only Rx data buffer
mR7: equ %10000000 ;receive data bits
mR6: equ %01000000 ; "
mR5: equ %00100000 ; "
mR4: equ %00010000 ; "
Reference Manual — Volume I HCS08 — Revision 1

412 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mR3: equ %00001000 ; "
mR2: equ %00000100 ; "
mR1: equ %00000010 ; "
mR0: equ %00000001 ; "
; write-only Tx data buffer
mT7: equ %10000000 ;transmit data bits
mT6: equ %01000000 ; "
mT5: equ %00100000 ; "
mT4: equ %00010000 ; "
mT3: equ %00001000 ; "
mT2: equ %00000100 ; "
mT1: equ %00000010 ; "
mT0: equ %00000001 ; "

;**** Serial Peripheral Interface (SPI) ***
;*
SPIC1: equ $28 ;SPI control register 1
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
SPIE: equ 7 ;(bit #7) SPI interrupt enable
SPE: equ 6 ;(bit #6) SPI enable
SPTIE: equ 5 ;(bit #5) Tx error interrupt enable
MSTR: equ 4 ;(bit #4) master/slave
CPOL: equ 3 ;(bit #3) clock polarity
CPHA: equ 2 ;(bit #2) clock phase
SSOE: equ 1 ;(bit #1) SS output enable
LSBFE: equ 0 ;(bit #0) LSB-first enable
; bit position masks
mSPIE: equ %10000000 ;SPI interrupt enable
mSPE: equ %01000000 ;SPI enable
mSPTIE: equ %00100000 ;SPI Tx error interrupt enable
mMSTR: equ %00010000 ;master/slave
mCPOL: equ %00001000 ;clock polarity
mCPHA: equ %00000100 ;clock phase
mSSOE: equ %00000010 ;slave select output enable
mLSBFE: equ %00000001 ;LSB-first enable

SPIC2: equ $29 ;SPI control register 2
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
MODFEN: equ 4 ;(bit #4) mode fault enable
BIDIROE: equ 3 ;(bit #3) bi-directional enable
SPISWAI: equ 1 ;(bit #1) SPI stops in wait
SPCO: equ 0 ;(bit #0) SPI pin control
; bit position masks
mMODFEN: equ %00010000 ;mode fault enable
mBIDIROE: equ %00001000 ;bi-directional operation enable
mSPISWAI: equ %00000010 ;SPI stops in wait mode
mSPCO: equ %00000001 ;SPI pin control

SPIBR: equ $2A ;SPI baud rate select
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
SPPR2: equ 6 ;(bit #6) SPI baud rate prescale
SPPR1: equ 5 ;(bit #5) "
SPPR0: equ 4 ;(bit #4) "
SPR2: equ 2 ;(bit #2) SPI rate selact
SPR1: equ 1 ;(bit #1) "
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 413
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SPR0: equ 0 ;(bit #0) "
; bit position masks
mSPPR2: equ %01000000 ;SPI baud rate prescale
mSPPR1: equ %00100000 ; "
mSPPR0: equ %00010000 ; "
mSPR2: equ %00000100 ;SPI rate select
mSPR1: equ %00000010 ; "
mSPR0: equ %00000001 ; "

SPIS: equ $2B ;SPI status register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
SPRF: equ 7 ;(bit #7) SPI Rx full flag
SPTEF: equ 5 ;(bit #5) SPI Tx error flag
MODF: equ 4 ;(bit #4) mode fault flag
; bit position masks
mSPRF: equ %10000000 ;SPI receive buffer full flag
mSPTEF: equ %00100000 ;SPI Tx error flag?
mMODF: equ %00010000 ;mode fault flag

SPID: equ $2D ;SPI data register

;**** Analog-to-Digital Converter Module (ATD) **
;*;
ATDC: equ $50 ;atd control tegister
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
ATDPU: equ 7 ;(bit #7) ATD power up
DJM: equ 6 ;(bit #6) justification mode; rt/left
RES8: equ 5 ;(bit #5) ATD resolution select
SGN: equ 4 ;(bit #4) signed result select
PRS3: equ 3 ;(bit #3) prescaler rate select (high)
PRS2: equ 2 ;(bit #2) prescaler rate select
PRS1: equ 1 ;(bit #1) prescaler rate select
PRS0: equ 0 ;(bit #0) prescaler rate select (low)
; bit position masks
mATDPU: equ %10000000 ;ATD power up
mDJM: equ %01000000 ;data justification mode; right/left
mRES8: equ %00100000 ;ATD resolution select
mSGN: equ %00010000 ;signed result select
mPRS3: equ %00001000 ;prescaler rate select (high)
mPRS2: equ %00000100 ;prescaler rate select
mPRS1: equ %00000010 ;prescaler rate select
mPRS0: equ %00000001 ;prescaler rate select (low)

ATDSC: equ $51 ;atd ststus and control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
CCF: equ 7 ;(bit #7) conversion complete flag
ATDIE: equ 6 ;(bit #6) ATD interrupt enable
ATDCO: equ 5 ;(bit #5) ATD continuous conversion
ATDCH4: equ 4 ;(bit #4) ATD input channel select (high)
ATDCH3: equ 3 ;(bit #3) ATD input channel select
ATDCH2: equ 2 ;(bit #2) ATD input channel select
ATDCH1: equ 1 ;(bit #1) ATD input channel select
ATDCH0: equ 0 ;(bit #0) ATD input channel select (low)
Reference Manual — Volume I HCS08 — Revision 1

