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Quantum Criticality: Competing Ground
States in Low Dimensions

Subir Sachdev

Small changes in an external parameter can often lead to dramatic
qualitative changes in the lowest energy quantum mechanical ground
state of a correlated electron system. In anisotropic crystals, such as the
high-temperature superconductors where electron motion occurs primar-
ily on a two-dimensional square lattice, the quantum critical point be-
tween two such lowest energy states has nontrivial emergent excitations
that control the physics over a significant portion of the phase diagram.
Nonzero temperature dynamic properties near quantum critical points are
described, using simple theoretical models. Possible quantum phases and
transitions in the two-dimensional electron gas on a square lattice are
discussed.

Quantum mechanics was originally devel-
oped by Schrödinger and Heisenberg as a
theory of nonrelativistic charged particles in-
teracting via the Coulomb force, and success-
fully applied to a simple two-particle system
like the hydrogen atom. However, among its
most important applications has been the de-
scription of ;1023 particles found in macro-
scopic matter. The earliest example of this
was the Sommerfeld-Bloch theory of elec-
tronic motion in metals, and its refined for-
mulation in Landau’s Fermi liquid theory (1).
Although solving Schrödinger’s wave equa-
tion for 1023 interacting electrons appears an
impossibly daunting task, Landau outlined a
powerful strategy, involving the concept of
“quasiparticles,” which allowed an essential-
ly exact description of the low-temperature
(T ) properties of metals. Extensions of Lan-
dau’s approach have successfully described
many other phases of matter: the superfluid
phases of 4He and 3He, the superconductivity
in metals that is described by the Bardeen-
Cooper-Schrieffer theory, and the quantum
Hall liquid state of electrons in two dimen-
sions in a strong magnetic field. However, in
the last decade, attention has been lavished on
new transition metal compounds for which no
successful quasiparticle-like theory has yet
emerged for much of the accessible temperature
range. The most important among these com-
pounds are ceramics, like YBa2Cu3O7, in
which the electronic motion occurs primarily in
two-dimensional (2D) CuO2 layers, and that
display “high-temperature” superconductivity.

Here, I shall describe a new approach to
the collective dynamical properties of elec-
trons that turns out to be especially useful in
two dimensions: the approach focuses on the
notion of competing ground states and its

implications for the dynamics of excited states
at nonzero temperatures. Before describing
this further, let us review the essence of
Landau’s strategy. His starting point is the
proper identification of the quantum “coher-
ence” or order in the ground state of the
system. In the theory of metals, the order is
that implied by the distribution in the occu-
pation number of plane wave states of elec-
trons—the plane waves with small wavevec-
tors are fully occupied, but there is an abrupt
decrease in the average occupation number
above a certain “Fermi wavevector”; in the
superfluid state of 4He, the order in the
ground state is the presence of the Bose-
Einstein condensate—the macroscopic occu-
pation of 4He atoms in the ground state.
Landau then proceeds to describe the low-
energy excited states, and hence the finite
temperature properties, by identifying ele-
mentary excitations that perturb the order of
the ground state in a fundamental way. These
excitations can be thought of as new, emer-
gent particles (or “quasiparticles”) that trans-
port spin, charge, momentum, and energy,
and whose mutual collisions are described by
a Boltzmann-like transport equation. In met-
als, the quasiparticles are electrons and holes
in the vicinity of the Fermi wavevector,
whereas in 4He they are phonon and roton
excitations.

The systems I shall consider here are del-
icately poised between two or more distinct
states with very different quantum ordering
properties and low-lying excitations. The en-
ergies of the states are quite close to each
other, and only at very low temperatures is a
particular one picked as the ground state—at
these temperatures, Landau’s quasiparticle
approach can apply. However, for somewhat
different parameters, it is possible that a dif-
ferent state will be picked as ground state,
and again, Landau’s quasiparticle approach
will apply at very low temperatures: a crucial
point is that the nature and physical proper-

ties of these quasiparticles will, in general, be
very different from the previous ones. At
slightly higher temperatures, it is impossible
to ignore the competition between the differ-
ent states and their respective quasiparticles:
the simple quasiparticle picture breaks down,
and very complex behavior can result which
is not characteristic of any one of the possible
ground states.