414 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

; bit position masks
mCCF: equ %10000000 ;conversion complete flag
mATDIE: equ %01000000 ;ATD interrupt enable
mATDCO: equ %00100000 ;ATD continuous conversion
mATDCH4: equ %00010000 ;ATD input channel select (high)
mATDCH3: equ %00001000 ;prescaler rate select
mATDCH2: equ %00000100 ;prescaler rate select
mATDCH1: equ %00000010 ;prescaler rate select
mATDCH0: equ %00000001 ;prescaler rate select (low)

ATDPE: equ $54 ;ATD pin enable register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
ATDPE7: equ 7 ;(bit #7)
ATDPE6: equ 6 ;(bit #6)
ATDPE5: equ 5 ;(bit #5)
ATDPE4: equ 4 ;(bit #4)
ATDPE3: equ 3 ;(bit #3)
ATDPE2: equ 2 ;(bit #2)
ATDPE1: equ 1 ;(bit #1)
ATDPE0: equ 0 ;(bit #0)
; bit position masks
mATDPE7: equ %10000000 ;ATDPE bit 7
mATDPE6: equ %01000000 ;ATDPE bit 6
mATDPE5: equ %00100000 ;ATDPE bit 5
mATDPE4: equ %00010000 ;ATDPE bit 4
mATDPE3: equ %00001000 ;ATDPE bit 3
mATDPE2: equ %00000100 ;ATDPE bit 2
mATDPE1: equ %00000010 ;ATDPE bit 1
mATDPE0: equ %00000001 ;ATDPE bit 0

ATDRH: equ $52 ;ATD result register (high)
ATDRL: equ $53 ;ATD result register (low)

;**** Inter-Integrated Circuit Module (IIC) **
;*;
IICA: equ $58 ;IIC address register

IICF: equ $59 ;IIC frequency divider register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
MULT1: equ 7 ;(bit #7) IIC multiply factor (high)
MULT0: equ 6 ;(bit #6) IIC multiply factor (low)
ICR5: equ 5 ;(bit #5) IIC Divider and Hold bit-5
ICR4: equ 4 ;(bit #4) IIC Divider and Hold bit-4
ICR3: equ 3 ;(bit #3) IIC Divider and Hold bit-3
ICR2: equ 2 ;(bit #2) IIC Divider and Hold bit-2
ICR1: equ 1 ;(bit #1) IIC Divider and Hold bit-1
ICR0: equ 0 ;(bit #0) IIC Divider and Hold bit-0
; bit position masks
mMULT1: equ %10000000 ;IIC multiply factor (high)
mMULT0: equ %01000000 ;IIC multiply factor (low)
mICR5: equ %00100000 ;IIC Divider and Hold bit-5
mICR4: equ %00010000 ;IIC Divider and Hold bit-4
mICR3: equ %00001000 ;IIC Divider and Hold bit-3
mICR2: equ %00000100 ;IIC Divider and Hold bit-2
mICR1: equ %00000010 ;IIC Divider and Hold bit-1
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 415
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mICR0: equ %00000001 ;IIC Divider and Hold bit-0

IICC: equ $5A ;IIC control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
IICEN: equ 7 ;(bit #7) IIC enable bit
IICIE: equ 6 ;(bit #6) IIC interrupt enable bit
MST: equ 5 ;(bit #5) IIC master mode select bit
TX: equ 4 ;(bit #4) IIC transmit mode select bit
TXAK: equ 3 ;(bit #3) IIC transmit acknowledge bit
RSTA: equ 2 ;(bit #2) IIC repeat start bit
; bit position masks
mIICEN: equ %10000000 ;IIC enable
mIICIE: equ %01000000 ;IIC interrupt enable bit
mMST: equ %00100000 ;IIC master mode select bit
mTX: equ %00010000 ;IIC transmit mode select bit
mTXAK: equ %00001000 ;IIC transmit acknowledge bit
mRSTA: equ %00000100 ;IIC repeat start bit

IICS: equ $5B ;IIC status register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
TCF: equ 7 ;(bit #7) IIC transfer complete flag bit
IIAS: equ 6 ;(bit #6) IIC addressed as slave bit
BUSY: equ 5 ;(bit #5) IIC bus busy bit
ARBL: equ 4 ;(bit #4) IIC arbitration lost bit
SRW: equ 2 ;(bit #2) IIC slave read/write bit
IICIF: equ 1 ;(bit #1) IIC interrupt flag bit
RXAK: equ 0 ;(bit #0) IIC receive acknowledge bit
; bit position masks
mTCF: equ %10000000 ;IIC transfer complete flag bit
mIIAS: equ %01000000 ;IIC addressed as slave bit
mBUSY: equ %00100000 ;IIC bus busy bit
mARBL: equ %00010000 ;IIC arbitration lost bit
mSRW: equ %00000100 ;IIC slave read/write bit
mIICIF: equ %00000010 ;IIC interrupt flag bit
mRXAK: equ %00000001 ;IIC receive acknowledge bit

IICD: equ $5C ;IIC data I/O register bits 7:0

;**** Timer/PWM Module 1 (TPM1) ***** TPM1 has 3 channels *********************************
;**** Timer/PWM Module 2 (TPM2) ***** TPM2 has 5 channels *********************************
;*
TPM1SC: equ $30 ;TPM1 status and control register
TPM2SC: equ $60 ;TPM2 status and control register
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
TOF: equ 7 ;(bit #7) tomer overflow flag
TOIE: equ 6 ;(bit #6) TOF interrupt enable
CPWMS: equ 5 ;(bit #5) centered PWM select
CLKSB: equ 4 ;(bit #4) clock select bits
CLKSA: equ 3 ;(bit #3) "
PS2: equ 2 ;(bit #2) prescaler bits
PS1: equ 1 ;(bit #1) "
PS0: equ 0 ;(bit #0) "
; bit position masks
mTOF: equ %10000000 ;timer overflow flag
mTOIE: equ %01000000 ;timer overflow interrupt enable
Reference Manual — Volume I HCS08 — Revision 1

416 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mCPWMS: equ %00100000 ;center-aligned PWM select
mCLKSB: equ %00010000 ;clock source select bits
mCLKSA: equ %00001000 ; "
mPS2: equ %00000100 ;prescaler bits
mPS1: equ %00000010 ; "
mPS0: equ %00000001 ; "

TPM1CNTH: equ $31 ;TPM1 counter (high half)
TPM1CNTL: equ $32 ;TPM1 counter (low half)
TPM1MODH: equ $33 ;TPM1 modulo register (high half)
TPM1MODL: equ $34 ;TPM1 modulo register(low half)

TPM2CNTH: equ $61 ;TPM2 counter (high half)
TPM2CNTL: equ $62 ;TPM2 counter (low half)
TPM2MODH: equ $63 ;TPM2 modulo register (high half)
TPM2MODL: equ $64 ;TPM2 modulo register(low half)

TPM1C0SC: equ $35 ;TPM1 channel 0 status and control
TPM2C0SC: equ $65 ;TPM2 channel 0 status and control
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
CH0F: equ 7 ;(bit #7) channel 0 flag
CH0IE: equ 6 ;(bit #6) ch 0 interrupt enable
MS0B: equ 5 ;(bit #5) mode select B
MS0A: equ 4 ;(bit #4) mode select A
ELS0B: equ 3 ;(bit #3) edge/level select B
ELS0A: equ 2 ;(bit #2) edge/level select A
; bit position masks
mCH0F: equ %10000000 ;channel 0 flag
mCH0IE: equ %01000000 ;ch 0 interrupt enable
mMS0B: equ %00100000 ;mode select B
mMS0A: equ %00010000 ;mode select A
mELS0B: equ %00001000 ;edge/level select B
mELS0A: equ %00000100 ;edge/level select A

TPM1C0VH: equ $36 ;TPM1 channel 0 value register (high)
TPM1C0VL: equ $37 ;TPM1 channel 0 value register (low)

TPM2C0VH: equ $66 ;TPM2 channel 0 value register (high)
TPM2C0VL: equ $67 ;TPM2 channel 0 value register (low)

TPM1C1SC: equ $38 ;TPM1 channel 1 status and control
TPM2C1SC: equ $68 ;TPM2 channel 1 status and control
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
CH1F: equ 7 ;(bit #7) channel 1 flag
CH1IE: equ 6 ;(bit #6) ch 1 interrupt enable
MS1B: equ 5 ;(bit #5) mode select B
MS1A: equ 4 ;(bit #4) mode select A
ELS1B: equ 3 ;(bit #3) edge/level select B
ELS1A: equ 2 ;(bit #2) edge/level select A
; bit position masks
mCH1F: equ %10000000 ;channel 1 flag
mCH1IE: equ %01000000 ;ch 1 interrupt enable
mMS1B: equ %00100000 ;mode select B
mMS1A: equ %00010000 ;mode select A
mELS1B: equ %00001000 ;edge/level select B
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 417
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mELS1A: equ %00000100 ;edge/level select A

TPM1C1VH: equ $39 ;TPM1 channel 1 value register (high)
TPM1C1VL: equ $3A ;TPM1 channel 1 value register (low)

TPM2C1VH: equ $69 ;TPM2 channel 1 value register (high)
TPM2C1VL: equ $6A ;TPM2 channel 1 value register (low)

TPM1C2SC: equ $3B ;TPM1 channel 2 status and control
TPM2C2SC: equ $6B ;TPM2 channel 2 status and control
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
CH2F: equ 7 ;(bit #7) channel 2 flag
CH2IE: equ 6 ;(bit #6) ch 2 interrupt enable
MS2B: equ 5 ;(bit #5) mode select B
MS2A: equ 4 ;(bit #4) mode select A
ELS2B: equ 3 ;(bit #3) edge/level select B
ELS2A: equ 2 ;(bit #2) edge/level select A
; bit position masks
mCH2F: equ %10000000 ;channel 2 flag
mCH2IE: equ %01000000 ;ch 2 interrupt enable
mMS2B: equ %00100000 ;mode select B
mMS2A: equ %00010000 ;mode select A
mELS2B: equ %00001000 ;edge/level select B
mELS2A: equ %00000100 ;edge/level select A

TPM1C2VH: equ $3C ;TPM1 channel 2 value register (high)
TPM1C2VL: equ $3D ;TPM1 channel 2 value register (low)

TPM2C2VH: equ $6C ;TPM2 channel 1 value register (high)
TPM2C2VL: equ $6D ;TPM2 channel 1 value register (low)