I describe this intricate temperature de-
pendence by the following strategy. Imagine
following the true ground state of the system
as a function of some parameter in the Ham-
iltonian, g. It should be possible to find a
critical value g 5 gc such that the ground
state undergoes a quantum phase transition
(2, 3) from one possible state for g , gc to
another, with distinct quantum order, for g .
gc. I first develop a theory for the ground
state for the quantum critical point precisely
at g 5 gc. In general, this is a difficult task,
but for “second-order” quantum transitions,
the critical point has special symmetry prop-
erties that often allows significant progress; we
will see examples of this below. Empowered
with this knowledge of the physics at inter-
mediate coupling, I move away from the
critical point and map out the physics for
nonzero ug 2 gcu and temperature. It should
be emphasized that it is often the case that the
point g 5 gc is in a regime that cannot be
experimentally accessed; however, this does
not rule out application of my strategy—it is
still useful to describe the physics at the
inaccessible point g 5 gc, and then use it as a
point of departure to develop a systematic
and controlled theory for an accessible value
of g.

This discussion has so far been rather
abstract; we will now spell out concrete de-
tails by considering a number of examples of
increasing complexity and discussing their
relationship to experimental observations.

Ising Chain in a Transverse Field
This is the simplest theoretical model of a
quantum phase transition, and many key con-
cepts emerge from its study (3). It is de-
scribed by the Hamiltonian (J . 0, g . 0)

HI 5 2 J O
j

~ gŝ j
x 1 ŝ j

zŝ j11
z ! (1)

Here, ŝ j
x,z are Pauli matrices that measure the

x, z components of the electron spin on a
magnetic ion in an insulator. The ions reside
on the sites j of a 1D chain. Each site has two
possible states u1&j and u2&j, which are ei-
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genstates of ŝ j
z with eigenvalues 11 and 21,

and thus identify the electron spin on site j as
“up” or “down.” The two terms in HI repre-
sent different physical effects: the second
term prefers that the spins on neighboring
ions are parallel to each other, whereas the
first allows quantum tunneling between the
u1&j and u2&j states with amplitude propor-
tional to g.

For g .. 1 and for g ,, 1, the ground
states of HI are simple, and the quasiparticle
picture does describe the low T dynamics (4 ).
For g ,, 1, we can neglect the quantum
tunneling and the ground state either has all
spins up or all spins down. The order in this
state is evident: all the spins are parallel to
each other. The quasiparticles are domain
walls that perturb this order. A quasiparticle
state, uQj&, between sites j and j 1 1 has the
following wavefunction: all spins at and to
the left (right) of site j ( j 1 1) are up (down)
(see Fig. 1). For g 5 0, every such spin
configuration is an energy eigenstate and
therefore stationary; for small but finite g, the
domain walls become mobile (and acquire
zero point motion). A theory for the quantum
kinetics of these particles, describing their
collisions, lifetime, and the relaxation of the
magnetic order, can be developed following
Landau’s general strategy. In the opposite
limit, g .. 1, we see from Eq. 1 that the
ground state can be built out of eigenstates of
ŝ i

x with eigenvalue 11: these are

u3&j 5
1

Î2
~ u1&j 1 u2&j) (2)

or a “right”-pointing spin, which quantum
mechanically is just a linear superposition of
up and down spins. The ground state has all
spins pointing to the right, and it is evident
that such a state is very different from the g 5
0 ground state, because the two states form
distinct quantum superpositions of the avail-

able states in the Hilbert space. The distinc-
tion extends also to the excited states: we
define a left-pointing spin by the analog of
(2), u4&j 5 ( u1&j 2 u2&j)/=2, and the qua-
siparticle states, uQ̃j&, now represent a single
“left”-pointing spin at site j in a background
of “right” spins (see Fig. 1), rather than a
domain wall. For g 5 `, these states are
stationary, but for g , `, the quasiparticles
develop dynamics; a theory for this dynamics
can again be formulated in the spirit of
Landau, and this describes relaxation phe-
nomena at low T.