TPM2C3SC: equ $6E ;TPM2 channel 3 status and control
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
CH3F: equ 7 ;(bit #7) channel 3 flag
CH3IE: equ 6 ;(bit #6) ch 3 interrupt enable
MS3B: equ 5 ;(bit #5) mode select B
MS3A: equ 4 ;(bit #4) mode select A
ELS3B: equ 3 ;(bit #3) edge/level select B
ELS3A: equ 2 ;(bit #2) edge/level select A
; bit position masks
mCH3F: equ %10000000 ;channel 3 flag
mCH3IE: equ %01000000 ;ch 3 interrupt enable
mMS3B: equ %00100000 ;mode select B
mMS3A: equ %00010000 ;mode select A
mELS3B: equ %00001000 ;edge/level select B
mELS3A: equ %00000100 ;edge/level select A

TPM2C3VH: equ $6F ;TPM2 channel 1 value register (high)
TPM2C3VL: equ $70 ;TPM2 channel 1 value register (low)

TPM2C4SC: equ $71 ;TPM2 channel 4 status and control
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
CH4F: equ 7 ;(bit #7) channel 4 flag
CH4IE: equ 6 ;(bit #6) ch 4 interrupt enable
MS4B: equ 5 ;(bit #5) mode select B
Reference Manual — Volume I HCS08 — Revision 1

418 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MS4A: equ 4 ;(bit #4) mode select A
ELS4B: equ 3 ;(bit #3) edge/level select B
ELS4A: equ 2 ;(bit #2) edge/level select A
; bit position masks
mCH4F: equ %10000000 ;channel 4 flag
mCH4IE: equ %01000000 ;ch 4 interrupt enable
mMS4B: equ %00100000 ;mode select B
mMS4A: equ %00010000 ;mode select A
mELS4B: equ %00001000 ;edge/level select B
mELS4A: equ %00000100 ;edge/level select A

TPM2C4VH: equ $72 ;TPM2 channel 1 value register (high)
TPM2C4VL: equ $73 ;TPM2 channel 1 value register (low)

**** Internal Clock Generator Module (ICG) **
;*
ICGC1: equ $48 ;ICG control register 1
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
RANGE: equ 6 ;(bit #6) frequency range select
REFS: equ 5 ;(bit #5) reference select
CLKS1: equ 4 ;(bit #4) clock select bit 1
CLKS0: equ 3 ;(bit #3) clock select bit 0
OSCSTEN: equ 2 ;(bit #2) oscillator runs in stop
; bit position masks
mRANGE: equ %01000000 ;frequency range select
mREFS: equ %00100000 ;reference select
mCLKS1: equ %00010000 ;clock mode select (bit-1)
mCLKS0: equ %00001000 ;clock mode select (bit 0)
mOSCSTEN: equ %00000100 ;enable oscillator in stop mode

ICGC2: equ $49 ;ICG control register 2
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
LOLRE: equ 7 ;(bit #7) loss of lock reset enable
MFD2: equ 6 ;(bit #6) multiplication factor div
MFD1: equ 5 ;(bit #5) "
MFD0: equ 4 ;(bit #4) "
LOCRE: equ 3 ;(bit #3) loss of clock reset enable
RFD2: equ 2 ;(bit #2) reference divider
RFD1: equ 1 ;(bit #1) "
RFD0: equ 0 ;(bit #0) "
; bit position masks
mLOLRE: equ %10000000 ;loss of lock reset enable
mMFD2: equ %01000000 ;multiplication factor divider
mMFD1: equ %00100000 ; "
mMFD0: equ %00010000 ; "
mLOCRE: equ %00001000 ;loss of clock reset enable
mRFD2: equ %00000100 ;reference divider bits
mRFD1: equ %00000010 ; "
mRFD0: equ %00000001 ; "

ICGS1: equ $4A ;ICG status register 1
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
CLKST1: equ 7 ;(bit #7) clock mode status 1
CLKST0: equ 6 ;(bit #6) clock mode status 0
REFST: equ 5 ;(bit #5) reference clock status
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 419
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

LOLS: equ 4 ;(bit #4) loss of lock status
LOCK: equ 3 ;(bit #3) FLL lock status
LOCS: equ 2 ;(bit #2) loss of clock status
ERCS: equ 1 ;(bit #1) ext ref clk status
ICGIF: equ 0 ;(bit #0) ICG interrupt flag
; bit position masks
mCLKST1: equ %10000000 ;clock mode status 1
mCLKST0: equ %01000000 ;clock mode status 0
mREFST: equ %00100000 ;reference clock status
mLOLS: equ %00010000 ;loss of lock status
mLOCK: equ %00001000 ;FLL lock status
mLOCS: equ %00000100 ;loss of clock status
mERCS: equ %00000010 ;ext ref clk status
mICGIF: equ %00000001 ;ICG interrupt flag

ICGS2: equ $4B ;ICG status register 2
; bit numbers for use in BCLR, BSET, BRCLR, and BRSET
DCOS: equ 0 ;(bit #0) DCO Clock Stable
; bit position masks
mDCOS: equ %00000001 ;DCO Clock Stable

ICGFLTU: equ $4C ;ICG filter register (upper 4 bits in bits 3:0)
ICGFLTL: equ $4D ;ICG filter register (lower 8 bits)

ICGTRM: equ $4E ;ICG trim register

;**** System Integration Module (SIM) ***
;*
SRS: equ $1800 ;SIM reset status register
; bit position masks
mPOR: equ %10000000 ;power-on reset
mPIN: equ %01000000 ;external reset pin
mCOP: equ %00100000 ;COP watchdog timed out
mILOP: equ %00010000 ;illegal opcode
mICG: equ %00000100 ;illegal address access
mLVD: equ %00000010 ;low-voltage detect

SBDFR: equ $1801 ;system BDM reset register
; bit position masks
mBDFR: equ %00000001 ;BDM force reset

SOPT: equ $1802 ;SIM options register (write once)
; bit position masks
mCOPE: equ %10000000 ;COP watchdog enable
mCOPT: equ %01000000 ;COP time-out select
mSTOPE: equ %00100000 ;stop enable
mBKGDPE: equ %00000010 ;BDM pin enable

SDIDH: equ $1806 ;system device identification 1 register (read-only)
SDIDL: equ $1807 ;rev3,2,1,0 + 12-bit ID. GB60 ID = $002
; bit position masks within SDIDH
mREV3: equ %10000000 ;device revision identification (high)
mREV2: equ %01000000 ;device revision identification
mREV1: equ %00100000 ;device revision identification
mREV0: equ %00010000 ;device revision identification (low)
Reference Manual — Volume I HCS08 — Revision 1

420 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

;**** Power Management and Control Module (PMC) ***
;*
SRTISC: equ $1808 ;System RTI ststus and control register
; bit position masks
mRTIF: equ %10000000 ;real-time interrupt flag
mRTIACK: equ %01000000 ;real-time interrupt acknowledge
mRTICLKS: equ %00100000 ;real-time interrupt clock select
mRTIE: equ %00010000 ;real-time interrupt enable
mRTIS2: equ %00000100 ;real-time interrupt delay select (high)
mRTIS1: equ %00000010 ;real-time interrupt delay select
mRTIS0: equ %00000001 ;real-time interrupt delay select (low)

SPMSC1: equ $1809 ;System power management status and control 1 register
; bit position masks
mLVDF: equ %10000000 ;low voltage detect flag
mLVDACK: equ %01000000 ;LVD interrupt acknowledge
mLVDIE: equ %00100000 ;LVD interrupt enable
mLVDRE: equ %00010000 ;LVD reset enable (write once bit)
mLVDSE: equ %00001000 ;LDV stop enable (write once bit)
mLVDE: equ %00000100 ;LVD enable (write once bit)

SPMSC2: equ $180A ;System power management status and control 2 register
; bit position masks
mLVWF: equ %10000000 ;low voltage warning flag
mLVWACK: equ %01000000 ;low voltage warning acknowledge
mLVDV: equ %00100000 ;low voltage detect voltage select
mLVWV: equ %00010000 ;low voltage warning voltage select
mPPDF: equ %00001000 ;partial power down flag
mPPDACK: equ %00000100 ;partial power down acknowledge
mPDC: equ %00000010 ;power down control
mPPDC: equ %00000001 ;partial power down control

;**** Debug Module (DBG) **
;*
DBGCAH: equ $1810 ;DBG comparator register A (high)
DBGCAL: equ $1811 ;DBG comparator register A (low)
DBGCBH: equ $1812 ;DBG comparator register B (high)
DBGCBL: equ $1813 ;DBG comparator register B (low)
DBGFH: equ $1814 ;DBG FIFO register (high)
DBGFL: equ $1815 ;DBG FIFO register (low)

DBGC: equ $1816 ;DBG control register
; bit position masks
mDBGEN: equ %10000000 ;debug module enable
mARM: equ %01000000 ;arm control
mTAG: equ %00100000 ;tag/force select
mBRKEN: equ %00010000 ;break enable
mRWA: equ %00001000 ;R/W compare A value
mRWAEN: equ %00000100 ;R/W compare A enable
mRWB: equ %00000010 ;R/W compare B value
mRWBEN: equ %00000001 ;R/W compare B enable

DBGT: equ $1817 ;DBG trigger register
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 421
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

; bit position masks
mTRGSEL: equ %10000000 ;trigger on opcode/access
mBEGIN: equ %01000000 ;begin/end trigger
mTRG3: equ %00001000 ;trigger mode bits
mTRG2: equ %00000100 ; "
mTRG1: equ %00000010 ; "
mTRG0: equ %00000001 ; "

DBGS: equ $1818 ;DBG status register
; bit position masks
mAF: equ %10000000 ;trigger A match flag
mBF: equ %01000000 ;trigger B match flag
mARMF: equ %00100000 ;arm flag
mCNT3: equ %00001000 ;count of items in FIFO (high)
mCNT2: equ %00000100 ; "
mCNT1: equ %00000010 ; "
mCNT0: equ %00000001 ;count of items in FIFO (low)

;**** Flash Module (FLASH) **
;*
FCDIV: equ $1820 ;Flash clock divider register
; bit position masks
mDIVLD: equ %10000000 ;clock divider loaded
mPRDIV8: equ %01000000 ;enable prescale by 8
mDIV5: equ %00100000 ;flash clock divider bits (high)
mDIV4: equ %00010000 ; "
mDIV3: equ %00001000 ; "
mDIV2: equ %00000100 ; "
mDIV1: equ %00000010 ; "
mDIV0: equ %00000001 ;flash clock divider bits (low)

FOPT: equ $1821 ;Flash options register
; bit position masks
mKEYEN: equ %10000000 ;enable backdoor key to security
mFNORED equ %01000000 ;Vector redirection enable
mSEC01: equ %00000010 ;security state code (high)
mSEC00: equ %00000001 ;security state code (low)

FCNFG: equ $1823 ;Flash configuration register
; bit position masks
mKEYACC: equ %00100000 ;enable security key writing