We now allow competition between the
distinct orders at small and large g by con-
sidering values of g of order unity. Consider
first T 5 0. It is known that there is a
quantum phase transition between these
states at g 5 gc 5 1, i.e., the ground state
qualitatively similar to the g 5 0 ground state
for all g , 1, while a state like the g 5 `
ground state is favored for g . 1. The ground
state precisely at g 5 gc is very special: it
cannot be characterized by any such simple
cartoon pictures. Its fundamental property is
one of scale invariance, as is apparent from
the ground state correlation function (5)

^ŝ j
zŝ k

z & ,
1

u j 2 ku1/4 for large u j 2 ku (3)

This power-law decay has the property that
the functional form of the correlation is only
modified by an overall prefactor if we stretch
the length scale (i.e., perform a scale trans-
formation) at which we are observing the
spins. In other words, it is not possible to tell
by an examination of the ground state wave-
function how far apart any pair of well-sep-
arated spins are. At T . 0, a new time scale
does appear, namely \/kBT, and a fundamen-
tal property of the quantum critical point of
HI is that this time scale (involving nothing
but the temperature and fundamental con-
stants of nature) universally determines the
relaxation rate for spin fluctuations. This is
made more precise by examining the zero-
momentum dynamic response function

x~v! 5
i

\ O
k

E
0

`

dt^@ŝ j
z~t!, ŝ k

z~0!#&eivt (4)

where ŝ j
z(t) is an operator at time t in the

Heisenberg picture, and [,] represents a quan-
tum commutator. The arguments above and
simple dimensional considerations following
from Eq. 3 imply that for low temperatures x
obeys

x~v! , T 27/4FI ~\v/kBT ! (5)

with FI a universal response function; if, for
example, we added a small second neighbor
coupling to HI, the critical coupling gc would
shift slightly but F would remain exactly the
same. The exact result for FI is known, and it
is an excellent approximation to just replace

its inverse by a low-frequency expansion (3)
FI(\v/kBT ) 5 A(1 2 iv/GR 1 . . .)21; here,
A is a dimensionless prefactor, and we have
the important result that GR 5 [2 tan (p/
16)]kBT/\. This is the response of an over-
damped oscillator with a relaxation rate de-
termined only by temperature itself (6 ). Al-
though a quasiparticle description of this re-
sponse function is strictly not possible, we
can visualize the dynamics in terms of a
dense gas of the uQj& particles scattering off
each other at a rate of order kBT/\; however,
a picture in terms of the “dual” uQ̃j& particles
would also be valid. It is quite remarkable
that the strength of the underlying exchange
interaction between the spins does not appear
in these fundamental dynamic scales.

We can use these above results to sketch a
crossover phase diagram in the g,T plane.
This is shown in Fig. 1. Note that “quantum
criticality,” characterized by responses like
Eq. 5, holds over a range of values of g at
nonzero temperature (7 ).

It can be shown that the physics of the
quantum Ising model in spatial dimension
d 5 2 is very similar; quantum criticality is
again characterized by Eq. 5 (but the expo-
nent 7/4 is replaced by a different universal
numerical value). Similar behavior applies
also to quantum transitions in d 5 3 systems
with quenched disorder (8). However, for the
analog of HI in d 5 3 (and for all d . 3), the
physics of the quantum phase transition is
very different (3)—the kinetic theory of the
analog of the uQ̃j& quasiparticles applies even
at the critical point, and their scattering cross-
section depends on the magnitude of the mi-
croscopic interactions. Quantum transitions
in this class have been studied elsewhere and
have important physical applications (9–11):
our discussion of quantum criticality will not
apply to them.

Coupled Ladder Antiferromagnet
We turn to a model in d 5 2 that is indirectly
related to microscopic models of the high
temperature superconductors. We consider
the antiferromagnet described by the Hamil-
tonian (12) (J . 0, 0 , g # 1)

HL 5 J O
i, j [ A

Si z Sj 1 gJ O
i,j[B

Si z Sj (6)

where Si are spin-1/2 operators on the sites of
the coupled-ladder lattice shown in Fig. 2,
with the A links forming “two-leg ladders”
while the B links couple the ladders. There is
a quantum phase transition in HL at a critical
value g 5 gc ' 0.3 that is similar in many
respects to that in HI.

I begin by describing the well-ordered
ground states on either side of gc and their
respective, low-T quasiparticle theories.