FPROT: equ $1824 ;Flash protection register
; bit position masks
mFPOPEN: equ %10000000 ;open unprotected flash for program/erase
mFPDIS: equ %01000000 ;flash protection disable
mFPS2: equ %00100000 ;flash protect size select (high)
mFPS1: equ %00010000 ;flash protect size select
mFPS0: equ %00001000 ;flash protect size select (low)

FSTAT: equ $1825 ;Flash status register
; bit position masks
mFCBEF: equ %10000000 ;flash command buffer empty flag
mFCCF: equ %01000000 ;flash command complete flag
mFPVIOL: equ %00100000 ;flash protection violation
Reference Manual — Volume I HCS08 — Revision 1

422 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions
Complete Equate File for MC9S08GB60

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

mFACCERR: equ %00010000 ;flash access error
mFBLANK: equ %00000100 ;flash verified as all blank (erased =$ff) flag

FCMD: equ $1826 ;Flash command register
; bit position masks
mFCMD7: equ %10000000 ;Flash command (high)
mFCMD6: equ %01000000 ; "
mFCMD5: equ %00100000 ; "
mFCMD4: equ %00010000 ; "
mFCMD3: equ %00001000 ; "
mFCMD2: equ %00000100 ; "
mFCMD1: equ %00000010 ; "
mFCMD0: equ %00000001 ;Flash command (low)
; command codes
mBlank: equ $05 ;Blank Check command
mByteProg: equ $20 ;Byte Program command
mBurstProg: equ $25 ;Burst Program command
mPageErase: equ $40 ;Page Erase command
mMassErase: equ $41 ;Mass Erase command

;**** Flash non-volatile register images **
;*
NVBACKKEY: equ $FFB0 ;8-byte backdoor comparison key
; comparison key in $FFB0 through $FFB7

; following 2 registers transfered from flash to working regs at reset

NVPROT: equ $FFBD ;NV flash protection byte
; NVPROT transfers to FPROT on reset

NVICGTRIM: equ $FFBE ;NV ICG Trim Setting
; ICG trim value measured during factory test. User software optionally
; copies to ICGTRM during initialization.

NVOPT: equ $FFBF ;NV flash options byte
; NVFEOPT transfers to FOPT on reset

;**** END ***
HCS08 — Revision 1 Reference Manual — Volume I

MOTOROLA Equate File Conventions 423
For More Information On This Product,

 Go to: www.freescale.com

Equate File Conventions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Reference Manual — Volume I HCS08 — Revision 1

424 Equate File Conventions MOTOROLA
For More Information On This Product,

 Go to: www.freescale.com

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:
http://motorola.com/semiconductors

HCS08RMv1/D
Rev. 1
6/2003

Information in this document is provided solely to enable system and software implementers to use Motorola products.
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even
if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2003

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	List of Sections
	Table of Contents
	Section 1. General Information and Block Diagram
	1.1 Introduction to the HCS08 Family of Microcontrollers
	1.2 Programmer’s Model for the HCS08 CPU
	1.3 Peripheral Modules
	1.4 Features of the MC9S08GB60
	1.4.1 Standard Features of the HCS08 Family
	1.4.2 Features of MC9S08GB60 MCU

	1.5 Block Diagram of the MC9S08GB60

	Section 2. Pins and Connections
	2.1 Introduction
	2.2 Recommended System Connections
	2.2.1 Power
	2.2.2 MC9S08GB60 Oscillator
	2.2.3 Reset
	2.2.4 Background/Mode Select (BKGD/MS)
	2.2.5 General-Purpose I/O and Peripheral Ports

	Section 3. Modes of Operation
	3.1 Introduction
	3.2 Features
	3.3 Run Mode
	3.4 Active Background Mode
	3.5 Wait Mode
	3.6 Stop Modes
	3.6.1 Stop1 Mode
	3.6.2 Stop2 Mode
	3.6.3 Stop3 Mode
	3.6.4 Active BDM Enabled in Stop Mode
	3.6.5 OSCSTEN Bit Set
	3.6.6 LVD Enabled in Stop Mode
	3.6.7 On-Chip Peripheral Modules in Stop Modes
	3.6.8 System Options Register (SOPT)
	3.6.9 System Power Management Status and Control 1 Register (SPMSC1)
	3.6.10 System Power Management Status and Control 2 Register (SPMSC2)

	Section 4. On-Chip Memory
	4.1 Introduction
	4.2 HCS08 Core-Defined Memory Map
	4.2.1 HCS08 Memory Map
	4.2.2 MC9S08GB60 Memory Map
	4.2.3 Reset and Interrupt Vector Assignments

	4.3 Register Addresses and Bit Assignments
	4.4 RAM
	4.5 60-Kbyte FLASH
	4.5.1 Features
	4.5.2 Program, Erase, and Blank Check Commands
	4.5.3 Command Timing and Burst Programming
	4.5.3.1 Rows and FLASH Organization
	4.5.3.2 Program Command Timing Sequence

	4.5.4 Access Errors
	4.5.5 Vector Redirection
	4.5.6 FLASH Block Protection (MC9S08GB60)

	4.6 Security (MC9S08GB60)
	4.7 FLASH Registers and Control Bits (MC9S08GB60)
	4.7.1 FLASH Clock Divider Register (FCDIV)
	4.7.2 FLASH Options Register (FOPT and NVFOPT)
	4.7.3 FLASH Configuration Register (FCNFG)
	4.7.4 FLASH Protection Register (FPROT and NVFPROT)
	4.7.5 FLASH Status Register (FSTAT)
	4.7.6 FLASH Command Register (FCMD)

	4.8 FLASH Application Examples
	4.8.1 Initialization of the FLASH Module Clock
	4.8.2 Erase One 512-Byte Page in FLASH
	4.8.3 DoOnStack Subroutine
	4.8.4 SpSub Subroutine
	4.8.5 Program One Byte of FLASH

	Section�5. Resets and Interrupts
	5.1 Introduction
	5.2 Reset and Interrupt Features for MC9S08GB60
	5.3 MCU Reset
	5.4 Computer Operating Properly (COP) Watchdog
	5.5 Interrupts
	5.5.1 Interrupt Stack Frame
	5.5.2 External Interrupt Request (IRQ) Pin
	5.5.2.1 Pin Configuration Options
	5.5.2.2 Edge and Level Sensitivity

	5.5.3 Interrupt Vectors, Sources, and Local Masks

	5.6 Low-Voltage Detect (LVD) System
	5.6.1 Power-On Reset Operation
	5.6.2 LVD Reset Operation
	5.6.3 LVD Interrupt Operation
	5.6.4 Low-Voltage Warning (LVW)

	5.7 Real-Time Interrupt (RTI)
	5.8 Reset, Interrupt, and System Control Registers and Control Bits
	5.8.1 Interrupt Request Status and Control Register (IRQSC)
	5.8.2 System Reset Status Register (SRS)
	5.8.3 System Background Debug Force Reset Register (SBDFR)
	5.8.4 System Options Register (SOPT)
	5.8.5 System Device Identification Register (SDIDH, SDIDL)
	5.8.6 System Real-Time Interrupt Status and Control Register (SRTISC)
	5.8.7 System Power Management Status and Control 1 Register (SPMSC1)
	5.8.8 System Power Management Status and Control 2 Register (SPMSC2)

	Section 6. Central Processor Unit (CPU)
	6.1 Introduction
	6.2 Programmer’s Model and CPU Registers
	6.2.1 Accumulator (A)
	6.2.2 Index Register (H:X)
	6.2.3 Stack Pointer (SP)
	6.2.4 Program Counter (PC)
	6.2.5 Condition Code Register

	6.3 Addressing Modes
	6.3.1 Inherent Addressing Mode (INH)
	6.3.2 Relative Addressing Mode (REL)
	6.3.3 Immediate Addressing Mode (IMM)
	6.3.4 Direct Addressing Mode (DIR)
	6.3.5 Extended Addressing Mode (EXT)
	6.3.6 Indexed Addressing Mode
	6.3.6.1 Indexed, No Offset (IX)
	6.3.6.2 Indexed, No Offset with Post Increment (IX+)
	6.3.6.3 Indexed, 8-Bit Offset (IX1)
	6.3.6.4 Indexed, 8-Bit Offset with Post Increment (IX1+)
	6.3.6.5 Indexed, 16-Bit Offset (IX2)
	6.3.6.6 SP-Relative, 8-Bit Offset (SP1)
	6.3.6.7 SP-Relative, 16-Bit Offset (SP2)

	6.4 Special Operations
	6.4.1 Reset Sequence
	6.4.2 Interrupts
	6.4.3 Wait Mode
	6.4.4 Stop Mode
	6.4.5 Active Background Mode
	6.4.6 User’s View of a Bus Cycle

	6.5 Instruction Set Description by Instruction Types
	6.5.1 Data Movement Instructions
	6.5.1.1 Loads and Stores
	6.5.1.2 Bit Set and Bit Clear
	6.5.1.3 Memory-to-Memory Moves
	6.5.1.4 Register Transfers and Nibble Swap

	6.5.2 Math Instructions
	6.5.2.1 Add, Subtract, Multiply, and Divide
	6.5.2.2 Increment, Decrement, Clear, and Negate
	6.5.2.3 Compare and Test
	6.5.2.4 BCD Arithmetic

	6.5.3 Logical Operation Instructions
	6.5.3.1 AND, OR, Exclusive-OR, and Complement
	6.5.3.2 BIT Instruction

	6.5.4 Shift and Rotate Instructions
	6.5.5 Jump, Branch, and Loop Control Instructions
	6.5.5.1 Unconditional Jump and Branch
	6.5.5.2 Simple Branches
	6.5.5.3 Signed Branches
	6.5.5.4 Unsigned Branches
	6.5.5.5 Bit Condition Branches
	6.5.5.6 Loop Control

	6.5.6 Stack-Related Instructions
	6.5.7 Miscellaneous Instructions

	6.6 Summary Instruction Table
	6.7 Assembly Language Tutorial
	6.7.1 Parts of a Listing Line
	6.7.2 Assembler Directives
	6.7.2.1 BASE — Set Default Number Base for Assembler
	6.7.2.2 INCLUDE — Specify Additional Source Files
	6.7.2.3 NOLIST/LIST — Turn Off or Turn On Listing
	6.7.2.4 ORG — Set Program Starting Location
	6.7.2.5 EQU — Equate a Label to a Value
	6.7.2.6 dc.b — Define Byte-Sized Constants in Memory
	6.7.2.7 dc.w — Define 16-Bit (Word) Constants in Memory
	6.7.2.8 ds.b — Define Storage (Reserve) Memory Bytes