For g close to unity, there is the magnet-
ically ordered “Néel” state in Fig. 2A. This is
analogous to the ground state of HI for small

g

T

gc

0

Domain-wall
quasiparticles

Flipped-spin
quasiparticles

Quantum
critical

Fig. 1. Phase diagram of HI. The quantum phase
transition is at g 5 gc, T 5 0, and the dashed
red line indicates a crossover. Quasiparticle dy-
namics applies in the blue shaded regions: for
g , gc, the quasiparticle states are like the uQj&
states, whereas for g . gc, they are like the
very different uQ̃j& states. The quantum critical
dynamics in the pink shaded region is charac-
terized by Eq. 5.
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g, with the difference that the mean moment
on the sites has a staggered sublattice ar-
rangement. There is also an important differ-
ence in the structure of the excitations, be-
cause HL has the symmetry of arbitrary rota-
tions in spin space, in contrast to the discrete
spin inversion symmetry of HI. Consequent-
ly, the low-lying quasiparticle excitations are
spin waves corresponding to a slow preces-
sion in the orientation of the staggered mag-
netic order. The precession can be either
clockwise or anticlockwise, and so there is
twofold degeneracy to each spin-wave mode.
Because of infrared singular scattering of
thermally excited spin waves in d 5 2, the
theory of spin-wave dynamics has some sub-
tleties (7, 13); nevertheless, the results remain
within the spirit of the quasiparticle picture.

For small g, the ground state is a quantum
paramagnet, and a caricature is sketched in
Fig. 2B. The average moment on each site
has been completely quenched by the forma-
tion of singlet bonds between neighboring
spins. This state is similar in many respects to
the large g ground state for HI. It requires a
finite energy, D, to create quasiparticle exci-
tations by locally disrupting the singlet order
(the analog of flipping a spin for HI): the
singlet bond between a pair of spins can be
replaced by a triplet of total spin S 5 1 states,
and the motion of this broken bond corre-
sponds to a threefold degenerate quasiparticle
state (to be contrasted with the twofold de-
generate spin wave above). A conventional
quantum Boltzmann equation can be used to
describe the low temperature dynamics of
these triplet quasiparticles (3, 14).

The crossover phase diagram in the g,T
plane (7) is sketched in Fig. 3 following Fig.
1. For g # gc, quantum criticality appears for
D ,, kBT ,, J. Here, dynamic spin response

functions have a structure very similar to that
described near Eq. 5: the relaxation rate GR

continues to be proportional to kBT/\, but
now only approximate results for the propor-
tionality constant are available (3, 15). If the
dynamics is described in the basis of the
triplet quasiparticles, then these results imply
that the scattering cross section is universally
determined by the energy kBT alone (14 ). As
we lower kBT across D (for g , gc), this
scattering cross section evolves as a function
of the dimensionless ratio D/kBT alone, and
for very low T is determined by D alone. One
remarkable consequence of this universal
cross section is that transport coefficients,
like the spin conductance ss (which deter-
mines the spin current produced by the gra-
dient in an applied magnetic field), are deter-
mined by fundamental constants of nature
(16 ) and the ratio D/kBT

ss 5
~ gmB!2

h
FsS D

kBTD (7)

Here, g is the gyromagnetic ratio of the ions
carrying the spin, mB is the Bohr magneton,
and Fs is a universal function with no arbi-
trariness in either its overall scale or in that of
its argument. Note that, well into the quantum
critical region, ss is proportional to the uni-
versal number Fs(0), and so is determined by
constants of nature alone.

Although it is certainly not appropriate to
take HL as a literal model for the high-tem-
perature superconductors, it is notable (17 )
that many measurements of spin fluctuations
in the last decade display crossovers that are
very similar to those found in the vicinity of
the quantum critical point in Fig. 3. I take this
as evidence that the high-temperature super-
conductors are near a quantum critical point
whose spin sector has universal properties

closely related to that of HL (18): a specific
microscopic calculation, involving competi-
tion between the states to be discussed below,
which realizes such a scenario was presented
in (19). The evidence has appeared in the
following experiments: (i) the dynamic spin
structure factor measured in neutron scatter-
ing experiments (20) at moderate temperature
obeys scaling forms similar to Eq. 5; (ii) as I
discuss in Fig. 4, crossovers in the nuclear
spin relaxation rate (21, 24, 25) as a function
of carrier density and temperature match very
well with the spin dynamics of the different
regimes in the g,T plane in Fig. 3; (iii) low-
temperature neutron scattering measurements
(26 ) at higher carrier density show a resolu-
tion-limited peak above a finite energy gap;
this is a signal of the long-lived triplet qua-
siparticles, like those found at low T for g ,
gc in HL; such a peak was argued early on
(15) to be a generic property of the vicinity of
a quantum critical point, like that in HL,
proposed for the high-temperature supercon-
ductors (18). A further test of quantum criti-
cality in the spin fluctuations could be pro-
vided by measurements of the spin conduc-
tance and comparison with Eq. 7, but such
experiments have not been feasible so far.

Electronic Ground States in Two
Dimensions
I have so far discussed simple models of
quantum phase transitions whose physics is
now well understood. Here, I turn to more
realistic models of the high-temperature su-
perconductors. As I mentioned in the intro-

Fig. 2. The coupled ladder an-
tiferromagnet; the spin-1/2 de-
grees of freedom, Si, reside on
the blue circles. The A links are
the full red lines and have ex-
change J, whereas the B links
are dashed lines and have ex-
change g J. The Néel ground
state for g . gc appears in (A).
The paramagnetic ground state
for g , gc is schematically in-
dicated in (B). The ellipses in
(B) represents a singlet valence
bond, ( u12& 2 u21&)/=2
[shown in (C)], between the
spins on the sites.

Fig. 3. Crossover phase diagram for HL with the
same conventions as Fig. 1. The ground state is
a paramagnet (Fig. 2B) for g , gc, and the
energy cost to create a spin excitation, D, is
finite for g , gc and vanishes as D ; ( gc 2 g)zn,
where zn is a critical exponent. There is mag-
netic Néel order at T 5 0 for g . gc (Fig. 2A),
and the time-averaged moment on any site, NW 0,
vanishes as g approaches gc from above. Qua-
siparticle-like dynamics applies in the blue-
shaded regions. For g , gc, in the cartoon
picture of the ground state in Fig. 2B, the triplet
quasiparticle corresponds to the motion of bro-
ken singlet bond in which Fig. 2C is replaced by
one of u11&, u22&, or ( u12& 1 u21&)/=2. For
g . gc, the quasiparticles are spin-waves rep-
resenting slow, long-wavelength deformations
of the ordered state in Fig. 2A.
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duction, electronic motion in these materials
occurs primarily in 2D CuO2 layers. The Cu
ions are located on the vertices of a square
lattice, and it is widely believed that only the
dynamics on a single 3d Cu orbital is rele-
vant, with the occupation numbers of the
other orbitals being inert. So we are led to
consider a simple tight-binding model of
electrons with a single orbital on every site of
a square lattice, along with Coulomb interac-
tions between the electrons. If the electron
density is precisely unity per site, then the
ground state is known to be an insulator with
Néel order (this corresponds to the state in
Fig. 2A at g 5 1) for the range of parameters
found in the stoichiometric compound
La2CuO4. It is possible to vary the electron
density in the square lattice by doping such a
compound to La22xSrxCuO4, and then x mea-
sures the density of holes relative to the
insulating state with one electron per site.
High-temperature superconductivity is found
for x greater than about 0.05.

Much theoretical work in the last decade
has addressed the physics of this square lat-
tice model for small x. I will discuss various
proposals for ground states, with an emphasis
on finding sharp distinctions between them—
i.e., distinguishing states that cannot be
smoothly connected by the variation of a
parameter in the Hamiltonian and that must

be separated by a quantum phase transition.
Often, the theoretical debate has been about
different approximation schemes to comput-
ing properties of states that are ultimately
equivalent. I avoid such issues here; indeed, I
advocate that a sound approach is to use a
theory for quantum critical points, separating
distinct ground states, to develop a controlled
expansion at intermediate coupling.

A minimal approach to identifying possi-
ble ground states is to assume that they are
fully characterized by broken symmetries of
the underlying Hamiltonian—i.e., a simple
electron mean-field theory of the broken
symmetry properly identifies the elementary
excitations (however, as discussed above, this
does not rule out highly nontrivial quantum
critical points whose excitations control the
physics over a wide region of the phase dia-
gram). The symmetries that leave the Hamil-
tonian invariant (and so may be broken by the
ground state) are time-reversal, the group of
spin rotations, the space group of the square
lattice, and the electromagnetic gauge sym-
metry related to charge conservation. Even in
this limited framework, the possibilities are
remarkably rich, and it is entirely possible
that they will provide an explanation for all

the experiments. More exotic ground states
have also been proposed, and I will note them
briefly below.