	6.7.3 Labels
	6.7.4 Expressions
	6.7.5 Equate File Conventions
	6.7.6 Object Code (S19) Files

	Section�7. Development Support
	7.1 Introduction
	7.2 Features
	7.3 Background Debug Controller (BDC)
	7.3.1 BKGD Pin Description
	7.3.2 Communication Details
	7.3.2.1 BDC Communication Speed Considerations
	7.3.2.2 Bit Timing Details

	7.3.3 BDC Registers and Control Bits
	7.3.3.1 BDC Status and Control Register
	7.3.3.2 BDC Breakpoint Match Register

	7.3.4 BDC Commands
	7.3.4.1 SYNC — Request Timed Reference Pulse
	7.3.4.2 ACK_ENABLE
	7.3.4.3 ACK_DISABLE
	7.3.4.4 BACKGROUND
	7.3.4.5 READ_STATUS
	7.3.4.6 WRITE_CONTROL
	7.3.4.7 READ_BYTE
	7.3.4.8 READ_BYTE_WS
	7.3.4.9 READ_LAST
	7.3.4.10 WRITE_BYTE
	7.3.4.11 WRITE_BYTE_WS
	7.3.4.12 READ_BKPT
	7.3.4.13 WRITE_BKPT
	7.3.4.14 GO
	7.3.4.15 TRACE1
	7.3.4.16 TAGGO
	7.3.4.17 READ_A
	7.3.4.18 READ_CCR
	7.3.4.19 READ_PC
	7.3.4.20 READ_HX
	7.3.4.21 READ_SP
	7.3.4.22 READ_NEXT
	7.3.4.23 READ_NEXT_WS
	7.3.4.24 WRITE_A
	7.3.4.25 WRITE_CCR
	7.3.4.26 WRITE_PC
	7.3.4.27 WRITE_HX
	7.3.4.28 WRITE_SP
	7.3.4.29 WRITE_NEXT
	7.3.4.30 WRITE_NEXT_WS

	7.3.5 Serial Interface Hardware Handshake Protocol
	7.3.6 Hardware Handshake Abort Procedure
	7.3.7 BDC Hardware Breakpoint
	7.3.8 Differences from M68HC12 BDM
	7.3.8.1 8-Bit Architecture
	7.3.8.2 Command Formats
	7.3.8.3 Read and Write with Status
	7.3.8.4 BDM Versus Stop and Wait Modes
	7.3.8.5 SYNC Command
	7.3.8.6 Hardware Breakpoint

	7.4 Part Identification and BDC Force Reset
	7.4.1 System Device Identification Registers (SDIDH:SDIDL)
	7.4.2 System Background Debug Force Reset Register

	7.5 On-Chip Debug System (DBG)
	7.5.1 Comparators A and B
	7.5.2 Bus Capture Information and FIFO Operation
	7.5.3 Change-of-Flow information
	7.5.4 Tag vs. Force Breakpoints and Triggers
	7.5.5 CPU Breakpoint Requests
	7.5.6 Trigger Modes
	7.5.6.1 A-Only Trigger
	7.5.6.2 A OR B Trigger
	7.5.6.3 A Then B Trigger
	7.5.6.4 Event-Only B Trigger (Store Data)
	7.5.6.5 A Then Event-Only B Trigger (Store Data)
	7.5.6.6 A AND B Data Trigger (Full Mode)
	7.5.6.7 A AND NOT B Data Trigger (Full Mode)
	7.5.6.8 Inside Range Trigger: A £ Address £ B
	7.5.6.9 Outside Range Trigger: Address < A or Address > B

	7.5.7 DBG Registers and Control Bits
	7.5.7.1 Debug Comparator A High Register (DBGCAH)
	7.5.7.2 Debug Comparator A Low Register (DBGCAL)
	7.5.7.3 Debug Comparator B High Register (DBGCBH)
	7.5.7.4 Debug Comparator B Low Register (DBGCBL)
	7.5.7.5 Debug FIFO High Register (DBGFH)
	7.5.7.6 Debug FIFO Low Register (DBGFL)
	7.5.7.7 Debug Control Register
	7.5.7.8 Debug Trigger Register
	7.5.7.9 Debug Status Register

	7.5.8 Application Information and Examples
	7.5.8.1 Orientation to the Debugger Examples
	7.5.8.2 Example 1: Stop Execution at Address A
	7.5.8.3 Example 2: Stop Execution at the Instruction at Address A
	7.5.8.4 Example 3: Stop Execution at the Instruction at Address A or Address B
	7.5.8.5 Example 4: Begin Trace at the Instruction at Address A
	7.5.8.6 Example 5: End Trace to Stop After A-Then-B Sequence
	7.5.8.7 Example 6: Begin Trace On Write of Data B to Address A
	7.5.8.8 Example 7: Capture the First Eight Values Read From Address B
	7.5.8.9 Example 8: Capture Values Written to Address B After Address A Read
	7.5.8.10 Example 9: Trigger On Any Execution Within a Routine
	7.5.8.11 Example 10: Trigger On Any Attempt To Execute Outside FLASH

	7.5.9 Hardware Breakpoints and ROM Patching

	Appendix�A. Instruction Set Details
	A.1 Introduction
	A.2 Nomenclature
	A.3 Convention Definitions
	A.4 Instruction Set

	Appendix B. Equate File Conventions
	B.1 Introduction
	B.2 Memory Map Definition
	B.3 Vector Definitions
	B.4 Bits Defined in Two Ways
	B.5 Complete Equate File for MC9S08GB60