One important state has already made an
appearance in the discussion above, and is
known to be the ground state x 5 0: the Néel
state sketched in Fig. 2A. It is apparent by a
glance at the staggered arrangement of spins
in Fig. 2A that we can view this state as a
density wave of spin polarization at the
wavevector K 5 (p/a,p/a), where a is the
square lattice spacing. For small x Þ 0, spin
density waves with a period incommensurate
with the underlying lattice have been ob-
served (27 ): these states have a mean spin
polarization at a wavevector K that varies
continuously away from (p/a,p/a).

The other ground state of central impor-
tance is, of course, the superconducting state.
This is formed by Bose condensation of elec-
trons in Cooper pairs, which leads to the
breaking of the elctromagnetic gauge symme-
try. It is known that the pair wavefunction has
the symmetry of the dx22y2 orbital in the
relative coordinate of the two electrons. Re-
cently, interest has focused on the question of
whether the pair wavefunction is on the verge
of acquiring an additional imaginary compo-
nent with dxy (or possibly s) symmetry: such
an instability would also break time-reversal
symmetry (28–31). It has been argued (31)
that the quantum phase transition between
two such superconductors could very natural-
ly explain the quantum criticality, similar to
the scaling form (5), observed in recent pho-
toemission experiments (32).

A state that makes a frequent appearance
in theoretical studies is one with “Peierls”
order. In models with half-integral spin per
unit cell, such order was argued (33) to be a
generic property of any state reached by a
continuous quantum transition that restores
the broken spin rotation symmetry of a Néel
state. The Peierls order is associated with
broken translational symmetries, and exam-
ples are shown in Fig. 5: in these states all
sites of the square lattice are equivalent, but
links connecting nearest neighbor sites spon-
taneously can acquire distinct values for their
charge and energy densities (and therefore,
for the mean value of the exchange cou-
pling ^Si z Sj&). I also considered a quantum
transition restoring spin rotation symmetry
previously in the text, and mentioned its rel-
evance to the NMR measurements in Fig. 4;
however, the issue of spontaneous Peierls
ordering did not arise there because the links
were already explicitly inequivalent in the
Hamiltonian HL in Eq. 6. It is believed (15,
33, 34) that the universal spin fluctuation
properties in the vicinity of the quantum crit-
ical point discussed above apply also to cases
where spontaneous Peierls order appears in
the paramagnetic state. Evidence for the
spontaneous Peierls ordering in Fig. 5A has

Fig. 5. Two examples (A and B) of square lattice
ground state with Peierls order. All sites are
equivalent, and distinct values of the energy
and charge densities on the links are represent-
ed by distinct colors. These distinctions repre-
sent a spontaneous breaking of the symmetry
of the square lattice space group. The sponta-
neous ordering appears because it optimizes
the energy gained by resonance between dif-
ferent singlet bond pairings of near-neighbor
spins. This figure should be contrasted with Fig.
2, where there is no spontaneous breaking of
translational symmetry, and the distinction be-
tween the links is already present in the Ham-
iltonian Eq. 6.

 

Fig. 4. Measurements (21) of the longitudinal
nuclear spin relaxation (1/T1) of 63Cu nuclei in the
high-temperature superconductor La22xSrxCuO4
as a function of x and T. This quantity is a
measure of the spectral density of electron spin
fluctuations at very low energies. At small x,
1/T1 increases rapidly as T is lowered (red cir-
cles). This is also the behavior in the spin-wave
regime of Fig. 3 ( g . gc): the energy of the
dominant thermally excited spin-wave decreas-
es rapidly as T decreases, and so the spin spec-
tral density rises (22). In contrast, at large x,
1/T1 decreases as T is lowered (blue squares).
This corresponds with the triplet quasiparticle
regime of Fig. 3 ( g , gc): the low-energy
spectral density is proportional to the density
of thermally excited quasiparticles, and this
becomes exponentially small as T is lowered.
Finally, at intermediate T, 1/T1 is roughly tem-
perature-independent for a wide range of T
(orange triangles), and this is the predicted
behavior (18, 23) in the quantum critical re-
gime of Fig. 3.
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emerged in numerical studies (35, 36) of
square lattice models at x 5 0 and with first-
and second-neighbor hopping of electrons,
and also in nearest-neighbor hopping models
for x . 0 (37 ).

A competitor state to Peierls order for the
quantum paramagnet is the “orbital antiferro-
magnet” (38–40): this state breaks time-re-
versal and translational symmetries, but spin
rotation symmetry and the combination of
time-reversal and translation by an odd num-
ber of lattice spacings remains unbroken.
There is a spontaneous flow of electrical
currents around each plaquette of the square
lattice, with clockwise and anticlockwise
flows alternating in a checkerboard pattern
(Fig. 6). Ivanov et al. (41) proposed that a
closely related state (in their formulation,
there are strong fluctuations of the orbital
currents, but no true long-range order) is
responsible for the “pseudo-gap” phenome-
nology of the high-temperature superconduc-
tors—the pseudo-gap is the partial quenching
of low-energy spin and fermionic excitations
at temperatures above the superconducting
critical temperature (Tc).

For the final conventional state, I consider
a charge density wave. Much recent experi-
mental work has centered around the discov-
ery of charge-ordering in certain high-tem-
perature superconductors and related materi-
als (42). An especially stable state, observed
for x ' 1/8, has a charge density wave at
wavevector K 5 [p/(2a),0]; depending upon
its phase, the charge density wave can be
either site-centered or bond-centered, as
shown in Fig. 7. Current experiments do not
distinguish between these two possibilities.
Site-centered ordering was considered in
some early theoretical work (43–45), al-
though with a very different charge distribu-
tion than is now observed. Bond-centered
ordering was considered recently (19, 46,
47 ), and has some attractive features: it en-
hances singlet-bond formation between spins,
optimizing the energy gained through quan-
tum fluctuations in an antiferromagnet, and
so is preferred by the same effects that led to
the Peierls ordering in Fig. 5. Also, bond-
centering is naturally compatible with the
observed coexistence of charge-ordering and
superconductivity at lower temperatures (48),
while site-centering is expected to lead to
insulating behavior. Let me also mention that
superposition of charge density waves with
different noncollinear K can lead to an insu-
lating Wigner crystal state; this could be a
Wigner crystal of holes, or with an even
number of particles per unit cell, a Wigner
crystal of Cooper pairs (47 ).

Clearly, a fascinating variety of phase di-
agrams and quantum phase transitions are
possible among the states I have discussed
above. In principle, many of the order param-
eters can coexist with each other, and this

adds to the menagerie of possibilities. Future
experiments with increased sensitivity should
make it possible to more clearly detect more
of these orderings, and thus select between
various scenarios.

Spin-Charge Separation
Finally, we discuss more exotic possibilities
of states that cannot be completely character-
ized by ordering discussed above. Of partic-
ular interest has been the early proposal of
Anderson and others (49, 50) that there could
be an insulating state with spin-charge sepa-
ration; i.e., the electron falls apart (“fraction-
alizes”) into separate deconfined excitations
(51, 52) that carry its spin and charge. A
fundamental property of these deconfined
phases is that superconducting states in their
vicinity allow low-energy vortex excitations
with quantized magnetic flux equal to hc/e
(53–55): the elementary flux quantum is al-
ways hc/2e, but it can be argued quite gener-
ally that core energy of a hc/e vortex is lower
than twice that of a hc/2e vortex. The kinetic
energy of the superflow well away from the
vortex core always prefers the smaller flux
hc/2e, and so requiring global stability for
hc/e vortices becomes a delicate question of
balancing core and superflow contributions
(53). Nevertheless, it is possible, in principle,
that a magnetic flux decoration, flux noise,
tunneling, or other experiment could observe
metastable or stable hc/e vortices or vortex-
antivortex pairs: this would be a “smoking-
gun” signal for deconfinement.

Another important class of experiments
(56 ) measures the response to nonmagnetic
impurities, such as Zn or Li, and these could
also provide clear-cut answers on the nature
of the order parameter and on issues of con-
finement. These impurities substitute on the
Cu site and so are directly within the plane of
the 2D electron gas. Such deformations are
very effective in disrupting the quantum co-
herence of the ground state and so serve as
effective probes of its structure. For example
(57, 58), replacing only 0.5% of Cu by Zn
dramatically broadens the peak in the neutron-

scattering cross section (26), arising from the
triplet quasiparticles discussed above. Further
interesting developments are sure to follow.

Conclusion
Correlated electron systems in two dimen-
sions are in a privileged position. Those in
three dimensions either form good Fermi liq-
uids or ordered states with order parameters
like those discussed above: in the latter case,
quantum fluctuations of the order parameter
are weak and do not lead any unusual non-
quasiparticle behavior, even at zero tempera-
ture phase transitions (11). In contrast, in one
dimension, quantum fluctuations of the order
parameters are so strong that they usually
preclude the emergence of long-range order,
and so quantum phase transitions are harder
to find. It is in two dimensions that there is a
delicate balance between order and fluctua-
tion, and a host of interesting quantum criti-
cal points, with nontrivial universal proper-
ties, can appear between different competing
orders. I have considered some simple exam-
ples of the dynamical properties of systems
near such a point. The phases on either side of
the critical point are usually amenable to a
quasiparticle description at low enough tem-
peratures. However, a key point is that the
quasiparticle states are very different for the
two phases, so at slightly higher temperatures

Fig. 6. The orbital antiferromagent. The gradi-
ent in the red shading represents the direction
of spontaneous current flow on the links, which
breaks time-reversal symmetry.

Fig. 7. Charge density waves with (A) site- and
(B) bond-centering; both states have a 4 3 1
unit cell. The state in (A) is symmetric about
reflections in a vertical axis running through the
red or green sites, whereas that in (B) requires
a vertical axis centered on the bond between
two red sites or two green sites. The colors of
the sites represent different charge densities.
Spin ordering can also be present for an appro-
priate K, but is not shown. Note that the bond-
centered ordering naturally suggests an effec-
tive model for the spin fluctuations much like
the ladder model described in the text: the
spins of Fig. 2 reside on the red sites of (B)
(with no spins on the green sites) and the
weaker gJ exchange interactions (represented
by the dashed lines in Fig. 2) extend across the
green sites.
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when both phases can be thermally excited,
neither quasiparticle description is appropri-
ate. Instead, special scale-invariance proper-
ties of the critical point have to be used to
develop a new framework for finite temper-
ature dynamics.

The availability of a large number of 2D
correlated electron systems (including the
high-temperature superconductors), along
with the highly nontrivial theoretical
framework necessary to describe them,
makes this one of the most exciting re-
search areas in condensed matter physics.
As I have already noted, the increased sen-
sitivity of future experiments, including
neutron scattering, tunneling, magnetic res-
onance, photoemission, and optics, along
with better sample preparation techniques,
will surely uncover much new physics.
Many interesting theoretical questions, on
the classification of ground states and
quantum critical points, and on the descrip-
tion of dynamical crossovers in their vicin-
ity, remain open. The interplay between
theory and experiment promises to be mu-
tually beneficial, in the best traditions of
physics research.
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V I E W P O I N T

Sources of Quantum Protection in High-Tc
Superconductivity

Philip W. Anderson

The layer-structure cuprates with high superconducting transition tem-
peratures Tc exhibit a number of anomalous electronic properties in both
superconducting and normal states. These anomalies are ascribed to the
existence of independent spectra of excitations for charge and for spin,
signaling a collective state, a “quantum protectorate.”

Laughlin and Pines (1) recently introduced
the term “quantum protectorate” to describe
certain states of quantum many-body systems
with properties that are unaffected by imper-
fections, impurities, and thermal fluctuations.
Examples are the quantum Hall effect, which
can be measured to extremely high accuracy

on samples with very short mean free paths
(comparable to the electron wavelength), and
flux quantization in superconductors, which
is independent of imperfections and scatter-
ing. A simpler example is the rigidity and
dimensional stability of crystalline solids
evinced by scanning tunneling microscopy.
The source of quantum protection is likely to
be a collective state of the quantum field, in
which the individual particles are sufficiently
tightly coupled that elementary excitations no

longer involve just a few particles, but are
collective excitations of the whole system. As
a result, macroscopic behavior is mostly de-
termined by overall conservation laws.

Here, I discuss experimental evidence
which shows that the metallic states of high–
transition temperature (Tc) cuprate supercon-
ductors are a quantum protectorate. I propose
that this collective state involves the phenom-
enon of charge-spin separation and give in-
dications why such a state should be a quan-
tum protectorate.

Experimental Evidence
We may define four regions of the generic
cuprate phase diagram (Fig. 1): the “normal”
metallic state near optimal doping, phase I,
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